Bird Communities Vary under Different Urbanization Types—A Case Study in Mountain Parks of Fuzhou, China
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Study Area
2.2. Classification of Urbanization Types
2.3. Sampling Criteria
2.4. Bird Survey
2.5. Data Analysis
2.5.1. α-Diversity Analysis
2.5.2. β-Diversity Analysis
2.5.3. Functional Diversity and Indicator Species
3. Results
3.1. Overview
3.2. α-Diversity Varied along Different Urbanization Gradients
3.3. β-Diversity Varied along Different Urbanization Gradients
3.4. Functional Role and Indicator Species
4. Discussion
4.1. Urbanization Affects Bird Diversity in Mountain Parks
4.2. Urbanization Affects Bird Guilds in Mountain Parks
4.3. Urbanization Affects Bird Functional Roles and Indicator Species in Mountain Parks
4.4. Limitations of This Study and Possible Developments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Korányi, D.; Gallé, R.; Donkó, B.; Chamberlain, D.E.; Batáry, P. Urbanization does not affect green space bird species richness in a mid-sized city. Urban Ecosyst 2021, 24, 789–800. [Google Scholar] [CrossRef]
- Mackay, B.; Lee, A.; Barnard, P.; Møller, A.P.; Brown, M. Urbanization, climate and ecological stress indicators in an endemic nectarivore, the Cape Sugarbird. J. Ornithol. 2017, 158, 1013–1024. [Google Scholar] [CrossRef]
- Meffert, P.J.; Dziock, F. The influence of urbanisation on diversity and trait composition of birds. Landsc. Ecol. 2013, 28, 943–957. [Google Scholar] [CrossRef]
- Brooks, T.M.; Mittermeier, R.A.; Da Fonseca, G.A.; Gerlach, J.; Hoffmann, M.; Lamoreux, J.F.; Mittermeier, C.G.; Pilgrim, J.D.; Rodrigues, A.S. Global biodiversity conservation priorities. Science 2006, 313, 58–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chace, J.F.; Walsh, J.J. Urban effects on native avifauna: A review. Landsc. Urban Plan 2006, 74, 46–69. [Google Scholar] [CrossRef]
- Devictor, V.; Julliard, R.; Jiguet, F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 2008, 117, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Maseko, M.S.; Zungu, M.M.; Ehlers Smith, D.A.; Ehlers Smith, Y.C.; Downs, C.T. Effects of habitat-patch size and patch isolation on the diversity of forest birds in the urban-forest mosaic of Durban, South Africa. Urban Ecosyst. 2020, 23, 533–542. [Google Scholar] [CrossRef]
- Alvey, A.A. Promoting and preserving biodiversity in the urban forest. Urban For. Urban Gree. 2006, 5, 195–201. [Google Scholar] [CrossRef]
- Angold, P.G.; Sadler, J.P.; Hill, M.O.; Pullin, A.; Rushton, S.; Austin, K.; Small, E.; Wood, B.; Wadsworth, R.; Sanderson, R. Biodiversity in urban habitat patches. Sci. Total Environ. 2006, 360, 196–204. [Google Scholar] [CrossRef]
- Brockerhoff, E.G.; Barbaro, L.; Castagneyrol, B.; Forrester, D.I.; Gardiner, B.; González-Olabarria, J.R.; Lyver, P.O.B.; Meurisse, N.; Oxbrough, A.; Taki, H. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. In Biodiversity and Conservation; Springer: New York, NY, USA, 2017; Volume 26, pp. 3005–3035. [Google Scholar]
- Chamberlain, D.; Kibuule, M.; Skeen, R.Q.; Pomeroy, D. Urban bird trends in a rapidly growing tropical city. Ostrich 2018, 89, 275–280. [Google Scholar] [CrossRef]
- Elmqvist, T.; Setälä, H.; Handel, S.N.; van der Ploeg, S.; Aronson, J.; Blignaut, J.N.; Gomez-Baggethun, E.; Nowak, D.J.; Kronenberg, J.; de Groot, R. Benefits of restoring ecosystem services in urban areas. Curr. Opin. Environ. Sustain. 2015, 14, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Furness, R.W.; Greenwood, J.J. Birds as Monitors of Environmental Change; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Asefa, A.; Davies, A.B.; McKechnie, A.E.; Kinahan, A.A.; van Rensburg, B.J. Effects of anthropogenic disturbance on bird diversity in Ethiopian montane forests. Condor Ornithol. Appl. 2017, 119, 416–430. [Google Scholar] [CrossRef] [Green Version]
