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Abstract: We identified diverse bradyrhizobia having distinct ERIC-PCR genomic fingerprints from
native American trees Inga vera and Lysiloma spp. In addition, two nodule isolates recovered from
Lysiloma divaricatum seedlings inoculated with soil from the tropical house of a UK botanical garden
were also identified as Bradyrhizobium. Genomes were obtained (with sizes around 9 Mb each)
from nine Inga and Lysiloma bradyrhizobial isolates; plasmids were detected in two of the Inga
strains analyzed. Average Nucleotide Identity of whole genomes revealed five novel Bradyrhizobium
genomospecies from Mexican trees, while the UK isolates were identified as Bradyrhizobium cajani and
Bradyrhizobium brasilense. Inga vera and Lysiloma isolates, despite their genetic distances and different
hosts, shared a common set of nod genes that suggested that I. vera and Lysiloma bradyrhizobia
produce fucosylated, methylated and carbamylated lipochitooligosaccharides. Uptake hydrogenase
hup, hyp and secretion system genes were found in some of the isolates. Lysiloma strains were found
to be ineffective on I. vera. Some of the isolates may be used as plant inoculants.

Keywords: symbiosis; nitrogen fixation; nod genes; genomospecies; symbiosis island

1. Introduction

Legume seeds and pods are protein rich and widely used in animal production and
for human nutrition. In addition, legumes, especially trees, render an ecological service
by fertilizing soils through their fixation of large amounts of nitrogen [1,2]. Nitrogen
fixation is due to symbiotic bacteria in nodules, with different genera of rhizobia from both
alpha- and beta- proteobacteria [3,4]. Nitrogen-fixing trees inhabit nitrogen-poor soils, are
considered pioneer plants, have access to deep underground water and are tolerant to
environmental stress [5] and are valuable resources in the face of climate change. Legume
trees are recommended for restoration [6–8], and in arid areas legumes may nurse cacti [9].
Nitrogen fixation enhances plant fitness and extends plant habitat colonization so much
that in some cases they have become pests in introduced areas [10–12].

Symbiosis in legume trees is less studied than that in crop legumes. There is the general
view that trees are not specific in terms of their preferences for some rhizobial types [13];
however, there are cases of specific symbiotic associations in trees [14,15], in particular that
of Sesbania virgata and Azorhizobium doebereinerae [16]. Host specificity seems to be related
to the rhizobial symbiovar and symbiosis islands or plasmids that contain nod genes and
other symbiosis genes [17,18]; nod genes and Nod factors are key to understand legume
symbiosis [19–21]. Nod factors induce nodule formation in the absence of bacteria; however,
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in a few cases (e.g., some species of the tropical wetland legume Aeschynomene), there is
nodulation without Nod factors [22]. The LysR transcriptional regulator NodD induces
the expression of nod genes that encode enzymes that produce Nod factors. Nodulation
and legume-rhizobial interactions have been reviewed [20,21,23,24]. In addition, secretion
systems have a role in symbiosis specificity [25,26].

Different rhizobial genera are found as symbionts of legume trees, and their presence
in nodules might be related to abiotic conditions [27–32]. A global phylogenomic analysis
of bradyrhizobia led us to predict that, in theory, there must exist over one thousand
bradyrhizobial species [33]. Recently, many new Bradyrhizobium species and lineages have
been described [34–38] and reviewed in [33]. Lysiloma isolates have not been studied, but
Inga nodule bacteria from Brazil have been reported, revealing diverse symbionts [39],
and Bradyrhizobium ingae was proposed for Inga laurina symbionts [40]. Previously, we
studied nodule bacteria from soils with different agricultural use in Los Tuxtlas rain forest
in Mexico and found several novel bradyrhizobial lineages, some capable of nodulating a
native legume-tree Inga sp. in the laboratory [41] and some resembling Central American
isolates [42].

