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Abstract: Information from extreme habitats of polymorphic populations is expected to answer
questions related to evolutionary changes occurring at their niche border. Landlocked and resi-
dent/anadromous populations of the Arctic char (Salvelinus alpinus (L.) sp. complex), sampled
during three successive years in northern Svalbard, were assessed for life-history characteristics,
allele-frequency variation at the polymorphic EST-2* locus, and tested for genotype–environment
interactions. While year-class strength correlated positively with mean air temperature during the
two summers preceding spawning, the EST-2*100 allele frequency correlated positively with the air
temperature in June after birth. By affecting two asynchronous and independent population variables,
which are both no doubt correlated with fitness, annual temperature variation is suggested to generate
and maintain polymorphism in Arctic char in the High Arctic by modifying year-class strength and
selecting for variant alleles influencing cold resistance. Intra- and inter-population comparisons
imply an additional selection between the two variant EST-2* alleles to operate ontogenetically, with
a fixation on the 90 allele in landlocked and resident individuals and the 100 allele in anadromous in-
dividuals. The selective mechanism behind the latter processes is unknown. Because of low substrate
specificity, however, esterases may form a reserve of adaptive ability towards environmental stress
during contrasting conditions.

Keywords: esterase; temperature; recruitment; population dynamics; sympatry; anadromy

1. Introduction

Mechanisms maintaining polymorphic loci in populations are one of the main prob-
lems in population genetics, and a perpetual challenge for evolutionary and conservation
ecologists. Under what circumstances does natural selection maintain rare alleles in a pop-
ulation? Information from extreme habitats of polymorphic populations may answer such
questions. Life at the distributional edge of many species encounters severe environmental
conditions, and genetic or phenotypic heterogeneity may be a prerequisite to adaptive
changes and population survival under unstable circumstances.

High Arctic lakes constitute extreme habitats, in which landlocked, isolated, and
ectothermic organisms may be genetically trapped, and because of colonization difficulties
and/or for physiological and ecological reasons, many northern lakes are inhabited by
one single taxon of salmonid fish [1–3]. On an evolutionary time scale, such surviving
populations have had to demonstrate a high capacity of resilience by either adapting to
major physical and biotic changes or utilizing available genetic variation; otherwise, they
go extinct [4]. Exposure to contrasting environmental changes during repeated events
of colonization and isolation during successive episodes of interglaciations is probably a
key factor explaining the taxonomic diversity of the extreme phenotypic and ecological
plasticity seen among northern salmonids, such as chars (Salvelinus spp.) (e.g., [5–12]).
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Numerous studies have illustrated how incomplete sexual barriers and wide niche
utilization may allow gene flow between sympatric populations of congeneric salmonid
taxa (see ref. in [13]), while in central populations, besides adaptive changes to environmen-
tal gradients, increased interspecific competition and niche compression may cause other
adaptive changes, such as character displacement (e.g., [14,15]). Until recently, few studies
had demonstrated evolutionary changes occurring at the niche border (e.g., [16–18]).

Functional and kinetic differences between allelic variants have been demonstrated
in numerous loci and fish taxa (e.g., [19–25]). In the Arctic char (Salvelinus alpinus) species
complex, the highly polymorphic esterase loci offer a unique tool in testing adaptive
changes at the northern species borders because of the correlation between allele frequencies
and temperature, both within populations, between year classes, and among populations
from different latitudes [26–28]. Similar correlations have been reported in other fish taxa as
well [29–33]. Major activity changes in esterases have also been documented in individual
fish experimentally exposed to increased temperature regimes [34], and a preference for hot-
water effluents by individual fish with appropriate esterase genotypes has been suggested
to occur [35].

In the present study, data on otolith age and allele-frequency variation within the
diallelic EST-2* locus of unexploited populations of Arctic char sampled in northern Sval-
bard were used to test genotype–environment interactions by analyzing the impact of air
temperature on year-class strength and allele-frequency distribution.

