Diversity of Spring Invertebrates and Their Habitats: A Story of Preferences
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Sampling Methods
2.3. Statistical Methods
3. Results
3.1. Crenic Habitats
3.2. Crenic Invertebrate Communities
3.3. Habitat Preferences at a Community Level
3.4. Habitat Preferences at a Guild Level
3.5. Habitat Preferences for Water Mites and Copepods
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cantonati, M.; Füreder, L.; Gerecke, R.; Jüttner, I.; Cox, E.J. Crenic habitats, hotspots for freshwater biodiversity conservation: Toward an understanding of their ecology. Freshw. Sci. 2012, 31, 463–480. [Google Scholar] [CrossRef]
- Scarsbrook, M.R.; Barquín, J.; Gray, D.P. New Zealand Coldwater Springs and Their Biodiversity; Department of Conservation: Wellington, New Zealand, 2007; Volume 278.
- Di Cicco, M.; Di Lorenzo, T.; Iannella, M.; Vaccarelli, I.; Galassi, D.M.P.; Fiasca, B. Linking Hydrogeology and Ecology in Karst Landscapes: The Response of Epigean and Obligate Groundwater Copepods (Crustacea: Copepoda). Water 2021, 13, 2106. [Google Scholar] [CrossRef]
- Nair, P.; Diaz, P.H.; Nowlin, W.H. Interactions at surface–subterranean ecotones: Structure and function of food webs within spring orifices. Oecologia 2021, 196, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Savić, A.; Dmitrović, D.; Glöer, P.; Pešić, V. Assessing environmental response of gastropod species in karst springs: What species response curves say us about niche characteristic and extinction risk? Biodivers. Conserv. 2020, 29, 695–708. [Google Scholar] [CrossRef]
- Pešić, V.; Dmitrović, D.; Savić, A.; Milošević, D.J.; Zawal, A.; Vukašinović-Pešić, V.; von Fumetti, S. Application of macroinvertebrate multimetrics as a measure of the impact of anthropogenic modification of spring habitats. Aquat. Conserv. Mar. Freshw. Ecosyst. 2019, 29, 341–352. [Google Scholar] [CrossRef]
- Ward, J.V.; Tockner, K.; Uehlinger, U.; Malard, F. Understanding natural patterns and processes in river corridors as the basis for effective river restoration. Regul. Rivers Res. Manag. Int. J. Devoted River Res. Manag. 2001, 17, 311–323. [Google Scholar] [CrossRef]
- Ilmonen, J.; Mykrä, H.; Virtanen, R.; Paasivirta, L.; Muotka, T. Responses of spring macroinvertebrate and bryophyte communities to habitat modification: Community composition, species richness, and red-listed species. Freshw. Sci. 2012, 31, 657–667. [Google Scholar] [CrossRef]
- Gomi, T.; Sidle, R.C.; Richardson, J.S. Understanding processes and downstream linkages of headwater systems: Headwaters differ from downstream reaches by their close coupling to hillslope processes, more temporal and spatial variation, and their need for different means of protection from land use. BioScience 2002, 52, 905–916. [Google Scholar]
- Lowe, W.H.; Likens, G.E. Moving headwater streams to the head of the class. BioScience 2005, 55, 196–197. [Google Scholar] [CrossRef] [Green Version]
- Meyer, J.L.; Strayer, D.L.; Wallace, J.B.; Eggert, S.L.; Helfman, G.S.; Leonard, N.E. The contribution of headwater streams to biodiversity in river networks 1. JAWRA J. Am. Water Resour. Assoc. 2007, 43, 86–103. [Google Scholar] [CrossRef] [Green Version]
- Barquín, J.; Scarsbrook, M. Management and conservation strategies for coldwater springs. Aquat. Conserv. Mar. Freshw. Ecosyst. 2008, 18, 580–591. [Google Scholar] [CrossRef]