Lysiloma and Inga belong to the Ingeae tribe from the Caesalpinoideae mimosoid clade.
Lysiloma trees (2–8 m in height) are classified within eight species and may be found from
Arizona and New Mexico to Costa Rica as well as in Florida, the Bahamas and Cuba.
Lysiloma acapulcense is used as forage for cattle and deer. In Morelos, Lysiloma spp. grow in
ravines in low-fertility soil; Lysiloma divaricatum is native to Mexico [43].

The genus Inga comprises around 300 species, which are found exclusively in the
neotropics. It has diversified over the last 2–10 million years in three regions: Brazil,
Central America and the South of Mexico, and in Western South America [44,45]. Fruits
from Inga are edible [46], and the plants are used for firewood and animal food. Inga vera
(and other Inga spp.) is used for shade in coffee plantations, especially in the states of
Veracruz and Chiapas, Mexico [47]. Inga plants are fast growing, improve soil fertility
and tolerate acid soils. Inga is nodulated by Bradyrhizobium [39,40,48,49], especially in its
main center of diversification in Brazil. It was the aim of this work to study Bradyrhizobium
symbionts isolated from Lysiloma sp. and from I. vera trees native to Mexico. In addition, a
comparison to Lysiloma divaricatum isolates recovered in the UK was performed.

2. Materials and Methods
2.1. Bacterial Isolation, DNA Extraction, 16S rRNA and ERIC-PCR Analysis

Lysiloma sp. seeds were collected from trees in La Barranca del Tecolote, Cuernavaca,
Morelos-Mexico (18◦57′18′′ N–99◦16′36′′ W) (Figure 1a). The almost complete chloroplast
16S rRNA gene sequence (1484 bp obtained with PCR using fD1 and rD1 primers [50]) from
the Lysiloma trees sampled was 98.87% identical to that from Lysiloma watsonii.

Seeds were disinfected with ethanol and sodium hypochlorite as explained [51]. They
were germinated on agar-water plates, and the seedlings were inoculated in 250 mL flasks
with soil from the same location. L. divaricatum seeds were obtained from the Millenium
Seedbank (Kew, London, UK), and seedlings of L. divaricatum were used to “trap” rhizobia
from soil in the Royal Botanical Garden of Edinburgh (RBGE), UK, in which several tropical
legumes were growing; this resulted in nodules that were red, indicating the presence of
leghemoglobin, and hence they were likely to be fixing nitrogen. Other nodules from the
same plants were used for microscopic observations, revealing that Lysiloma nodules have
the anatomy typical of all the mimosoid legumes so far examined [52].

After two months, root nodule surfaces were disinfected as described [53] and crushed
in YM media; strains were purified three times and were stored at −70 ◦C in YM with
30% (vol/vol) glycerol. DNA was extracted from all isolates with the High Pure FF-
PET DNA Isolation kit (Roche). Isolates were analyzed by ERIC-PCR [54], and the pat-
terns obtained were observed in an agarose gel. Then, 16S rRNA sequences from the
strains that represented different ERIC-PCR patterns were amplified with primers fD1 and
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rD1 [50], and they were sequenced at Macrogen, Korea, using universal primers, 518F
(5′-CCAGCAGCCGCGGTAATACG-3′) and 800R (5′ TACCAGGGTATCTAATCC-3′).
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ico. (b) Inga vera sampling site in coffee plantations in San Marcos de León, Municipio de Xico,
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Nodules and soil were sampled from 21 I. vera plants that were cultivated as shade
in coffee plantations in San Marcos de León, Municipio de Xico, in the center of Veracruz,
Mexico (19◦25′45′′ N 96◦58′22′′ W) (Figure 1b). I. vera seeds are sensitive to desiccation,
and their germinability declines within a few weeks after maturation [55]. Thus, we
used as a trap plant Macroptilium atropurpureum (siratro), which has a broad symbiotic
range [56,57]. Siratro seeds were disinfected and germinated in agar-water plates. Twenty
siratro seedlings inoculated with I. vera nodule extracts and rhizospheric soils were grown
in 250 mL agar flasks at 28 ◦C in the laboratory of Ecología Genómica in the Centro de
Ciencias Genómicas, UNAM. As described for Lysiloma, after two months, siratro nodules
were disinfected, crushed in YM medium, purified three times and stored at−70◦ C. Strains
that were slow growers were further inoculated onto I. vera seedlings to confirm nodulation.
The isolates were also analyzed by ERIC-PCR, and those with different patterns were used
for amplification of their 16S rRNA gene with primers 27f and 1492r [58] and sequenced
with the same primers. A partial glnII gene was also amplified from these isolates with
primers glnII 12F and glnII 689R [59] and sequenced in Macrogen, Korea.