2. Materials and Methods
2.1. The Arctic Char Species Complex

The Arctic char (Salvelinus alpinus (L.)) sp. complex is the northern-most freshwater
fish taxon, and the circumpolar distribution of landlocked, resident, and anadromous
populations include High Arctic regions, such as Svalbard, Peary Land, and Ellesmere
Island. Although exploiting a variety of habitats, reproduction and over-wintering are
invariably restricted to freshwater [1,36,37]. Arctic char are iteroparous, and typically
spawn in autumn. While the southern border of this taxon is controlled by interspecific
interactions, the northern border seems to be controlled by abiotic barriers [4,38–41]. While
Low Arctic populations commonly employ anadromy to maximize energy intake during
the short summer, residency in freshwater all year round seems to be more common among
the extreme northern-most populations of char [1,40]. The landlocked populations of char
in Svalbard commonly express a bimodal size and age distribution, with cannibalism
reinforcing the numerical preponderance of large-sized individuals [42–44]. In contrast,
populations with mixed resident and anadromous individuals demonstrate comparatively
even polymodal size and age structures.

2.2. Sampling and Electrophoretic Analysis

A series of unexploited landlocked and mixed resident–anadromous populations
of Arctic char were sampled in northern Svalbard (Figure 1) during the summers of
1979–1981 (Table 1). Test fishing, using multiple mesh size gillnets (10–75 mm) [45], was
carried out to assess population structure, prey choice, parasite acquisition, and organic
pollutants [40,42,43,46]. Sagittal otoliths were removed for the analysis of age and year-
class identification. The age-frequency distribution of the char populations was treated
as sampled by the experimental gillnets, i.e., without subsequent adjustment for possible
gillnet selection effects and considered to reflect the relative strength of the various year
classes represented. In addition, allele-frequency variation within the EST-2* locus was
screened with starch gel electrophoresis of serum samples [47] in order to study systematic
status [26], genetic differentiation [48,49], and the possibility of a temperature-induced
selection processes.
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Table 1. Geographic position of lakes surveyed in Svalbard, and the size and age range of the samples
of Arctic char analyzed. While the char from Lakes Diesetvatn and Sirkelvatn were collected with
seine and hook, respectively, the remainder were caught with multiple mesh size gillnets. The
life-history abbreviations refer to anadromous (A), resident (R), and landlocked (L) populations.

Lakes Position of Outlet Life-History N Length Weight Age Date of
Sampling

Latitude Longitude A/R/L MTL (mm) (Gram) (Years) (y-m-d)

Diesetvatn 79◦12′ N 11◦22′ E A 5 427–578 - 8–13 1979.07.22
Linnévatn 78◦04′ N 13◦48′ E A + R 17 114–262 9–137 5–12 1980.09.09
Arkvatn 80◦25′ N 22◦57′ E A + R 108 101–615 7–1880 5–24 1980.08.16

Wibjørnvatn * 80◦09′ N 18◦28′ E L 26 97–433 6–520 4–26 1980.08.20

Jensenvatn 79◦43′ N 10◦51′ E L 7 371–590 562–1990 7–18 1979.07.29,
1981.08.24

Johansvatn * 79◦40′ N 10◦48′ E L 34 100–565 7–1300 6–24 1981.08.21
Annavatn * 79◦46′ N 10◦53′ E L 28 117–495 8–825 9–26 1981.08.23
Sirkelvatn 80◦12′ N 22◦52′ E L 4 382–420 - 26–27 1980.07.16

* These names are unofficial working names used by the author in previous reports; thus, they may be altered in
future publications.

2.3. The EST-2* Locus

The EST-2* locus, with its two codominant alleles 90 and 100, codes for a monomeric
esterase enzyme. Nyman and Shaw [50] suggested that the esterase coded for by the
EST-2*100 allele has a higher optimal temperature than the variant (90) allele, and the
frequency of the 100 allele demonstrates a positive correlation with temperature and
declining frequencies in latitude (e.g., [10,26]. Temperature is known to influence enzymatic
processes, including the activity of hydrolyzing enzymes, such as esterases. The functional
significance of the products of the EST-2* locus in Arctic char is, however, unknown, and
a precise classification is difficult due to their overlapping substrate specificity. Using
substrate and inhibitor-specificity methods, Nyman [51] classified the polymorphic serum
esterase in salmonids as a carboxylic ester hydrolase with a selective affinity for alpha-
naphthyl propionate. Carboxyl esterases hydrolyze various organic carboxy-ester-bonds,
including lipid substrates, and in the Arctic char, the EST-2* allozymes are present in the
serum, liver, muscle, and external mucus [26].

