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Abstract: Species richness and areas of endemicity (AOE) are the basis of biogeography, which is
of great significance for understanding the evolution of species and making conservation plans.
The present study aimed to investigate the species richness pattern and AOEs of Tenebrionidae in
Xinjiang, China. We collected information on the geographical distribution of 556 species from several
sources and obtained 2226 distribution records for the analyses. The AOEs were detected using the
parsimony analysis of endemicity (PAE) and endemicity analysis (EA) at 0.5◦, 1◦, and 1.5◦ grid sizes,
respectively. A total of six AOEs were found, including three mountain ranges (Altai Mountains,
Tianshan Mountains, and Kunlun Mountains) and one basin (Junggar Basin), which was largely
congruent with the species richness pattern. The results indicated that the complex terrain and stable
climate in the mountainous area played an important role in the formation of tenebrionid species
diversity and their endemic areas in Xinjiang.

Keywords: Tenebrionidae; species richness; parsimony analysis of endemicity; endemicity analysis;
area of endemism; mountainous areas

1. Introduction

Xinjiang (~166 km2), a section of Central Asia, is the largest autonomous region
located in northwest China, with a complex terrain environment of two basins and three
mountains [1,2]. The Tarim Basin and Kunlun Mountains are located in southern and
western Xinjiang, Altai Mountain and Junggar Basin are in the north and east areas, and
the Tianshan Mountains run through the central areas [3,4]. Xinjiang is surrounded by
mountains, which not only leads to complex and varied topography but also to drought and
a low-rain climate scenario [5–7]. A large part of the region is arid and semiarid, and one-
sixth is covered by desert [3]. Due to the characteristics of its special geographical location,
Xinjiang has become a biodiversity hotspot with high species richness and endemic levels,
especially breeding many drought-tolerant insect species [8–11]. For example, 84 species of
Meloidae Gyllenhal, 1810, accounting for approximately 40% of the total number of species
occurring in China, were recorded in Xinjiang [12]. More remarkably, a total of 422 species
of Tenebrionidae from Xinjiang were listed [13–16].

Tenebrionidae, a large insect group, is widely distributed in Central Asia [17,18]. It has
a high level of species richness in a variety of environments [19,20]. There are approximately
20,000 known species of Tenebrionidae in the world [21,22]. It has been reported that more
than 600 species are distributed in the desert and semidesert areas of China, with Xinjiang
as the most important geographical component [23]. However, in recent years, a series of
events have affected the natural environment in Xinjiang, which may have changed the
habitat of some insects, such as the increase in rainfall [24,25], the rise in temperature [5],
the prevention and control of desertification [26], and the trend of homogenizing the
landscape [20]. As a classic indicator of the desert ecological environment, Tenebrionidae
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may be affected by the above events to varying degrees in this area [20]. Therefore, it is
of significance to study the distribution pattern of Tenebrionidae in the area to identify
priority areas for biodiversity conservation [23,27–30]. Some studies have focused on the
taxonomy [31,32], adaptive characteristics [17,33], diversity analysis [34], and molecular
level [35–37] of tenebrionid beetles, but no formal biogeographical methods have been used
to analyse Tenebrionidae in Xinjiang.

The study of the distribution patterns of species richness and endemic areas have
always been central issues in biogeography [38–44], which not only represent the highest
degree of the historical and ecological imprint of all biological entities [45] but also play an
important role in the exploration of biodiversity hotspots [46–51].

Species richness, defined as the number of species in each cell, is the most basic
and important indicator for identifying biodiversity hotspots and endemic areas [52,53].
Several studies have been undertaken using species richness as a measure to understand
what affects biodiversity [10,48,51,53,54]. However, because species richness is easily
affected by external factors (e.g., anthropogenic factors, geographic isolation, environmental
change, etc.), simple species richness alone cannot reflect the true level of species spatial
distribution [55], and the highest level of species richness does not necessarily mean the
highest level of endemism [51]. Therefore, a new index called the areas of endemism (AOEs)
has also been used to explore the distribution patterns of organisms [51,53,56].

Recently, a number of biogeographic and evolutionary studies have implemented and
applied AOEs to resolve practical issues [48,49,51–53,56–58]. Although the definition of
AOEs has been controversial in the past, it is now generally accepted as the distribution
of two or more endemic species [59–62]. AOEs are entities compared in terms of ascer-
taining earth history based on biological patterns [62,63]. AOEs are important because
they represent the operational unit of historical biogeography, which constitutes the first
step for biogeographical regionalization [59,64]. In addition, AOEs show unique biota
and are considered significant priority areas for biodiversity conservation [65]. Numerous
biogeographers and ecologists have shown interest in evaluating the causes for the presence
of AOEs [57,58,64,66].