2.2. Genome Sequencing

Bradyrhizobial genomes were sequenced with Illumina NovaSeq 6000 (2 × 150 bp) at
Macrogen, Korea, and with ONT MinION at the Mass Sequencing Unit of the Institute of
Biotechnology at Universidad Nacional Autónoma de México. Adapter sequences were
eliminated using Trim Galore v0.4.4 [60], and a de novo hybrid assembly was generated
with the Unicycler pipeline v0.4.8 [61] and with SPAdes v3.13.1 [62]. A search for plasmids
was done with RFPlasmid v0.0.18 [63] in all assemblies. Plasmid assembly was performed
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with plasmidSPAdes v3.13 [64] for plasmid positive strains and for one plasmid negative
strain as a control. Clean reads were mapped against the plasmid assembly using Bowtie2
v2.3.5.1 [65], Minimap2 v2.17 [66], Samtools v1.7 [67] and Bedtools v2.26.0 [68] to sepa-
rate plasmid from chromosome, and a new assembly with no plasmid-matching reads
was generated. Gene prediction and functional annotation were performed using servers
RAST v2.0 with RASTtk toolkit [69] EggNogg-Mapper v2.17 [70] and Prokka v1.14.6 [71].
The search for secretion system genes was done with GhostKOALA [72]. To corroborate
the presence of all coding genes for the T3SS apparatus, B. vignae ORS3257 genes were
used as query, and a multiple alignment was done by Clinker [73]. The nine genomes
generated in this work were deposited at NCBI under the following BioSample accession
numbers: CCGUVB14 (SAMN28667582), CCGUVB1N3 (SAMN28667583), CCGUVB23
(SAMN28667584), CCGUVB4N (SAMN28667585), CCGB12 (SAMN28667586), CCGB20
(SAMN28667587), B51278 (SAMN28667588), B51279 (SAMN28667589) and CCGB01
(SAMN28667590). All raw sequences were deposited under the BioProject PRJNA842432.
Genome visualization was done with Proksee of CGView [74].

2.3. Phylogenetic, Phylogenomic and Average Nucleotide Identity (ANI) Analyses

We used a total of 101 type and representative genomes of Bradyrhizobium species,
some other strains of the superclade I [33], the nine strains analyzed in this study and
seven Nitrobacter species as the outgroup (Table S1). Protein sequences were obtained
with Prokka v1.14.6 [71] and 23,033 orthologous groups were identified by analyzing the
proteomes using OrthoFinder v2.5.4 [75]. The phylogenomic species tree was generated
using STAG [76] inferred from 1112 orthogroups, with 95% of species having single-copy
genes in any orthogroup and the consensus species tree rooted with STRIDE [77]. The
STAG support values are the fractions of orthogroup trees supporting each bipartition. The
consensus species phylogenomic tree was edited with iTOL v5 [78].

A complementary analysis was done to estimate the Average Nucleotide Identity
(ANIm) with the MUMmer algorithm. ANI was calculated using the pyany software [79]
with default parameters. For this, we used 56 representative public genomes of the genus
(updated April 2022), a representative genome of Bosea thiooxidans as an outgroup and the
nine genomes generated in this study (Table S2).