2.4. Statistical Analysis

For genotype–temperature comparisons, air temperature data for the period 1956–1975
were available from Jan Mayen and another four weather stations in Svalbard (Figure 1).
Complete sets of monthly mean air temperatures were considered variables adequately
reflecting the thermic conditions in the lakes during summer. The closest weather stations
were Isfjord Radio and Hopen, with Isfjord Radio being more representative of the western
parts affected by the Golf Current, and Hopen being more representative of the eastern and
harsher regions of Svalbard.

Linear association was tested using Pearson’s coefficients for air temperature and two
different sets of year-class variables. Correlations between relative year-class strength and
mean annual, seasonal, and monthly temperatures were restricted to 1959–73, with the
oldest year classes being disregarded because of their rare occurrence in the catches, and the
youngest year classes because of the size-selective properties of the gillnets [45]. In order to
identify seasonal patterns in relationships, and to avoid unwarranted conclusions because
of spurious associations expected to occur in any large matrix of bivariate comparisons,
year-class strength correlations were also tested with a displaced series of mean temperature
representing the years before, as well as after, the actual year of birth. The probability
values were adjusted for the number of tests using the sequential Bonferroni technique [52].
The correlation between the EST-2*100 allele frequency and mean annual temperature
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was restricted to the middle year classes of 1960–1971, assumed to be least affected by
ontogenetic changes in viability.

3. Results

The number of individuals from different year classes of the five landlocked pop-
ulations examined varied greatly, suggesting variable success in recruitment across the
years as a reasonable explanation. In the sample, the number of char born in 1959–63 and
1972–74 surpasses the number of char born during the colder period of 1964–71, indicat-
ing a possible covariation with temperature (Figure 2). Linear correlation tests with the
pooled age structures, presented as relative year-class strengths for landlocked populations,
showed positive relationships with temperature for June–September of the preceding year
(R2 = 0.550, n = 15, p = 0.002), as well as for the same period two years earlier (R2 = 0.493,
n = 15, p = 0.004). A combination of the mean temperatures during the two previous sum-
mers was found to explain 73 percent of the year-class strength of landlocked Arctic char in
a given year (p < 0.001). When tested on the total sample of char, the correlation remained,
proving that year-class-strength determination basically takes place in June–September
of the previous year (R2 = 0.624, n = 15, p < 0.001, Figure 3A) with a mean summer air
temperature of below 3 ◦C, generating fewer recruits than the predicted average year class
the next year (Mann–Whitney U-test, U = 4.0, p < 0.01).
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Figure 3. Correlation between air temperature recorded at Isfjord Radio. (A) Year-class strength,
shown as pooled numbers of all sampled char born in the years 1959–73 (Mean temp., June–September,
the year previous to birth), and (B) frequencies of the EST-2*100 allele in the year classes 1960–71
(Mean annual temp., current year).

The EST-2*100 allele-frequency distribution among year classes of the total sample
correlated positively with mean air temperature (R2 = 0.390, p = 0.030, n = 12, Figure 3B).
More specifically, in landlocked populations, the correlation suggests selection for the
100 allele when the mean air temperature exceeds 1.5 ◦C in June, i.e., shortly after hatching
(R2 = 0.842, p < 0.001, n = 9).