- Sun, Y.; Takemon, Y.; Yamashiki, Y. Freshwater spring indicator taxa of benthic invertebrates. Ecohydrol. Hydrobiol. 2020, 20, 622–631. [Google Scholar] [CrossRef]
- Cantonati, M.; Bilous, O.; Angeli, N.; van Wensen, L.; Lange-Bertalot, H. Three New Diatom Species from Spring Habitats in the Northern Apennines (Emilia-Romagna, Italy). Diversity 2021, 13, 549. [Google Scholar] [CrossRef]
- Spitale, D.; Leira, M.; Angeli, N.; Cantonati, M. Environmental classification of springs of the Italian Alps and its consistency across multiple taxonomic groups. Freshw. Sci. 2012, 31, 563–574. [Google Scholar] [CrossRef]
- Reiss, M.; Martin, P.; Gerecke, R.; von Fumetti, S. Limno-ecological characteristics and distribution patterns of spring habitats and invertebrates from the Lowlands to the Alps. Environ. Earth Sci. 2016, 75, 1033. [Google Scholar]
- Blattner, L.; Lucek, K.; Beck, N.; Berner, D.; von Fumetti, S. Intra-Alpine Islands: Population genomic inference reveals high degree of isolation between freshwater spring habitats. Divers. Distrib. 2021, 28, 291–305. [Google Scholar] [CrossRef]
- Di Sabatino, A.; Coscieme, L.; Miccoli, F.P.; Cristiano, G. Benthic invertebrate assemblages and leaf-litter breakdown along the eucrenal–hypocrenal ecotone of a rheocrene spring in Central Italy: Are there spatial and seasonal differences? Ecohydrology 2021, 14, e2289. [Google Scholar] [CrossRef]
- Manenti, R.; Piazza, B. Between darkness and light: Spring habitats provide new perspectives for modern researchers on groundwater biology. PeerJ 2021, 9, e11711. [Google Scholar] [CrossRef]
- Stevens, L.E.; Schenk, E.R.; Springer, A.E. Springs ecosystem classification. Ecol. Appl. 2021, 31, e2218. [Google Scholar] [CrossRef]
- Illieș, J.; Botoșăneanu, L. Problemes et methodes de la classification ecologique des eaux courantes, considerees surtout du point du vue faunistique. Mitt. Int. Ver. Theor. Angew. Limnol. 1963, 12, 1–57. [Google Scholar]
- Gerecke, R.; Cantonati, M.; Spitale, D.; Elisabeth ST, U.R.; Wiedenbrug, S. The challenges of long-term ecological research in springs in the northern and southern Alps: Indicator groups, habitat diversity, and medium-term change. J. Limnol. 2011, 70, 168–187. [Google Scholar] [CrossRef]
- Dumnicka, E.; Galas, J.; Jatulewicz, I.; Karlikowska, J.; Rzonca, B. From spring sources to springbrook: Changes in environmental characteristics and benthic fauna. Biologia 2013, 68, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Pešić, V.; Dmitrović, D.; Savić, A.; von Fumetti, S. Studies on eucrenal-hypocrenal zonation of springs along the river mainstream: A case study of a karst canyon in Bosnia and Herzegovina. Biologia 2016, 71, 809–817. [Google Scholar] [CrossRef]
- Erman, N.A. Lessons from a long-term study of springs and spring invertebrates (Sierra Nevada, California, USA) and implications for conservation and management. In Proceedings of the Spring-fed Wetlands: Important Scientific and Cultural Resources of the Intermountain Region, Las Vegas, NV, USA, 5–7 May 2002. [Google Scholar]
- Castaño-Sánchez, A.; Hose, G.C.; Reboleira, A.S.P. Salinity and temperature increase impact groundwater crustaceans. Sci. Rep. 2020, 10, 12328. [Google Scholar]