The 16S rRNA sequences were edited manually with Bioedit v7.0.5 [80] and aligned
with the program Infernal v1.1 [81] through the online platform Ribosomal Database Project
v11.5 [82], and they were trimmed manually with MEGA X [83]. The glnII sequences and
rpoB, recA, glnII and gyrB concatenated sequences were aligned with the online server
RevTrans v2.0 [84]. Nucleotide alignments were carried out with the program MUS-
CLE v3.8.425 [85]; the alignments were also trimmed with MEGA X, and the Maximum
likelihood phylogenies were constructed with IQ-Tree v1.6.11 [86,87] using 1000 ultrafast-
bootstrap pseudoreplicates and with the best fit model according to the Akaike information
criterion (AIC). For 16S rRNA and glnII phylogenies, the model used was GTR+I+G4, with
1196 nt for 16S and 523 for glnII. In the concatenated rpoB, recA, glnII and gyrB phylogeny,
the analysis included 2103 nucleotides and the model used was GTR+F+I+G4 and the ANI
values were calculated. Sequences from other Inga spp. isolates were also included, as well
as Bosea thiooxidans or B. elkanii as an outgroup. All phylogenetic trees were edited with
iTOL v5 [78].

2.4. Nodulation Assays and Nitrogenase Activity Assay

Lysiloma sp. seedlings were inoculated with each strain that was selected as being
representative of the different ERIC-PCR profiles, with three replications for each strain in
agar flasks with Fahraeus solution [88]. Acetylene reduction activity (ARA) was measured
as previously described using a gas chromatograph [53]. Ten I. vera isolates, each with
a different glnII sequence, were used to inoculate I. vera seedlings in the Instituto de
Biotecnología y Ecología Aplicada (INBIOTECA) of the Universidad Veracruzana, Mexico.
Inoculation assays were performed in vermiculite contained in 250 mL bottles watered
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with Fahraeus medium, with two plants per bottle and four repetitions. After three months
in greenhouse conditions (21.22 ± 5.3 ◦C and 76.74 ± 14.43% relative humidity), the
plants were harvested, fresh and dry weights obtained (plants and nodules) and ARA was
measured as described [53]. ANOVA analyses with Tukey tests were performed.

3. Results and Discussion
3.1. Rhizobial Diversity in Lysiloma and I. vera Nodules
3.1.1. Nodule Isolates, Growth and Genomic Fingerprints

Sixty-nine isolates were obtained from nodules of six Lysiloma plants. All the iso-
lates were slow-growing rhizobia forming colonies after seven days. All isolates formed
nodules on Lysiloma in subsequent reinoculation assays. Ten different ERIC-PCR profiles
(Figure S1a) were obtained from 25 isolates tested. Three different strains from three differ-
ent plants representing distinct ERIC patterns were selected for whole genome sequencing;
one of these, CCGB01, corresponded to the most abundant pattern of ERIC-PCRs, while
CCGB12 and CCGB20 exhibited the highest ARA activities with Lysiloma sp. plants.

I. vera bradyrhizobial isolates were obtained with a trap-plant approach, except for
isolates CCGUVB23 and CCGUVB40 (that have the same ERIC pattern), which were
isolated directly from I. vera nodules on two individual trees (6.2 m and 7.0 m in height,
respectively, and both with a 31.2 cm trunk diameter) in a Veracruz field with a soil pH
of 3.82. Seventeen isolates were obtained from siratro inoculated with nodule extracts or
with soil from the rhizosphere of I. vera from San Marcos de León, Xico, Veracruz, Mexico.
All isolates grew in YM medium and were slow-growing rhizobia forming visible colonies
at around 9 to 12 days. All of them were capable of forming nodules on I. vera in further
inoculation assays with different levels of ARA activity (data not shown). Fingerprints
obtained by ERIC-PCR showed ten distinct patterns (Figure S1b). Isolates that performed
better when inoculated onto I. vera plants (i.e., resulted in significantly higher plant biomass
Figure S2), were chosen for genome sequencing.