Currently, although a number of alternative protocols and algorithms have been
proposed to delimit AOEs [62,67–70], no consensus has emerged on the most appropriate
method for detecting endemism. In some cases, more complete results can be obtained
by combining two or multiple methods [62,71]. Among several approaches, two of them
are most commonly used in exploring AOEs [51,53,56,72,73]. One approach is parsimony
analysis of endemicity (PAE), which identifies ecological affinities between species by
analysing species composition at local or regional scales [74,75]. The branching diagram
is obtained through analysis, and the distance on the branching represents the size of
ecological affinity [76]. The other approach is endemicity analysis (EA). Species distribution
is analysed in different grid sizes by using the latitude–longitude information of species [72].
The algorithm assigns a score to each species by comparing the composition of species in
each grid. The grid score is the sum of the scores of all species in a grid and is used to
determine the common area [74].

In the present study, we collected the distribution information for a total of 556 Tene-
brionidae species in Xinjiang based on both the literature and the examined material and
then analysed the data with an analysis of endemicity using two different methods, aiming
to (i) identify the centre of species richness and AOEs; (ii) explore the consistency of species
richness and endemic patterns; and (iii) test the hypothesis of whether the centre of species
diversity in previous studies is located in mountainous areas [53,56].

2. Materials and Methods
2.1. Species Distribution Data

In the present study, the georeferenced records of 556 species of Tenebrionidae were
obtained from published papers [12,18,19,77–86], books [13–15], museum specimens (The
Museum of Hebei University), and iNaturalist (https://www.inaturalist.org/ (accessed
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on 15 June 2022)), and a total of 2322 distribution records were compiled in a geographic
database. The distribution records without locations were excluded, and those with a
lack of or imprecise coordinates were supplemented and standardized via Google Maps.
Ultimately, the distribution information of 433 species with 2226 geographical records with
robust coordinates was retained in the following analysis.

2.2. Assessing Sampling Bias and Mapping Species Richness

ArcGIS 10.8 was used to process the latitude and longitude geographic information
of the species. In a 1◦ × 1◦ cell grid, 115 grid cells with information were obtained, and
different colours were used to replace the species richness of different degrees. The incident-
based bootstrap estimators were used to construct the species accumulation curve, which
was designed to assess species inventory integrity in the study area [51]. EstimateS v9.1
was used to perform 100 randomized matrix analyses, where a matrix was created for the
presence (1) or absence (0) of each species in a 1◦ grid size [87]. In addition, the number
of records and the richness of the 1◦ grid were converted using square roots. Then, a
linear regression was fitted to explore the completeness of richness, following previous
methods [56].

2.3. Identifying Areas of Endemism

Two methods were used to explore the AOEs of Tenebrionidae: parsimony analysis of
endemicity (PAE) and endemicity analysis (EA). In addition, three different grid sizes were
used: 0.5◦ × 0.5◦, 1◦ × 1◦, and 1.5◦ × 1.5◦.

For the PAE, matrices were created for the presence (1) or absence (0) of each species
in three different grid sizes. Under the New Technical algorithms, TNT v1.5 was used
to analyse all matrices, which added all zeros “Root” as the hypothetical outgroup of
the tree [88]. The branches with relatively moderate bootstrap values (≥50%) were the
candidates for AOEs [53]. Then, AOEs (clades of cells), comprising two or more endemic
species restricted to these areas and at least two continuous cells, were mapped using
ArcGIS to obtain the final results [52].

NDM/VNDM v3.1 was used for EA analysis under three grid sizes [88]. Due to the
incompatibility of the input files, GeX was used to convert the latitude and longitude
geographic information of the 433 species into XYD format [51,68,88]. The temporary set
was saved with the current score in the 0.99 range. Sets were preserved with two or more
endemics species with scores above 3.0. The search was repeated 100 times. Overlapping
subsets were maintained when 50% of species were unique [74]. Species with a minimum
score of 0.4 were selected in the obtained subsets [89]. Based on strict rules, the consensus
area was calculated with a cutoff of 100% similarity in species. Other parameters were
applied by using the default value. Finally, consensus areas were overlapped in different
grid sizes to obtain the AOEs, and ArcGIS was used to draw the final results [51,53,72,90].