- Chamberlain, D.; Kibuule, M.; Skeen, R.; Pomeroy, D. Trends in bird species richness, abundance and biomass along a tropical urbanization gradient. Urban Ecosyst 2017, 20, 629–638. [Google Scholar] [CrossRef]
- Shimelis, A.B.A.A. Structuring of the birds of the Bale Mountains National Park. Walia 2011, 2011, 15–27. [Google Scholar]
- Wang, Y.; Xu, J.; Yang, G.; Li, H.; Wu, S.; Tang, H.; Ma, B.; Wang, Z. The composition of common woody plant species and their influence on bird communities in urban green areas. Biodivers. Sci. 2014, 22, 196. [Google Scholar]
- Yang, X.; Tan, X.; Chen, C.; Wang, Y. The influence of urban park characteristics on bird diversity in Nanjing, China. Avian. Res. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Otieno, N.E.; Mutati, A. Bird alpha, beta and functional diversities across three peri-urban woodland stands along an anthropogenic disturbance gradient: Is formal protection a guarantee for ecological integrity? Glob. Ecol. Conserv. 2021, 25, e1410. [Google Scholar] [CrossRef]
- McManus, J.W.; Pauly, D. Measuring ecological stress: Variations on a theme by RM Warwick. Mar. Biol. 1990, 106, 305–308. [Google Scholar] [CrossRef]
- Groot, M.D.; Flajman, K.; Miheli, T.; Vilhar, U.; Verli, A. Green space area and type affect bird communities in a South-eastern European city. Urban For. Urban Gree. 2021, 63, 127212. [Google Scholar] [CrossRef]
- Jansson, M. Green space in compact cities: The benefits and values of urban ecosystem services in planning. Nord. J. Archit. Res. 2014, 26, 139–160. [Google Scholar]
- Mbiba, M.; Mazhude, C.; Fabricius, C.; Fritz, H.; Muvengwi, J. Bird species assemblages differ, while functional richness is maintained across an urban landscape. Landsc. Urban Plan 2021, 212, 104094. [Google Scholar] [CrossRef]
- Curzel, F.E.; Bellocq, M.I.; Leveau, L.M. Local and landscape features of wooded streets influenced bird taxonomic and functional diversity. Urban For.Urban Gree. 2021, 66, 127369. [Google Scholar] [CrossRef]
- Penzhorn, B.L. Further bird records from the Bontebokand Mountain Zebra National Parks. Koedoe 1977, 20, 205–207. [Google Scholar] [CrossRef]
- Chen, J.; van den Bosch, C.C.K.; Lin, C.; Liu, F.; Huang, Y.; Huang, Q.; Wang, M.; Zhou, Q.; Dong, J. Effects of personality, health and mood on satisfaction and quality perception of urban mountain parks. Urban For. Urban Gree. 2021, 63, 127210. [Google Scholar] [CrossRef]
- Cheng, B.; Gou, Z.; Zhang, F.; Feng, Q.; Huang, Z. Thermal comfort in urban mountain parks in the hot summer and cold winter climate. Sustain. Cities Soc. 2019, 51, 101756. [Google Scholar] [CrossRef]
- Canedoli, C.; Manenti, R.; Padoa-Schioppa, E. Birds biodiversity in urban and periurban forests: Environmental determinants at local and landscape scales. Urban Ecosyst. 2018, 21, 779–793. [Google Scholar] [CrossRef]
- You, M.; Guan, C.; Lai, R. Spatial Structure of an Urban Park System Based on Fractal Theory: A Case Study of Fuzhou, China. Remote Sens. 2022, 14, 2144. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, H.; Pan, W.; Chen, Y.; Wang, X. Urban expansion and its influencing factors in natural wetland distribution area in Fuzhou City, China. Chin. Geogr Sci 2012, 22, 568–577. [Google Scholar] [CrossRef]