3.1.2. Phylogenies of Several Nodule Isolates with Selected Genes

Phylogenies were obtained with 16S rRNA (Figure 2a) and glnII (Figure 2b) gene
sequences, and both reconstructions showed that all isolated strains belonged to the genus
Bradyrhizobium and allowed a comparison to several reported bradyrhizobial strains with
sequences from these gene markers available. In these phylogenies, I. vera isolates clustered
into three phylogenetic groups; some had gene sequences that resembled those previ-
ously reported from Los Tuxtlas soils [41] in South of Veracruz. Some isolates related to
CCGUVB1N3 were close to BRUESC1066 from Inga ingoides isolated in Brazil [39]. Isolates
related to CCGUVB23 had identical glnII and 16S rRNA sequences to TUX-10, which was
close to BRUESC644 from Brazil. CCGUVB14 and CCGUVB4N were related to isolates
from diverse plants as well as some others isolated from diverse Inga species, such as
TUX-15, BRUESC1084 and BRUESC441 [39]. Isolate CCGB01 was close to isolate CCGB20
and TUX-7 and CCGB12 was closer to TUX-4; TUX strains were isolated from Los Tuxtlas
soils in Veracruz [41].
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Figure 2. Maximum-likelihood phylogenetic trees based on (a) 16S rRNA and (b) glnII gene sequences
showing relationships between Lysiloma sp., L. divaricatum, Inga vera isolates and other strains from
genus Bradyrhizobium. Alignment lengths: 1196 bp 16S rRNA; 523 bp glnII. Substitution model:
GTR+I+G for both phylogenies. Bootstrap values lower than 70% are not shown. Blue for I. vera
isolates, red for Lysiloma sp. isolates, green for L. divaricatum isolates. Bosea thiooxidans DSM9653(T)
was used as an external group on 16S rRNA phylogeny. T, type strain.

To compare to Bradyrhizobium ingae, for which there is no genome available but only
the sequence of marker genes, we performed a phylogenetic tree of glnII, gyrB, recA and
rpoB concatenated gene sequences (Figure 3). None of the newly found genomospecies
corresponded to B. ingae. In all trees, the Lysiloma strain B51278 clustered within the elkanii
superclade, whereas all the other strains clustered within the japonicum superclade [33].
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of Mexican Inga vera and Lysiloma isolates. Concatenate alignment length 2013 bp: glnII (537 bp), gyrB
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per site. Blue for I. vera isolates, red for Lysiloma sp. isolates, green for L. divaricatum isolates. The
average nucleotide identity (ANI) of these genes (%), within and between groups is indicated.

The species tree was inferred from 1133 orthogroups, with 95% of species having
single-copy genes in any orthogroup, and the consensus tree was created from 21,907 gene
trees (Figure 4). The orthologous species consensus tree showed that B51278 clustered with
B. brasilense and strain B51279 with B. cajani; this clustering was also seen in the 16S rRNA
and glnII phylogenetic trees. Lysiloma CCGB01 and CCGB20 strains clustered together, and
the Inga CCGUVB14 and CCGUVB4N were also grouped.
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3.1.3. Genome Sizes, Phylogenomics and ANI of Genomes

Genome sequences are very useful to define bacterial diversity, with ANI and in silico
DDH as parameters for comparison to large numbers of bacteria [89]. To complement
the phylogenetic and phylogenomic results, we performed an ANI analysis with repre-
sentative genomes from Bradyrhizobium and the obtained genomes. From ANI and DDH
results, Lysiloma and I. vera isolates were distantly related to other species. According
to ANI results, the closest species to CCGB01 and CCGB20 was B. lupini (91.05%); to
CCGB12, B. zhanjiangense (90.62%); to CCGUVB14 and CCGUVB4N, B. rifense (91.83%)
and to CCGUVB1N3 and CCGUVB23, B. centrolobii (87.60%) (Table 1). These values are
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below the 95/96% established limit for bacterial species classification; thus, the Lysiloma
sp. and I. vera isolates could represent novel species. ANI results were consistent with the
species consensus tree, confirming that B51278 and B51279 isolated from L. divaricatum
corresponded to B. brasilense and B. cajani, respectively. In addition, the percentage of ANI
among the isolates that showed a close relationship in the phylogenetic analysis was more
than 98%, confirming their belonging to the same species (Table S3).