- Bottazzi, E.; Bruno, M.C.; Pieri, V.; Di Sabatino, A.; Silveri, L.; Carolli, M.; Rossetti, G. Spatial and seasonal distribution of invertebrates in Northern Apennine rheocrene springs. J. Limnol. 2011, 70, 77–92. [Google Scholar] [CrossRef]
- Fattorini, S.; Borges, P.A.; Fiasca, B.; Galassi, D.M. Trapped in the web of water: Groundwater-fed springs are island-like ecosystems for the meiofauna. Ecol. Evol. 2016, 6, 8389–8401. [Google Scholar] [CrossRef]
- Cartwright, J.M.; Dwire, K.A.; Freed, Z.; Hammer, S.J.; McLaughlin, B.; Misztal, L.W.; Schenk, E.R.; Spence, J.R.; Springer, A.E.; Stevens, L.E. Oases of the future? Springs as potential hydrologic refugia in drying climates. Front. Ecol. Environ. 2020, 18, 245–253. [Google Scholar] [CrossRef]
- Danielopol, D.L.; Pospisil, P. Hidden biodiversity in the groundwater of the Danube Flood Plain National Park (Austria). Biodivers. Conserv. 2001, 10, 1711–1721. [Google Scholar] [CrossRef]
- Cantonati, M.; Gerecke, R.; Bertuzzi, E. Springs of the Alps–sensitive ecosystems to environmental change: From biodiversity assessments to long-term studies. Hydrobiologia 2006, 562, 59–96. [Google Scholar]
- Stubbington, R.; Wood, P.J. Benthic and interstitial habitats of a lentic spring as invertebrate refuges during supra-seasonal drought. Fundam. Appl. Limnol. 2013, 182, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Reiss, M.; Chifflard, P. Different forest cover and its impact on eco-hydrological traits, invertebrate fauna and biodiversity of spring habitats. Nat. Conserv. 2018, 27, 85. [Google Scholar] [CrossRef]
- Von Fumetti, S.; Nagel, P.; Scheifhacken, N.; Baltes, B. Factors governing macrozoobenthic assemblages in perennial springs in north-western Switzerland. Hydrobiologia 2006, 568, 467–475. [Google Scholar] [CrossRef]
- Dumnicka, E.; Galas, J.; Koperski, P. Benthic invertebrates in karst springs: Does substratum or location define communities? Int. Rev. Hydrobiol. 2007, 92, 452–464. [Google Scholar] [CrossRef]
- Botoșăneanu, L.; Negrea, S. Une oasis aquatique à faune relique dans la plaine du Danube inférieur. Hydrobiologia 1961, 18, 199–218. [Google Scholar] [CrossRef]
- Motaş, C.; Botoşăneanu, L.; Negrea, Ş. Cercetări ASPRA biologiei Izvoarelor şi Apelor Freatice din Partea Centrală a Cîmpiei Romîne; Editura Academiei Republicii Populare Romîne: București, Romania, 1962; p. 366. (In Romanian) [Google Scholar]
- Godeanu, S. Contribuţii la Cunoaşterea Sinecologică a Zoocenozelor Tinovului Gemenele din Parcul Naţional Retezat. Sargetia Acta Mus. Dev. Ser. Sci. Nat. 1974, X, 155–175. (In Romanian) [Google Scholar]
- Moldovan, O.T.; Iepure, S.; Rajka, G. Research on groundwater fauna in northwestern Romania. Stud. Univers. Babes-Bolyai Biol. 2002, 47, 15–32. [Google Scholar]
- Meleg, I.N.; Năpăruş, M.; Fiers, F.; Meleg, I.H.; Vlaicu, M.; Moldovan, O.T. The relationships between land cover, climate and cave copepod spatial distribution and suitability along the Carpathians. Environ. Conserv. 2014, 41, 206–216. [Google Scholar] [CrossRef]
- Iepure, S.; Bădăluţă, C.-A.; Moldovan, O.T. An annotated checklist of groundwater Cyclopoida and Harpacticoida (Crustacea, Copepoda) from Romania with notes on their distribution and ecology. Subterr. Biol. 2021, 41, 87–108. [Google Scholar] [CrossRef]