While anadromous populations intermix genetically via strayers and thus maintain
genetic variation and geographic cohesion, alleles in resident and landlocked populations
tend to become fixed due to isolation, reduced population size, and perhaps less unstable
environmental conditions (Figure 4). In landlocked High Arctic populations, this could
lead to a fixation of the EST-2*90 allele, as seems plausible from a comparison of the allele
frequencies of the anadromous, resident, and landlocked populations (Table 2), with all
the resident and landlocked populations possessing lower frequencies of the 100 allele
(Mann–Whitney U-test, 10 pop., U = 0.0, p = 0.017). In one anadromous population (L.
Arkvatn), a dramatic increase occurs in the frequency of the 100 allele at the age (>14 years)
and size (>200 mm) at smoltification. Deviation from Castle–Hardy–Weinberg proportions
and the change in allele frequencies, indicating a shift in the direction of selection, is also
apparent (Table 3). This suggests an opposite, strong selective process to operate during
a few weeks of feeding in saltwater. If the coastal water temperature is higher or lower
than in fresh water, the area is not known. Differences in genotype distribution between
landlocked (pooled) and anadromous (L. Arkvatn) individuals in three successive age
groups, namely 4–10, 11–20, and 21–27 (Chi-square = 7.32–27.62, p < 0.005, d.f. 1), imply
that old anadromous char tend to be homozygous for the 100 allele, whereas old landlocked
char tend to be homozygous for the 90 allele (Figure 5). The present data do not yield
comparisons of phenotype performance within year classes, although such an analysis
would probably illustrate genetic differentiation [23,24].
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Figure 4. A model demonstrating the evolutionary processes comprising gene flow and/or repro-
ductive isolation within two closely oriented gene pools of anadromous, resident, and eventually
landlocked Arctic char.

Table 2. Observed allele and genotype frequencies, their expected genotype distribution (in parenthe-
ses), deviation from the Castle–Hardy–Weinberg proportions, and the 95% confidence interval at the
EST-2* locus in anadromous (A), resident (R), and landlocked (L) Arctic char in Svalbard.

Observed (Expected) Distribution

Lake Life-Hist. n f(100) 90/90 90/100 100/100 χ2 p 95% c.i.

Diesetvatn A 5 0.900 0 (0.1) 1 (0.9) 4 (4.1) 0.062 0.97 0.190
Linnévatn A 4 0.875 0 (0.1) 1 (0.9) 3 (3.1) 0.082 0.96 0.234

R 13 0.692 1 (1.2) 6 (5.5) 6 (6.2) 0.090 0.96 0.181
Total 17 0.735 1 (1.2) 7 (6.6) 9 (9.2) 0.057 0.97 0.151

Arkvatn A 58 0.819 4 (1.9) 13 (17.2) 41 (38.9) 3.456 0.18 0.072
R 50 0.610 7 (7.6) 25 (23.8) 18 (18.6) 0.129 0.94 0.098

Total 108 0.722 11 (8.3) 38 (43.3) 59 (56.3) 1.636 0.44 0.061
Wibjørnvatn L 26 0.788 1 (1.2) 9 (8.7) 16 (16.2) 0.037 0.98 0.113
Jensenvatn L 7 0.714 0 (0.6) 4 (2.9) 3 (3.6) 1.120 1.12 0.241
Johansvatn L#1 17 0.735 1 (1.2) 7 (6.6) 9 (9.2) 0.057 0.57 0.151
Johansvatn L#2 16 0.344 6 (6.9) 9 (7.2) 1 (1.9) 0.974 0.97 0.168
Johansvatn Total 33 0.545 7 (6.8) 16 (16.4) 10 (9.8) 0.016 0.99 0.123
Annavatn L 28 0.446 9 (8.6) 13 (13.8) 6 (5.6) 0.103 0.95 0.133
Sirkelvatn L 3 0.000 3 (3.0) 0 (0) 0 (0) - - -
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Table 3. Observed allele and genotype frequencies, their expected genotype distribution (in parenthe-
ses), deviation from the Castle–Hardy–Weinberg proportions, and the 95% confidence interval at the
EST-2* locus in different sex and age groups of anadromous/resident Arctic char from Lake Arkvatn,
Svalbard.