- Li, F.; Sutton, P.C.; Anderson, S.J.; Nouri, H. Planning green space in Adelaide city: Enlightenment from green space system planning of Fuzhou city (2015–2020). Aust. Plan. 2017, 54, 126–133. [Google Scholar] [CrossRef]
- Alberti, M.; Botsford, E.; Cohen, A. Quantifying the urban gradient: Linking urban planning and ecology. In Avian Ecology and Conservation in an Urbanizing World; Springer: Boston, MA, USA, 2001; pp. 89–115. [Google Scholar]
- Blair, R.B. Land use and avian species diversity along an urban gradient. Ecol. Appl. 1996, 6, 506–519. [Google Scholar] [CrossRef]
- Kroll, F.; Müller, F.; Haase, D.; Fohrer, N. Rural–urban gradient analysis of ecosystem services supply and demand dynamics. Land Use Policy 2012, 29, 521–535. [Google Scholar] [CrossRef]
- MacKinnon, J.R.; MacKinnon, J.; Phillipps, K.; He, F. A Field Guide to the Birds of China; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Bibby, C.J.; Burgess, N.D.; Hillis, D.M.; Hill, D.A.; Mustoe, S. Bird Census Techniques; Elsevier: New York, NY, USA, 2000. [Google Scholar]
- Basile, M.; Mikusiński, G.; Storch, I. Bird guilds show different responses to tree retention levels: A meta-analysis. Glob. Ecol. Conserv. 2019, 18, e615. [Google Scholar] [CrossRef]
- Kissling, W.D.; Sekercioglu, C.H.; Jetz, W. Bird dietary guild richness across latitudes, environments and biogeographic regions. Global. Ecol. Biogeogr. 2012, 21, 328–340. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Gonzalez Estrada, E.; Villasenor Alva, J.A. mvShapiroTest: Generalized Shapiro–Wilk test for multivariate normality. R package version 0.0. 2009, 1. Available online: http://cran.rediris.es/web/packages/mvShapiroTest/mvShapiroTest.pdf (accessed on 23 May 2022).
- Ma, K. Measurement of biotic community diversity I α diversity (Part 2). Biodivers. Sci. 1994, 2, 231. [Google Scholar] [CrossRef] [Green Version]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Package ‘vegan’. Community Ecol. Package Version 2013, 2, 1–295. [Google Scholar]
- Buckland, S.T.; Magurran, A.E.; Green, R.E.; Fewster, R.M. Monitoring change in biodiversity through composite indices. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 243–254. [Google Scholar] [CrossRef] [Green Version]
- Pla, L. Bootstrap confidence intervals for the Shannon biodiversity index: A simulation study. J. Agric. Biol. Environ. Stat. 2004, 9, 42–56. [Google Scholar] [CrossRef]
- Chao, A.; Chazdon, R.L.; Colwell, R.K.; Shen, T.J. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 2005, 8, 148–159. [Google Scholar] [CrossRef]
- Hsieh, T.C.; Ma, K.H.; Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (H ill numbers). Methods Ecol. Evol. 2016, 7, 1451–1456. [Google Scholar] [CrossRef]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Cameron, A.C.; Trivedi, P.K. Regression-based tests for overdispersion in the Poisson model. J. Econom. 1990, 46, 347–364. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. arXiv 2014, arXiv:1406.5823. [Google Scholar]
- Ruxton, G.D.; Beauchamp, G. Time for some a priori thinking about post hoc testing. Behav. Ecol. 2008, 19, 690–693. [Google Scholar] [CrossRef] [Green Version]
- Baselga, A. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global. Ecol. Biogeogr. 2012, 21, 1223–1232. [Google Scholar] [CrossRef]
- Holland, S.M. Non-metric multidimensional scaling (MDS). Department of Geology, University of Georgia, Athens, Tech. Rep. GA 2008; pp. 30602–32501. Available online: http://strata.uga.edu/8370/handouts/mdsTutorial.pdf (accessed on 23 May 2022).