- Copilaș-Ciocianu, D.; Grabowski, M.; Pârvulescu, L.; Petrusek, A. Zoogeography of epigean freshwater Amphipoda (Crustacea) in Romania: Fragmented distributions and wide altitudinal variability. Zootaxa 2014, 3893, 243–260. [Google Scholar] [CrossRef] [Green Version]
- Papp, J.; Kovács, K.; Kontschán, J. Asellota and Amphipoda species from Maramureș (Crustacea: Malacostraca). Studia Univ. Vasile Goldis 2008, 18, 181–184. [Google Scholar]
- Crişan, C.D.; Battes, K.P.; Cîmpean, M. First record of Bryocamptus (Bryocamptus) mrazeki (Minkiewicz, 1916) in the Romanian harpacticoid fauna (Copepoda, Harpacticoida). Studia Univ. Babes-Bolyai Biol. 2016, 61, 205–212. [Google Scholar]
- Cîmpean, M.; Gerecke, R. Water mites (Acari. Hydrachnidia) from the Retezat National Park (Romania). Transylv. Rev. Syst. Ecol. Res. 2006, 3, 63–74. [Google Scholar]
- Moldovan, A.; Hoaghia, M.A.; Kovacs, E.; Mirea, I.C.; Kenesz, M.; Arghir, R.A.; Petculescu, A.; Levei, E.A.; Moldovan, O.T. Quality and health risk assessment associated with water consumption—A case study on karstic springs. Water 2020, 12, 3510. [Google Scholar] [CrossRef]
- Moldovan, A.; Török, A.I.; Mirea, I.C.; Micle, V.; Moldovan, O.T.; Levei, E.A. Health Risk Assessment in Southern Carpathians Small Rural Communities Using Karst Springs as a Drinking Water Source. Int. J. Environ. Res. Public Health 2021, 19, 234. [Google Scholar] [CrossRef] [PubMed]
- Hoaghia, M.A.; Moldovan, A.; Kovacs, E.; Mirea, I.C.; Kenesz, M.; Brad, T.; Cadar, O.; Micle, V.; Levei, E.A.; Moldovan, O.T. Water Quality and Hydrogeochemical Characteristics of Some Karst Water Sources in Apuseni Mountains, Romania. Water 2021, 13, 857. [Google Scholar] [CrossRef]
- Orăşeanu, I. Hidrogeologia carstului din Munţii Apuseni; Despre AHR: Bucuresti, Romania, 2016; p. 289. [Google Scholar]
- Zollhofer, J.; Brunke, M.; Gonser, T. A spring typology integrating habitat variables and fauna. Arch. Fur Hydrobiol. Suppl. 2000, 121, 3–4. [Google Scholar]
- Hering, D.; Moog, O.; Sandin, L.; Verdonschot, P.F. Overview and application of the AQEM assessment system. Hydrobiologia 2004, 516, 1–20. [Google Scholar] [CrossRef]
- Rosati, M.; Cantonati, M.; Fenoglio, S.; Segadelli, S.; Levati, G.; Rossetti, G. Is there an ideal protocol for sampling macroinvertebrates in springs? J. Freshw. Ecol. 2016, 31, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Damian-Georgescu, A. Crustacea, Copepoda, Harpacticoida (forme de apă dulce). In Fauna Republicii Socialiste România; Autocad RSR: București, Romania, 1970; Volume 4, pp. 1–252. (In Romanian) [Google Scholar]
- Einsle, U. Crustacea, Copepoda, Calanoida und Cyclopoida, Susswasserfauna von Mitteleuropa, 8/4-1; Gustav Fischer Verlag: Stuttgart, Germany, 1993; p. 208. (In German) [Google Scholar]
- Gerecke, R. Süßwassermilben (Hydrachnellae). Ein Bestimmungsschlüssel für die aus der Westpalaearktis bekannten Gattungen der Hydrachnellae mit einer einführenden Übersicht über die im Wasser vorkommenden Milben. Lauterbornia 1994, 18, 1–84. [Google Scholar]
- Janetzky, W.; Enderle, R.; Noodt, W. Crustacea: Copepoda: Gelyelloida und Harpacticoida. In Sussvasserfauna von Mitteleuropa; Band 8, Heft 4, Teil 2; Gustav Fischer Verlag: Stuttgart, Germany, 1996; pp. 1–227. [Google Scholar]
- Tachet, H.; Richoux, P.H.; Bournaud, M.; Usseglio-Polatera, P. Invertébrés d’eau Douce. Systématique, Biologie, Écologie; CNRS éditions: Paris, France, 2000. [Google Scholar]