Table 1. Features of Bradyrhizobium sequenced genomes.

Bradyrhizobium
Strains Host Chromosome

(pb) GC (%) ANI to the Closest
Species (%) Plasmid

B51278 Lysiloma divaricatum 8,566,773 63.98 97.14 with B. brasilense no
B51279 Lysiloma divaricatum 8,361,602 63.97 99.99 with B. cajani no

CCGB12 Lysiloma sp. 9,426,670 63.11 90.61 with B. zhanjiangense no
CCGB01 Lysiloma sp. 9,317,328 63.79 91.05 with B. lupini no
CCGB20 Lysiloma sp. 9,227,337 63.84 91.07 with B. lupini no

CCGBUVB14 Inga vera 9,769,664 63.30 91.80 with B. rifense no
CCGUVB4N Inga vera 9,212,720 63.56 91.83 with B. rifense no

CCGUVB1N3 Inga vera 9,882,385 62.98 87.58 with B. centrolobii yes
CCGUVB23 Inga vera 10,272,334 62.69 87.51 with B. centrolobii yes

3.2. Genomic Diversity

All the bradyrhizobial isolates from the studied Inga and Lysiloma species have very
large genomes and a similar GC content (Table 1, Figure 5). We found non-symbiotic
plasmids in only two strains from I. vera and, accordingly, three and two copies of repB
genes (for plasmid replication) were found in the I. vera CCGUVB23 and CCGUVB1N3
genomes, respectively. Plasmids are not frequently found in Bradyrhizobium [48]. All the
genomes of the isolates showed a putative symbiotic island, with the exception of strain
B51278 although it has the nodulation genes that are found in the symbiosis islands in
other isolates.

3.3. nod Genes in I. vera and Lysiloma Bradyrhizobia

Irrespective of their host or site of isolation, bradyrhizobia from Inga vera and Lysiloma
spp. share a common core of nod genes (Figure 6) that provide hints on the molecular
structure of their Nod factors, which may be fucosylated, methylated and carbamylated
due to the presence of nodZ, nodS, nodU, nolO and noeI. Fucosylation of Nod factors seems
to be quite common in bradyrhizobia. Besides fucosyation, sulfation of Nod factors may
occur in one of the I. vera isolates, which could enlarge the host range.

Gene transfer has been reported for B. japonicum introduced strains and native B.
elkanii in soybean in Brazil [90]. The search of nod genes in the Lysiloma isolates from the
UK B. cajani isolate B51279 from L. divaricatum added evidence for horizontal gene transfer
events in Bradyrhizobium because the B. cajani B51279 isolate from the japonicum group
showed nod, nol and nifH genes similar to those from B51278 from the elkanii group.

The nodH gene is not commonly found in bradyrhizobia, but it is found in some species
of Rhizobium and Sinorhizobium. In the complete genome of the I. vera isolate CCGUVB4N,
we found a nodH gene in the symbiosis island, suggesting the sulfation of Nod factors
besides fucosylation, which could enlarge the host range of the strain. A nodH phylogeny
showed that it is related to the corresponding gene from Methylobacterium nodulans, which
produces sulfated Nod factors [91] (data not shown). We also found a nodX gene in the
symbiosis island in the complete genome of the I. vera isolate CCGUVB14 (Figure S5). The
nodX gene encodes an acetyl transferase that mediates the O-acetylation of the Nod factor at
the acetylglucosamine residue in the reducing end [92]. Originally, nodX was discovered in
Rhizobium leguminosarum nodulating Middle East peas and a relic legume Vavilovia formosa,
and an Oriental origin of this gene was proposed [93]. Most European and American R.
leguminosarum strains do not contain nodX. Phylogenies of the nodX gene from the Inga
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isolate CCGUVB14 showed that it is related to acyltransferases from bradyrhizobia (data
not shown).