Age and Sex Groups Observed (Expected) Distribution

Age Groups, Total n f(100) 90/90 90/100 100/100 χ2 p 95% c.i.

9–5 35 0.600 5 (5.6) 18 (16.8) 12 (12.6) 0.179 0.91 0.117
10–14 29 0.655 4 (3.5) 12 (13.1) 13 (12.5) 0.206 0.90 0.125
15–19 28 0.893 1 (0.3) 4 (5.4) 23 (22.3) 1.797 0.41 0.083
20–24 15 0.833 1 (0.4) 3 (4.2) 11 (10.4) 1.176 0.56 0.136

Age groups, males
9–5 26 0.596 5 (4.2) 11 (12.5) 10 (9.2) 0.383 0.83 0.136

10–14 17 0.676 1 (1.8) 9 (7.4) 7 (7.8) 0.746 0.69 0.160
15–19 15 0.933 1 (0.1) 0 (1.9) 14 (13.1) 15.00 <0.001 0.091
20–24 12 0.833 1 (0.3) 2 (3.3) 9 (8.3) 1.920 0.38 0.152

Age groups, females
9–5 9 0.611 0 (1.4) 7 (4.3) 2 (3.4) 3.645 0.16 0.230

10–14 12 0.625 3 (1.7) 3 (5.6) 6 (4.7) 2.613 0.27 0.198
15–19 13 0.846 0 (0.3) 4 (3.4) 9 (9.3) 0.430 0.81 0.142
20–24 2 0.750 0 (0.1) 1 (0.8) 1 (1.1) 0.222 0.89 0.433
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4. Discussion

In addition to cannibalism and parasites [43], temperature is also found to affect the
magnitude of year-class strength and thus the demography of High Arctic populations of
Arctic char; therefore, it may thus explain the exaggerated bimodal population structure
recorded in 1979–81 in Svalbard. The present results demonstrate a climatic impact on
year-class strength both one and two years before birth, thus pointing at the significance
of parental traits affecting reproduction, such as the sexual maturity process, frequency of
spawners, and number and quality of eggs.

As in most northern animals, any factor reducing the accumulation of energy of
juveniles during their first summer is likely to reduce their survival during the first critical
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winter. This has long been a principle suggested to govern year-class strength among
temperate fishes and has been especially emphasized among such species at their northern-
most distributional limits (e.g., [53]). A latitudinal reduction in the growth period, used
in the past as an evolutionary argument for autumn spawning and early spring hatching
among northern salmonids [54], may thus be a serious constraint to somatic, as well as
gonadal, growth. Anadromous char may stay for an entire year in freshwater in order to
fully develop their gonads and may need at least another year to recover after spawning [55].
Energy resources built up by early spring may influence whether energy is allocated to
gonads or continued somatic growth [56,57]. In Svalbard, individual landlocked char seem
to spawn at least every third year until well above 20 years of age [43]. The present results
suggest that the maturity process is influenced by the temperature in the summer preceding
spawning, with a mean temperature for June–September of less than ca 3 ◦C, generating
fewer recruits than average in the next year. A series of warmer summers provide the
potential for higher numbers of recruits in High Arctic char which, during the actual year
of hatching, face selection among variant EST-2* genotypes. Three successive “warm”
summers may thus generate a large year class of individuals with a reduced ability to cope
with extreme cold. The temporally displaced selection processes influencing year-class
strength and allele frequency are proposed to grant the maintenance of both alleles, and
thus also polymorphism, in isolated populations living in the far north.

This model may perhaps explain the genetic divergence of sympatric Arctic char in
Lake Johansvatn, Danskøya [42]. Almost contrasting distributions of genotypes shift from
one modal group to another in less than 10 years (Figure 6). However, differential mortality
is unlikely to cause a dramatic change in EST-2*100 frequencies between two modal gene
pools of adult fish. One alternative explanation is that the lower modal group with a high
allele frequency (0.74 ± 0.15) was born during a series of warmer years or is the offspring
of a rich year class of parents born during a series of such years, while the low frequency
group (0.34 ± 0.17) has the opposite origin. The two groups thus seem to be genetically
isolated by their year of recruitment. Another explanation is simply that the Arctic char in
Lake Johansvatn is yet another example of coexisting, reproductively isolated populations
of either pre- or post-glacial origin, or both (e.g., [8,48,49,58–60]).