- Sansoni, G. Atlante per il Riconoscimento dei Macroinvertebrati dei Corsi d’acqua Italiani, 4th ed.; Provincia Autonoma di Trento: Trento, Italy, 2001. [Google Scholar]
- Dobson, M.; Pawley, S.; Fletcher, M.; Powell, A. Guide to Freshwater Invertebrates; Freshwater Biological Association: Cumbria, UK, 2012. [Google Scholar]
- Kriska, G. Freshwater Invertebrates in Central Europe: A Field Guide; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Di Sabatino, A.; Gerecke, R.; Martin, P. The biology and ecology of lotic water mites (Hydrachnidia). Freshw. Biol. 2000, 44, 47–62. [Google Scholar] [CrossRef]
- Harper, D.A.T. Numerical Palaeobiology; John Wiley and Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Manly, B.F.J.; McDonald, L.L.; Thomas, D.L. Resource Selection by Animals: Statistical Design and Analysis for Field Studies; Chapman and Hall: London, UK, 1993. [Google Scholar]
- Manly, B.F.J.; McDonald, L.L.; Thomas, D.L.; McDonald, T.L.; Erickson, W.P. Resource Selection by Animals: Statistical Design and Analysis for Field Studies; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Krebs, C.J. Ecological Methodology; Wesley Longman Inc.: New York, NY, USA, 1999; pp. 1–620. [Google Scholar]
- Ter Braak, C.J.F.; Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.1x; Microcomputer Power: Ithaca, NY, USA, 2018. [Google Scholar]
- Stoch, F. Copepods colonising Italian springs. In The Spring Habitat: Biota and Sampling Methods; di Scienze Naturali: Trento, Italy, 2007; pp. 217–235. [Google Scholar]
- Di Sabatino, A.; Cicolani, B.; Gerecke, R. Biodiversity and distribution of water mites (Acari, Hydrachnidia) in spring habitats. Freshw. Biol. 2003, 48, 2163–2173. [Google Scholar] [CrossRef]
- Stoch, F.; Gerecke, R.; Pieri, V.; Rossetti, G.; Sambugar, B. Exploring species distribution of spring meiofauna (Annelida, Acari, Crustacea) in the south-eastern Alps. J. Limnol. 2011, 70, 65. [Google Scholar] [CrossRef] [Green Version]
- Mori, N.; Brancelj, A. Macroinvertebrate communities of karst springs of two river catchments in the Southern Limestone Alps (the Julian Alps, NW Slovenia). Aquat. Ecol. 2006, 40, 69–83. [Google Scholar] [CrossRef]
- Di Sabatino, A.; Bruni, P.; Miccoli, F.P.; Giustini, M.; Vignini, P.; Timperi, G.; Cicolani, B. Diversità delle comunità macrobentoniche e qualità ambientale delle sorgenti dei Monti della Laga (Parco Nazionale Gran Sasso-Laga, Appennino centrale). Studi Trent. Sci. Nat. Acta Biol. 2009, 84, 15–24. [Google Scholar]
- Hahn, H.J. Studies on classifying of undisturbed spring in Southwestern Germany by macrobenthic communities. Limnologica 2000, 30, 247–259. [Google Scholar] [CrossRef] [Green Version]
- Smith, H.; Wood, P.J.; Gunn, J. The influence of habitat structure and flow permanence on invertebrate communities in karst spring systems. Hydrobiologia 2003, 510, 53–66. [Google Scholar] [CrossRef]
- Matić, N.; Maldini, K.; Tomas, D.; Ćuk, R.; Milović, S.; Miklavčić, I.; Širac, S. Geochemical characteristics of the Gacka River karstic springs (Dinaric karst, Croatia) with macroinvertebrate assemblages overview. Environ. Earth Sci. 2016, 75, 1308. [Google Scholar]
- Lencioni, V.; Marziali, L.; Rossaro, B. Diversity and distribution of chironomids (Diptera, Chironomidae) in pristine Alpine and pre-Alpine springs (Northern Italy). J. Limnol. 2011, 703274, 106–121. [Google Scholar] [CrossRef]