NolR and SyrM control the level of Nod factor production in a Sinorhizobium strain
with a broad host range [94,95] and have effects on nodulation specificity in plants [94–96].
SyrM regulates the expression of a large number of genes and has not been reported
in Bradyrhizobium; however, we detected the syrM gene in most of the Bradyrhizobium
genomes we sequenced (Figure 6), and their phylogenies revealed their relationships to the
corresponding genes in several bradyrhizobial strains (not shown).
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3.4. Hydrogenases

Increased plant dry weight, yield and nitrogen fixation have been reported in soybean
plants inoculated with bradyrhizobia that harbor uptake hydrogenases (encoded by hup
and hyp genes), which capture the hydrogen produced by nitrogenases [97]. Plants may
provide nickel for hydrogenase structure and function [98]. The I. vera isolates CCGUVBIN3,
CCGUVB14 and CCGUVB23 (with high nitrogen-fixing capability) as well as B55278 and
B55279 have the structural hydrogenase hupSL genes, which were not found in the Lysiloma
sp. isolates from Mexico despite having few other hup genes (Figure S3). The high nickel
concentrations in Los Tuxtlas soils [99] may favor the existence of uptake hydrogenases in
native bradyrhizobia, such as those from I. vera.

3.5. Secretion Systems

Secretion systems transport molecules from bacterial cells into host cells and may
modulate plant defense responses. Distinct secretion systems are known to be in Gram-
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negative bacteria and have been extensively studied in pathogens, but they may also play
a role in nodulation and host specificity in symbionts [26,100–102]. Genes for different
types of secretion systems were found (Figure 7a). The type 3 secretion system (T3SS) has a
determinant role in some legume rhizobial symbioses [26,100–104]. The alignment to the B.
vignae T3SS gene region [105] showed that the isolates of L. divaricatum possess all these
genes, and the I. vera isolates had all the genes but a y4yS homolog (Figure 7b). A y4yS
of unknown function is required for the formation of the Mesorhizobium loti T3SS secretin
(RhcC2) complex [106]. However, we found the rhc1 and rhc2 (secretin, for adhesion) T3SS
genes in I. vera isolates. T3SS may enlarge the bacterial host range by inhibiting plant innate
defense reactions [26,103,104]. T3SS genes were not found in Lysiloma sp. isolates. Thus,
we may speculate that Inga vera isolates have a broader host range than Lysiloma isolates
and coincidently nodX and nodH genes, which could contribute to the enlargement of the
host range, were also found in I. vera isolates. The bradyrhizobial isolates from Lysiloma sp.,
although capable of forming nodules in I. vera, did not promote plant growth (Figure S4).

The nolBTUV operon was found in S. fredii USDA257 to be expressed in the presence
of flavonoids. The nolB gene constitutes part of the type 3 secretion system, and it is
specifically required to form nodules on the Erythrina costaricensis tree [107]. The genomes
from all our Inga and Lysiloma isolates studied here had the nolB gene (Figure 6), but none
had the ernA gene that encodes a T3SS effector, which induces nodule formation in the
absence of Nod factors [108].

Type 6 secretion systems are found in different bacteria [109], including symbionts.
The vasA (tssF) gene from the type 6 secretion system (T6SS) was found in the I. vera
isolates CCGUVB1N3 and CCGUVB23. VasA is a structural component and key for T6SS.
In Rhizobium etli symbiovar mimosa, T6SS promoted tree nodulation [110].