3. Results
3.1. Species Richness Pattern

Inadequate collection is a potential problem in biogeographic research, which may
lead to the misidentification of biodiversity hotspots [30,91]. In this study, the 1◦ grid
size species accumulation curves did not show inadequate collection (bootstrap mean
approximately 505), with the data integrity for analysis as 86.1% (Figure 1A). The ratio
of observed species richness to those predicted by the linear regression models for each
grid cell was >69.3% (Figure 1B). This indicates that the data collected were sufficient.
The variation in the number of species was well explained by changes in the number of
species collected.
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Within Xinjiang, most species were found in the Altai Mountains, Tianshan Mountains,
and Kunlun Mountains (Figure 2). Among them, 118 species were found in the Altai
Mountains, 340 in the Tianshan Mountains, and 80 in the Kunlun Mountains (Table S1).
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3.2. Parsimony Analysis of Endemicity

The four most parsimonious trees for AOE identification were obtained under three
different grid cells. The optimal tree at a 1.5◦ grid size is a candidate for AOE identification
(Figure 3). The branches with at least two consecutive cells were considered AOEs. Finally,
10 branches met the criteria and were selected, two of which belonged to Altay Prefecture–
Akxoki Prefecture, two to Bortala Mongolian Autonomous Prefecture–Akxoki Prefecture–
Changji Hui Autonomous Prefecture–Ili Prefecture, one to Hami Prefecture, two to Kizilsu
Kirgiz Autonomous Prefecture–Aksu Prefecture, two to Kashi Prefecture, and one to
Hotan prefecture.
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Under the criteria of identification, six AOEs were obtained (Table S2 and Figure 4):
(i) Altay–Akxoki (AA), which shared 135 species; (ii) Bortala–Akxoki–Changji–Ili (BACI),
which shared 264 species; (iii) Hami Prefecture (HP), which shared 21 species; (iv) Kizilsu
Kirgiz–Aksu (KKA), which shared 73 species; (v) South of Kashgar (SK), which shared
41 species; and (vi) South of Hotan (SH), which shared 7 species.

3.3. Endemicity Analysis

In the EA analysis, three sizes were analysed by NDM/VNDM v3.1 under 0.5◦, 1◦,
and 1.5◦ grid cells, and 3, 12, and 25 consensus areas were obtained, respectively. The
consensus areas under the 0.5◦ grid size were only related to the Tianshan Mountains
(TM) (Figure S1), and those under a 1◦ × 1◦ cell grid (Figures S2 and S3) were similar to
those under the 1.5◦ grid (Figures S4–S7); both were related to the Altai Mountains (AM),
Tianshan Mountains (TM), Kunlun Mountains (KM), and Junggar Basin (JB) (Figure 5).
By overlapping the consensus areas with different grid sizes, a total of four AOEs were
finally detected.
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(i) Altai Mountains (AM): The AM included consensus areas 6, 8, 9, 10, 36, and 40. The
consensus regions scored 3.250000, 3.916667, 4.071429, 3.357143, 6.966667, and 3.000000
(Table S3 and Figures S2, S3, S6 and S7). One hundred and eleven species were found
in both areas, including Scythis altaicus, S. affinis, S. arenarius arenarius, S. vitorovianus,
S. intermedia intemedia, Anatolica dashidorzsi subalpina, A. subpolita, etc.

(ii) Tianshan Mountains (TM): These AOEs included consensus areas 1, 2, 3, 4, 5, 7, 11, 13,
14, 15, 16, 18, 20, 22, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, and 39 (Table S3 and Figures S1–S6).
The consensus area scores were 3.70000, 3.250000, 3.000000, 3.666667, 4.375000, 3.928571, 3.000000,
3.458974, 3.000000, 3.333333, 5.000000, 9.869374, 7.947520, 10.089686, 3.000000, 6.558036, 5.207238,
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7.365209, 3.333333, 6.672132, 3.230769, 6.400000, 7.418164, 10.898350, 5.583333, 4.641865, and
3.000000. Three hundred seventy-five species were counted in both regions, for example,
Colposphena brevlcollis, Scythis banghaasi, S. bulganicus, S. tatarica pseudoscythis, S. vitorovianus,
S. angusticollis angusticollis, S. intermedia intemedia, Anatolica gobioltaica altaica, and A. hoboksarana.