- Bonettini, A.M.; Cantonati, M. Macroinvertebrate assemblages of springs of the river Sarca catchment (Adamello- Brenta Regional Park, Trentino, Italy). Crunoecia 1996, 5, 71–78. [Google Scholar]
- Williams, D.D.; Williams, N.E. Invertebrate communities from freshwater springs: What can they contribute to pure and applied ecology? In Studies in Crenobiology; Botosaneanu, L., Ed.; The Biology of Springs and Springbrooks, Bachuys Publishers: Leiden, The Netherlands, 1998; pp. 251–261. [Google Scholar]
- Glazier, D.S. The fauna of North American cold springs: Patterns and hypotheses. Freshwat. Biol. 1991, 26, 527–542. [Google Scholar] [CrossRef]
- Hoffsten, P.O.; Malmqvist, B. The macroinvertebrate fauna and hydrogeology of springs in central Sweden. Hydrobiologia 2000, 436, 91–104. [Google Scholar] [CrossRef]
- Gerecke, R.; Meisch, C.; Stoch, F.; Acri, F.; Franz, H. Eucrenon-Hypocrenon Ecotone and Spring Typology in the Alps of Berchtesgaden (Upper Bavaria, Germany). A Study of Microcrustacea (Crustacea: Copepoda, Ostracoda) and Water Mites (Acari: Halacaridae, Hydrachnellae). Studies in Crenobiology. The Biology of Springs and Springbrooks; Backhuys Publishers: Leiden, The Netherlands, 1998; pp. 167–182. [Google Scholar]
- Zhai, M.; Hřívová, D.; Peterka, T. The harpacticoid assemblages (Copepoda: Harpacticoida) in the Western Carpathian spring fens in relation to environmental variables and habitat age. Limnologica 2015, 53, 84–94. [Google Scholar] [CrossRef]
- Korbel, K.L.; Stephenson, S.; Hose, G.C. Sediment size influences habitat selection and use by groundwater macrofauna and meiofauna. Aquat. Sci. 2019, 81, 39. [Google Scholar] [CrossRef]
- Mori, N.; Brancelj, A. Distribution and habitat preferences of species within the genus Elaphoidella Chappuis, 1929 (Crustacea: Copepoda: Harpacticoida) in Slovenia. Zool. Anz.-J. Comp. Zool. 2008, 247, 85–94. [Google Scholar] [CrossRef]
Spring Code | Spring Name | Spring Type | Sampling Date | GPS Coordinates (N) | GPS Coordinates (E) | Altitude (m a.s.l.) |
---|---|---|---|---|---|---|
1 | Peștera Aștileu | RC | 02.05.2018 | 47°0′54.84″ | 22°23′51.24″ | 271 |
2 | Peștera Moara Jurjii | RC | 29.07.2018 | 46°58′58.38″ | 22°26′32.22″ | 440 |
3 | Peștera Vadul Crișului | RC | 04.06.2018 | 46°57′42.36″ | 22°30′41.46″ | 352 |
4 | Izbucul Izbândiș | L | 02.05.2018 | 46° 56′ 2.22″ | 22°31′14.4″ | 484 |
5 | Izbucul Bratcuța Mare | RH | 19.06.2018 | 46°54′51″ | 22°35′45.96″ | 384 |
6 | Peștera cu apă de la Bulz | RC | 19.06.2018 | 46°54′45.66″ | 22°40′21.24″ | 391 |
7 | Peștera Toplița de Vida | RC | 05.07.2018 | 46°51′43.8″ | 22°19′22.98″ | 303 |
8 | Izbucul Toplita de Roșia | RC | 20.06.2018 | 46°49′53.1″ | 22°23′5.22″ | 303 |
9 | Izbucul Văii Roșia | RH | 20.06.2018 | 46°49′40.68″ | 22°25′11.1″ | 363 |
10 | Izbucul Toplicioara | R | 05.08.2018 | 46°49′23.94″ | 22°27′1.08″ | 436 |
11 | Izbucul Izbuneală | R | 05.08.2018 | 46°47′47.4″ | 22°26′49.8″ | 335 |
12 | Peștera cu apă de pe Valea Leșului | R | 19.06.2018 | 46°49′29.1″ | 22°33′24.72″ | 674 |
13 | Peștera Pepii | RC | 03.08.2018 | 46°38′24.6″ | 22°44′13.44″ | 1140 |
14 | Izbucul Alunul Mic | RC | 03.08.2018 | 46°38′16.14″ | 22°46′30.42″ | 1178 |
15 | Poiana Izbucelor | H | 12.08.2018 | 46°35′19.02″ | 22°45′18.6″ | 1226 |