- Oksanen, J. Vegan: An introduction to ordination. 2015. Available online: https://www.semanticscholar.org/paper/Vegan%3A-an-introduction-to-ordination-Oksanen/1068c673bc63d1dcae9b97cc30b6077f89a64916 (accessed on 23 May 2022).
- Anderson, M.J.; Walsh, D.C. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol. Monogr. 2013, 83, 557–574. [Google Scholar] [CrossRef]
- Tilman, D.; Knops, J.; Wedin, D.; Reich, P.; Ritchie, M.; Siemann, E. The influence of functional diversity and composition on ecosystem processes. Science 1997, 277, 1300–1302. [Google Scholar] [CrossRef] [Green Version]
- Villanueva, R.A.M.; Chen, Z.J. ggplot2: Elegant Graphics for Data Analysis (2nd ed.). Meas. Interdiscip. Res. Perspect. 2019, 17, 160–167. [Google Scholar] [CrossRef]
- Dufrêne, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- De Caceres, M.; Jansen, F.; de Caceres, M.M. Package ‘indicspecies’. Indicators 2016, 8. [Google Scholar]
- Connell, J.H. Diversity in tropical rain forests and coral reefs: High diversity of trees and corals is maintained only in a nonequilibrium state. Science 1978, 199, 1302–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinsley, S.; Hill, R.; Fuller, R.; Bellamy, P.; Rothery, P. Bird species distributions across woodland canopy structure gradients. Community Ecol. 2009, 10, 99–110. [Google Scholar] [CrossRef]
- McKinney, M.L. Urbanization, Biodiversity, and ConservationThe impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. Bioscience 2002, 52, 883–890. [Google Scholar] [CrossRef]
- Gomes, L.G.; Oostra, V.; Nijman, V.; Cleef, A.M.; Kappelle, M. Tolerance of frugivorous birds to habitat disturbance in a tropical cloud forest. Biol. Conserv. 2008, 141, 860–871. [Google Scholar] [CrossRef]
- Yang, G.; Xu, J.; Wang, Y.; Wang, X.; Pei, E.; Yuan, X.; Li, H.; Ding, Y.; Wang, Z. Evaluation of microhabitats for wild birds in a Shanghai urban area park. Urban For. Urban Gree. 2015, 14, 246–254. [Google Scholar] [CrossRef]
- Rosenfeld, J.S. Functional redundancy in ecology and conservation. Oikos 2002, 98, 156–162. [Google Scholar] [CrossRef] [Green Version]
- Tscharntke, T.; Milder, J.C.; Schroth, G.; Clough, Y.; DeClerck, F.; Waldron, A.; Rice, R.; Ghazoul, J. Conserving biodiversity through certification of tropical agroforestry crops at local and landscape scales. Conserv. Lett. 2015, 8, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Engemann, K.; Enquist, B.J.; Sandel, B.; Boyle, B.; Jørgensen, P.M.; Morueta Holme, N.; Peet, R.K.; Violle, C.; Svenning, J.C. Limited sampling hampers “big data” estimation of species richness in a tropical biodiversity hotspot. Ecol. Evol. 2015, 5, 807–820. [Google Scholar] [CrossRef]
- Opoku, A. Biodiversity and the built environment: Implications for the Sustainable Development Goals (SDGs). Resour. Conserv. Recycl. 2019, 141, 1–7. [Google Scholar] [CrossRef]