(iii) Kunlun Mountains (KM): The consensus areas 12, 31, and 35 were covered by KM,
scoring 3.541667, 3.871429, and 5.250000, respectively (Table S3 and Figures S3, S5 and S6).
Eighty-eight species were supported in these AOEs, including Anatolica sternalis, Ascelosodis
concinnus, Microdera (Microdera) parvicollis, M. (Microdera) laticollis laticollis, M. (Dordanea)
elegans, M. (Dordanea) mongolica, Colposcelis (Scelocolpis) damone, and C. (Scelocolpis) forsteri.

(iv) Junggar Basin (JB): This region contained consensus areas 17, 19, 20, 21, 23, 27,
and 33 (Table S3 and Figures S4–S6). The scores were 4.783780, 5.188492, 7.947520, 3.500000,
6.387500, 7.365209, and 7.418164. A total of two hundred and twenty-one species were
supported in these consensus areas, e.g., Scythis altaicus, S. banghaasi, S. sculptilis, S. affinis,
S. arenarius arenarius, S. vitorovianus, Anatolica dashidorzsi subalpina, and A. subpolita.

4. Discussion
4.1. Congruent Patterns between Species Richness and Endemism Areas

In general, the species richness centres and endemism areas in this study were mainly
found in the Altai, Tianshan, and Kunlun Mountains and Junggar Basin, which indicated that
the species richness pattern of Tenebrionidae was basically consistent with the AOEs. This
condition is found not only in insects [48,51,53,58,73] but also in other groups, such as plants [91],
mammals [72], and birds [92]. This supports the hypothesis that AOEs have historically served
as speciation centres [51,53], because AOEs characterized by stable climates and diverse habitats
could maintain the long-term existence of organisms [51,53,72,93]. It is worth noting that there
is an AOE in the basin area. In the centre of the basin, the vegetation coverage is lower than that
around the basin, resulting in a more arid environment [94]. However, the Tenebrionidae there
have evolved and adapted to the arid and semiarid environment in morphology, biology, and
behaviour, which contributed to the high species richness in the middle of the basin [17,23,28,95].

4.2. AOEs of Tenebrionidae

Here, Tenebrionidae beetles were selected as the subjects to detect AOEs in Xinjiang for
the first time, and a total of four AOEs were detected by two different methods, including
three mountain regions (AM, TM, and KM) and one basin (JB).

4.2.1. AOEs in Montane Areas

Mountains often harbour high biodiversity due to their complex topography and
stable climate. The formation of mountains is geological uplift, which is usually caused by
the collision of continental plates [96,97]. The complex terrain and diverse environments
in montane areas hinder the exchange of species, but they also provide the basis for the
emergence of new species [98,99]. In addition, the complex terrain increases the number of
ecological niches, which also promotes the formation of new species [99–101].

(i) AA belongs to the Altai Mountains. There was no significant difference in the AOEs
between the PAE and EA under a 1.5◦ grid size, while the PAE had a larger consensus
region than the EA under a 0.5◦ grid size. Under a 1◦ × 1◦ cell grid, the EA detected larger
AOEs, which were mainly located in the southern Altai Mountains. The Altai Mountains
have a northwest to southeast trend and cross China diagonally. The Altai Mountains first
appeared during the Caledonian movement, and the Himalayan movement caused the
Altai Mountains to rise along the NW-trending fault block displacement, which provided
shelters for several species and contributed to the high biodiversity of the areas [102,103].

(ii) BACI, HP, and KKA belong to the Tianshan Mountains. The EA detected more
consensus areas in the region. Compared to PAE, the AOEs detected by EA were more
widely distributed, mainly located in the southeastern and southwestern Tianshan Moun-
tains. Significant differences could be observed in the 1.5◦ grid size. This may be caused by
the different height gradients of the crustal changes in the late Cenozoic [104]. Tianshan
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Mountain is located in the hinterland of Eurasia running from east to west and accounts for
approximately one-third of the entire area of Xinjiang. The annual precipitation gradually
decreases from west to the east on the same slope, which enhanced the adaptation of
Tenebrionidae to the special climate and provided a certain guarantee for their survival,
reproduction, and evolution [105,106].

(iii) The Kunlun Mountains include SK and SH. Within the 1◦ and 1.5◦ cells, the
consensus area was mostly distributed in the western part of the northern slope of the
Kunlun Mountains. Although the consensus areas of the EA and PAE were similar, the
AOEs identified by the PAE were more widely distributed in this area, which is mainly
located in the middle of the northern slope of the Kunlun Mountains. The neotectonic
movement of the Kunlun Mountains is extremely strong, showing high values in the west
and low values in the east [107]. The northern slope belongs to the Tarim Desert and
Qaidam Desert in the warm temperate zone with low precipitation. With the increase in
altitude, its terrain transitions from warm temperate desert into alpine desert, and the
precipitation in this area also increases [25,99]. The higher topography of the west provides
greater opportunities for the geographical isolation of species, which may be one reason
why endemic areas are widespread in the west [108–110].