16 | Izbucul Ponor | RC | 12.08.2018 | 46°34′36.54″ | 22°43′0.6″ | 1094 |
17 | Peștera Gura Apei | RC | 26.06.2018 | 46°33′41.88″ | 22°45′42.84″ | 1225 |
18 | Izbucul Vulturului | RC | 09.08.2018 | 46°32′36.84″ | 22°48′22.02″ | 1063 |
19 | Izbucul Tăuzului | L | 04.05.2018 | 46° 30′ 51″ | 22°46′58.8″ | 923 |
20 | Peștera Corobană | RC | 09.08.2018 | 46°29′39.84″ | 22°47′13.2″ | 834 |
21 | Izbucul Poliței | RH | 09.08.2018 | 46°29′2.1″ | 22°48′43.26″ | 874 |
22 | Cotețul Dobreștilor | RC | 04.05.2018 | 46°28′42.3″ | 22°48′32.22″ | 840 |
23 | Poarta lui Ionele | RC | 04.05.2018 | 46°27′57.84″ | 22°50′21.96″ | 850 |
24 | Izbucul Lina Mare | H | 21.08.2018 | 46°33′43.5″ | 22°52′40.74″ | 1229 |
25 | Izbucul Apa Caldă | R | 21.08.2018 | 46°34′15.96″ | 22°54′36.3″ | 1106 |
26 | Izbucul Mătișești | RH | 25.06.2018 | 46°30′39.48″ | 22°53′42.06″ | 966 |
27 | Izbucul Bulzului | RC | 08.08.2018 | 46°29′55.26″ | 22°34′18.96″ | 529 |
28 | Izbucul Boiu | RH | 11.08.2018 | 46°28′3.84″ | 22°28′11.64″ | 321 |
29 | Izbucul Intermitent de la Călugări | RI | 08.08.2018 | 46°23′44.7″ | 22°29′18.72″ | 464 |
30 | Izbucul Iezerului | RH | 22.08.2018 | 46°10′39.06″ | 23°22′16.08″ | 884 |
31 | Peștera Huda lui Papară | RC | 25.06.2018 | 46°22′52.5″ | 23°27′42″ | 697 |
Taxa | Code | Frequency on Rocky Substratum | Frequency on Sandy Substratum | Frequency on Bryophytes |
---|---|---|---|---|
Hydrachnidia | ||||
Atractides Koch, 1837 | At | 2 | 2 | 5 |
Aturus Kramer, 1875 | Au | 0 | 0 | 3 |
Feltria Koenike, 1892 | Fe | 2 | 1 | 6 |
Hygrobates Koch, 1837 | Hy | 0 | 0 | 1 |
Lebertia Neuman, 1880 | Le | 6 | 3 | 13 |
Ljania Thor, 1898 | Lj | 0 | 1 | 0 |
Panisus Koenike, 1896 | Pa | 0 | 0 | 1 |
Sperchon Kramer, 1877 | Sp | 1 | 0 | 4 |
Sperchonopsis Piersig, 1896 | Ss | 0 | 0 | 1 |
larvae | la | 0 | 0 | 1 |
Copepoda | ||||
Attheyella (Attheyella) crassa (Sars, 1863) | Ac | 0 | 2 | 0 |
Attheyella (Attheyella) wierzejskii crenophila Damian, 1955 | Awc | 0 | 1 | 0 |
Attheyella (Attheyella) wierzejskii wierzejskii (Mrazek, 1893) | Aww | 0 | 1 | 1 |
Bryocamptus (Rheocamptus) zschokkei (Schmeil, 1893) | Bz | 0 | 2 | 0 |
Eucyclops serrulatus proximus (Lilljeborg, 1901) | Esp | 2 | 2 | 1 |
Megacyclops viridis (Jurine, 1820) | Mv | 0 | 0 | 0 |
Paracamptus schmeili (Mrázek, 1893) | Ps | 0 | 1 | 0 |
Paracyclops fimbriatus (Fischer, 1853) | Pf | 1 | 3 | 0 |
Copepodites (cyclopoid) | cc | 1 | 2 | 2 |
Copepodites (harpacticoid) | ch | 1 | 3 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cîmpean, M.; Șuteu, A.-M.; Berindean, A.; Battes, K.P. Diversity of Spring Invertebrates and Their Habitats: A Story of Preferences. Diversity 2022, 14, 367. https://doi.org/10.3390/d14050367
Cîmpean M, Șuteu A-M, Berindean A, Battes KP. Diversity of Spring Invertebrates and Their Habitats: A Story of Preferences. Diversity. 2022; 14(5):367. https://doi.org/10.3390/d14050367
Chicago/Turabian StyleCîmpean, Mirela, Anca-Mihaela Șuteu, Alexia Berindean, and Karina P. Battes. 2022. "Diversity of Spring Invertebrates and Their Habitats: A Story of Preferences" Diversity 14, no. 5: 367. https://doi.org/10.3390/d14050367
APA StyleCîmpean, M., Șuteu, A. -M., Berindean, A., & Battes, K. P. (2022). Diversity of Spring Invertebrates and Their Habitats: A Story of Preferences. Diversity, 14(5), 367. https://doi.org/10.3390/d14050367