- Baselga, A.; Bonthoux, S.; Balent, G. Temporal beta diversity of bird assemblages in agricultural landscapes: Land cover change vs. stochastic processes. PloS ONE 2015, 10, e127913. [Google Scholar] [CrossRef] [Green Version]
Type of Urbanization | Grouping Variable | Parameter | |||
---|---|---|---|---|---|
α-Diversity | Richness | Abundance | Chao1 | ||
Urban | Birds overall | 2.56 | 27 | 807 | 27.00 |
Omnivorous guild | 1.59 | 11 | 476 | 22.33 | |
Herbivorous guild | 1.00 | 4 | 138 | 4.00 | |
Carnivorous guild | 0.00 | 1 | 1 | 1.00 | |
Insectivorous guild | 2.06 | 12 | 193 | 12.00 | |
Upper stratum guild | 1.85 | 13 | 588 | 13.00 | |
Middle stratum guild | 1.63 | 6 | 98 | 6.00 | |
Lower stratum guild | 1.61 | 8 | 121 | 8.00 | |
Peri-urban | Birds overall | 3.34 | 74 | 889 | 79.57 |
Omnivorous guild | 2.14 | 22 | 470 | 21.00 | |
Herbivorous guild | 2.04 | 14 | 116 | 15.50 | |
Carnivorous guild | 1.40 | 5 | 15 | 6.25 | |
Insectivorous guild | 2.73 | 32 | 287 | 33.00 | |
Upper stratum guild | 2.44 | 33 | 552 | 37.00 | |
Middle stratum guild | 2.18 | 20 | 156 | 20.60 | |
Lower stratum guild | 2.54 | 20 | 181 | 20.00 | |
Suburban | Birds overall | 3.32 | 67 | 733 | 68.75 |
Omnivorous guild | 1.83 | 20 | 351 | 11.00 | |
Herbivorous guild | 2.00 | 10 | 89 | 10.00 | |
Carnivorous guild | 1.56 | 5 | 8 | 5.00 | |
Insectivorous guild | 2.98 | 32 | 285 | 32.17 | |
Upper stratum guild | 2.46 | 32 | 487 | 32.43 | |
Middle stratum guild | 2.56 | 19 | 160 | 19.00 | |
Lower stratum guild | 2.36 | 16 | 86 | 17.50 | |
Overall | Birds overall | / | 96 | 2429 | / |
Omnivorous guild | 27 | 1297 | |||
Herbivorous guild | 16 | 343 | |||
Carnivorous guild | 9 | 24 | |||
Insectivorous guild | 44 | 765 | |||
Upper stratum guild | 44 | 1627 | |||
Middle stratum guild | 27 | 414 | |||
Lower stratum guild | 25 | 388 |
Variable | Level | Parameter | Estimate | Std. Error | p | df |
---|---|---|---|---|---|---|
All birds | — | α-diversity | −0.230 | 0.889 | 0.040 * | 29 |
Abundance | 0.007 | 0.004 | 0.056 | |||
Richness | −0.050 | 0.064 | 0.024 * | |||
Diet-guild | Herbivorous guild | α-diversity | −0.358 | 0.960 | 0.708 | 27 |
Abundance | 0.039 | 0.023 | 0.031 | |||
Richness | −0.062 | 0.378 | 0.870 | |||
Carnivorous guild | α-diversity | −17.910 | 29.083 | 0.538 | 6 | |
Abundance | −0.560 | 1.069 | 0.601 | |||
Richness | 9.870 | 16.565 | 0.551 | |||
Insectivorous guild | α-diversity | −0.182 | 0.639 | 0.047 * | 29 | |
Abundance | 0.016 | 0.015 | 0.286 | |||
Richness | −0.114 | 0.145 | 0.043 * | |||
Omnivorous guild | α-diversity | 0.663 | 0.723 | 0.359 | 29 | |
Abundance | 0.011 | 0.008 | 0.157 | |||
Richness | −0.199 | 0.154 | 0.196 | |||
Vertical foraging stratum guild | Upper-stratum guild | α-diversity | 0.238 | 0.782 | 0.037 * | 29 |
Abundance | 0.012 | 0.007 | 0.022 * | |||
Richness | −0.164 | 0.109 | 0.132 | |||
Middle-stratum guild | α-diversity | 0.197 | 0.592 | 0.739 | 27 | |
Abundance | 0.017 | 0.025 | 0.506 | |||
Richness | −0.189 | 0.221 | 0.079 | |||
Lower-stratum guild | α-diversity | −0.005 | 0.584 | 0.993 | 28 | |