In addition, the high level of AOEs is closely related to the geological events expe-
rienced by the region [56]. The collision of the Indian plate with the Asian plate caused
the Kunlun Mountains and the Qinghai-Tibet Plateau uplift, which is known as ‘the roof
of the world’ [51,99,111,112]. Because the Qinghai–Tibet Plateau has affected the north-
wards movement of westerlies and the blocking of water vapour; hence, warm and wet
air cannot reach Xinjiang across the Qinghai–Tibet Plateau, which leads to the arid climate
in Xinjiang [4,5,24,99,106,113]. Tenebrionidae has adapted to arid environments, which
contributes to the high species richness in this region [17,23].

4.2.2. AOE in the Basin

Basins with high surroundings (mountains or plateaus) and low central areas (plains
or hills) can be divided into two types according to the influence of special geology and
surface external force changes [114,115]. The Junggar Basin was formed as a result of plate
movement [100,103,116,117]. Although the vegetation coverage of the basin is low, the
surrounding mountains or plateaus have higher plant coverage than the central region [94],
which provides certain environmental conditions for the existence of organisms.

(iv) The Junggar Basin (JB) is the second largest inland basin in China located in
the northern part of Xinjiang. The basin is located between the Altai Mountains and
the Tianshan Mountains, with the north being slightly higher than the south [94,103]. In
addition, special geographical conditions prevent water vapour from moving northwards,
which causes climatic changes and produces many arid and semiarid regions [1]. The
Gurbantunggut Desert lies in the middle of the basin. The flourishing of the Tenebrionidae
in this region is facilitated by adapting to the environment in arid and semiarid regions.
In terms of morphology, beetles have adapted to merged anterior wings, degeneration
of posterior wings, variable legs, formation of a subelytral cavity, and a well-developed
tarsus [17]. Meanwhile, in biology and behaviour, they have suspended animation and self-
defence through the release of smelly fluids, gregariousness, and diurnal activity [17,23].

4.3. Limitations of Dataset and Methods

Although the taxonomy of the Tenebrionidae from Xinjiang, China, is well studied and
documented with rich geographical data, under-collecting remains a potential problem in
biogeographical research. Due to the harsh environment and technological limitations, we
were unable to make a systematic survey for the species distribution of each cell. However,
the data integrity for analysis showed an adequate collection. This suggests that the
geographic data we collected were sufficient, and the variation in numbers of species was
explained well by the variation in the numbers of collections [51].
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In general, although slight differences were shown in the two approaches, both of
them detected similar AOEs. The results of the EA had one more AOE than those of
the PAE method, which might be explained by the different algorithms of the two meth-
ods [51]. There is no widely accepted answer as to which method can identify AOEs
more accurately [62,118], and more accurate AOEs cannot be obtained by using a fixed
method [53,56,93,119]. Thus, we adopted the PAE and EA results to provide more compre-
hensive AOE information.

Moreover, the grid sizes are also an important factor affecting the results of AOEs [72,93].
The smaller grid sizes will produce narrow and accurate consensus areas, but too small
may also lead to the fragmentation of consensus areas [51], such as 0.5◦ in the present study.
However, a grid size that is too large may also cause inaccurate consensus areas, such as a
1.5◦ grid size. Therefore, in the present study, we overlapped the consensus areas by different
methods and three grid sizes to obtain more comprehensive endemism areas, following
previous studies [51,56].

5. Conclusions

The geographical patterns of species richness and endemic areas of Tenebrionidae
in Xinjiang, China, were analysed using the PAE and EA. We found that the species
richness pattern was consistent with the AOEs of Tenebrionidae. In addition, the AOEs of
Tenebrionidae in Xinjiang were mostly located in mountainous areas and basins, such as
the Altai Mountains, Tianshan Mountains, Kunlun Mountains, and Junggar Basin. This
is mainly due to the complex terrain and stable climate of the mountainous area, which
promote long-term persistence, speciation, and species accumulation. Our findings indicate
that greater conservation efforts should be expended in montane areas. Future studies
should explore the relation between the AOEs and evolution histories at the molecular level.
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endemicity analysis (EA) using 0.5◦ grid size; Figure S2: Consensus areas 4–9 detected by endemicity
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