Lysiloma and Inga trees both belong to the Ingeae tribe but are from different geograph-
ical regions with different soil conditions and temperatures. A large plant diversity, such
as that of Inga with 300 species, could promote rhizobial diversity, which is generated
by different genetic mechanisms in bacteria [111]. Different tree legumes in a site may
converge and maintain a selection of a group of symbionts that are not identical but would
be suitable to form nodules in various sympatric legumes. This would have practical
advantages in sites where a specific legume density is low, such as in the rain forests in
Veracruz. Specificity seems not to be related to bacterial phylogenies and would depend on
accessory genes that may be transferred between bacteria [90,112–114].

3.6. Novel Genomospecies

A novel metric to define species arose with genomics, i.e., ANI with a limit of 95/96%
between species. Here we discovered upon inspection of ANI results that Bradyrhizobium
liaoningense [115] and Bradyrhizobium diversitatis [116] share a large ANI (98.65%), suggest-
ing that they are synonymous species. The ANI of B51278 was 97% in comparison to
Bradyrhizobium brasilense, and that of B51279 was 99.99% compared to B. cajani; thus, they
were assigned to their corresponding species. ANI (98%) showed that CCGUVB4N and
CCGUVB14 belong to the same species. They exhibited different ERIC-PCR fingerprints
(Figure S1, Table S3), indicating that they are not siblings.

Some of the Inga isolates from Mexico resembled Bradyrhizobium ingae, which was
proposed from Inga laurina in Brazil using the phylogenetic analysis of glnII, gyrB, recA and
rpoB and dnak, in addition to phenotypic characteristics [40]. A concatenated five gene phy-
logeny and the corresponding ANI showed that CCGUVB23 was related to Bradyrhizobium
ingae, but the ANI value obtained was below the limit to define species (97%), with few con-
catenated genes. The phylogenetic relationship to this species needs to be further clarified
by comparison with the B. ingae genome. Finally, we identified five novel genomospecies
among the isolates: three for I. vera and two for Lysiloma sp. Inga vera isolate CCGUVB23
and TUX-10 belong to genomospecies I; Inga vera isolate CCGUVB1N3 belongs to genomo-
species II; Inga vera isolates CCGBUVB14 and CCGBUVB4N correspond to genomospecies
III; Lysiloma sp. isolates CCGB20, CCGB01 and TUX7 belong to genomospecies IV; and
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Lysiloma sp. isolate CCGB12 and TUX-4 belong to genomospecies V. CCGB20 and CCGB01
had an ANI of 98.29, showing that they belong to the same species but are not identical,
with distinct genome sizes and ERIC-PCR fingerprints.
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4. Concluding Remarks

Most reported studies on bradyrhizobial diversity have made use of PCR products
(which in many cases are incomplete genes) and subsequent sequencing [41,59,112,117–120].
Here, the bacterial diversity and nod gene content of nodule isolates from the legume trees
Lysiloma spp. and I. vera was studied on a genome basis. The ANI values obtained from
genome comparisons allowed us to identify five novel genomospecies that could represent
new Bradyrhizobium species for Inga and Lysiloma.

L. divaricatum nodule bacteria are not known in its native site, but we suppose they are
not the same encountered in the soil from the RBGE. Rhizobia capable of forming nodules
in a legume species generally co-exist with the host plant; however, legumes may pick up
new symbionts in new environments [121–123].

The search for nod genes in Bradyrhizobium genomes is particularly valuable because
these bacteria are not easily studied by genetic approaches, and the knowledge of the
symbiosis genes in bradyrhizobia from native legumes is very poor. Common and host
specificity nodulation genes that are responsible for Nod factor synthesis were identified
in all isolates, suggesting that Bradyrhizobium from Inga and Lysiloma produce Nod factors
with a similar chemical structure; however, a few isolates may produce a wider repertoire
of Nod factors. Other symbiosis genes, such as those for uptake hydrogenases and for
secretion systems, were differentially distributed among the isolates. The results presented
provide the basis to further study tree symbioses and the host selection of the best adapted
strains that would lead to rhizobial specificity [124,125].
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