The findings in Svalbard raise the question of the exact mechanisms involved in the
selection, and thus the functional significance of the allozymes produced by the EST-2*
locus in Arctic char. As shown by the latitudinal gradients and year class–temperature
correlations, esterases seem primarily to be involved in a temperature-dependent process
affecting juvenile survival. Koehn [30] provided elegant molecular evidence of temperature-
related differences in the direct activity of different allozymes, fitting with his observations
of a latitudinal cline of allele frequencies. The present study adds a selective process
connected with differential survival during repeated transformations to a life in the sea.
The striking decline of homozygotes and heterozygotes for the EST-2*90 allele among older
and larger individuals in Lake Arkvatn strongly suggests a selective loss of individuals
from the system (Table 3). Selection favoring the EST-2*90 allele in freshwater and the
EST-2*100 allele in saltwater suggests a disruptive selection, although the mechanism of
such a selective process is not known. Anadromy manifests a major change in physiology,
growth, and diet, as well as in dramatic exposure to the marine environment. Additionally,
in comparison to other salmonids, Arctic char seem to be less capable of acclimating to
the marine habitat. Besides the stress, the metamorphosis of smoltifying fish induces a
number of extraordinary physiological changes, and the exact mechanism of selection may
be found among changes in the activity of various enzymes and hormones, increased lipid
utilization, etc. Individuals which have not yet acquired the ability to osmoregulate die if
they are transferred to sea water, and smolts which are prevented from migrating to sea
may also die (e.g., [61]). The fact that esterases are active in external mucus may indicate
a defense function towards various environmental toxicants. Smith [32] indicated that
the selection agent may be an associated parameter, such as salinity, pH, or even food,
because esterases are known to act on externally derived substrates. Carboxyl esterases



Diversity 2023, 15, 74 10 of 13

have been suggested to form a reserve of adaptive ability towards certain toxicants and
pollutants, and the fact that they have a low substrate specificity makes them more efficient
in destroying a variety of foreign agents [62]. Another parameter combining temperature
with differential survival and smoltification is the photoperiod. Temperature, and thus
latitudinal gradients and ice cover duration, are likely to affect the photoperiod perception
of fish, and this has been pointed out as a major synchronizing cue for year-class strength
and seasonal cycles of growth, as well as smolting in juvenile salmonids [63,64].
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Other enzyme loci isozymes, particularly the products of the LDH-B* locus [24], are
also differentially selected in different thermal environments. This suggests the possibility
of polygenic correlations, including the combined effects of several genes, and in an
important study of vendace (Coregonus albula) transplanted 92 years earlier into a new and
colder environment, significant changes in eight of ten polymorphic loci were detected [65].

5. Conclusions

The relative strength of year classes and their frequency in the EST-2*100 allele has
been found to correlate positively with summer temperature in high latitude Arctic char.
The climatic impact on these two fitness-correlated population variables seem to vary
asynchronically, with relative year-class strength being correlated with temperature during
one or two summers preceding spawning, and year-class allele frequency being correlated
with temperature after hatching. The results suggest temperature affects parental traits,
thus affecting reproductive success, as well as selection of a variant allele influencing cold



Diversity 2023, 15, 74 11 of 13

resistance. As a complication, an additional ontogenetic option between the two variant
EST-2* alleles, generated by selection in coastal habitats, may also evolve. Varying selection
processes during warm and cold summers, and because of contrasting habitat conditions
for resident and anadromous char, may thus generate and maintain allelic polymorphism in
these marginal populations. My results also imply that landlocked populations in the High
Arctic may have adapted to cold freshwater conditions and, in the process, lost capability
to adopt an anadromous life history. With the ongoing dramatic increase in environmental
temperature in the Arctic [66,67], these conclusions may already be historical.
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