Abundance | 0.010 | 0.017 | 0.549 | |||
Richness | −0.081 | 0.227 | 0.719 |
Node | Bird Guilds | Type of Urbanization | Model | F | R2 | Sig. |
---|---|---|---|---|---|---|
1 | Herbivorous guild | Urban | HD = 0.132 + 0.039 SR | 0.275 | 0.100 | 0.616 |
2 | Peri-urban | HD = 1.110 − 0.013 SR | 0.174 | 0.115 | 0.689 | |
3 | Suburban | HD = −1.267 + 0.128 SR | 38.810 | 0.808 | 0.000 | |
4 | Insectivorous guild | Urban | ID = 0.411 + 0.070 SR | 1.179 | 0.020 | 0.309 |
5 | Peri-urban | ID = 0.170 + 0.077 SR | 39.090 | 0.809 | 0.000 | |
6 | Suburban | ID = 0.876 + 0.057 SR | 8.243 | 0.446 | 0.020 | |
7 | Omnivorous guild | Urban | OD = 0.160 + 0.099 SR | 4.939 | 0.304 | 0.304 |
8 | Peri-urban | OD = 0.971 + 0.028 SR | 1.847 | 0.086 | 0.211 | |
9 | Suburban | OD = 0.785 + 0.025 SR | 0.856 | 0.016 | 0.382 | |
10 | Upper stratum guild | Urban | UD = 0.525 + 0.087 SR | 3.638 | 0.227 | 0.093 |
11 | Peri-urban | UD = 1.281 + 0.028 SR | 4.831 | 0.299 | 0.059 | |
12 | Suburban | UD = 0.525 + 0.089 SR | 4.111 | 0.257 | 0.077 | |
13 | Middle stratum guild | Urban | MD = −0.542 + 0.108 SR | 2.608 | 0.152 | 0.145 |
14 | Peri-urban | MD = 0.197 + 0.050 SR | 3.238 | 0.242 | 0.012 | |
15 | Suburban | MD = −0.374 + 0.090 SR | 3.005 | 0.182 | 0.001 | |
16 | Lower stratum guild | Urban | LD = −0.574 + 0.123 SR | 3.270 | 0.201 | 0.108 |
17 | Peri-urban | LD = −0.185 + 0.072 SR | 8.133 | 0.442 | 0.021 | |
18 | Suburban | LD = 0.103 + 0.049 SR | 2.108 | 0.122 | 0.190 |
Indicator Species | Type of Urbanization | IndVal | Frequency | p-Value |
---|---|---|---|---|
Tree sparrow | urban | 0.260 | 10 | 0.029 * |
Sooty-headed bulbul | peri-urban | 0.522 | 6 | 0.012 * |
Yellow-rumoed willow warbler | peri-urban | 0.369 | 17 | 0.021 * |
Grey-chinned minivet | suburban | 0.286 | 5 | 0.020 * |
Black-naped oriole | suburban | 0.282 | 13 | 0.033 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Fu, W.; Dong, J.; Yu, J.; Huang, P.; Zheng, D.; Chen, Z.; Zhu, Z.; Ding, G. Bird Communities Vary under Different Urbanization Types—A Case Study in Mountain Parks of Fuzhou, China. Diversity 2022, 14, 555. https://doi.org/10.3390/d14070555
Xu W, Fu W, Dong J, Yu J, Huang P, Zheng D, Chen Z, Zhu Z, Ding G. Bird Communities Vary under Different Urbanization Types—A Case Study in Mountain Parks of Fuzhou, China. Diversity. 2022; 14(7):555. https://doi.org/10.3390/d14070555
Chicago/Turabian StyleXu, Weizhen, Weicong Fu, Jiaying Dong, Jiao Yu, Peilin Huang, Dulai Zheng, Ziru Chen, Zhipeng Zhu, and Guochang Ding. 2022. "Bird Communities Vary under Different Urbanization Types—A Case Study in Mountain Parks of Fuzhou, China" Diversity 14, no. 7: 555. https://doi.org/10.3390/d14070555
APA StyleXu, W., Fu, W., Dong, J., Yu, J., Huang, P., Zheng, D., Chen, Z., Zhu, Z., & Ding, G. (2022). Bird Communities Vary under Different Urbanization Types—A Case Study in Mountain Parks of Fuzhou, China. Diversity, 14(7), 555. https://doi.org/10.3390/d14070555