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Abstract: Tropical forests are vulnerable to climate change including increased temperatures and
changes to rainfall variation. Here, we use Thailand as a case study for assessing the impacts of
the shared socio-economic pathway and climate scenarios on changes to the distribution and extent
of floristic regions. To address this question, we assigned floristic regions based on a structured
cluster analysis of modeled species ranges, and evaluated how those regions respond under scenarios
of climate change. A total of 201 plant species with sufficient occurrence data obtained from the
systematic forest inventory plots across the country and global datasets were chosen for distribution
modeling. Environmental variables, including soils, topography and bioclimatic variables were
compiled to model both current and 2050 distributions. Potential floristic regions were classified
using a clustering algorithm on the pixel-wise species compositions—resulting in 12 floristic regions
representative of both current climate species compositions and projected future species assemblages.
Five floristic regions are projected to experience little change in their geographic distribution, while
the remainder are projected to be substantially displaced spatially. Additionally, two of the identified
floristic regions are not well represented in protected areas—with less than 50% of the current
geographic distribution in each region in some form of protected status.

Keywords: climate change; forest composition; plant species; tropical forests; vulnerable

1. Introduction

Tropical forests, which are comprised of rainforests and seasonally dry forests, cover
about 15 to 20% of the Earth’s land surface [1]. They are distributed over three continents,
i.e., Southeast Asia (SEA), Central and Southern America, and parts of sub-Saharan Africa.
Tropical forests are recognized as global centers of biodiversity, providing habitats for
fauna and flora, and significantly contributing to global climate regulation. Myers et al. [2]
showed that 15 out of 25 of global biodiversity hotspots, which collectively hold nearly
35% of terrestrial vertebrate species and 44% of vascular plant species, are located in
the tropical forest ecosystems. In addition, living tropical trees are globally important
reservoirs of carbon and are estimated to hold about one-third of the levels of CO2 in the
atmosphere [3,4]. Tropical forests also play an important role for rural livelihoods and
deliver other ecosystem services such as food, water resources, and income [5].

Agricultural expansion and unsustainable logging are listed as the most prominent
drivers of tropical deforestation, followed by wood fuels, forest fires, and livestock graz-
ing [6,7]. However, there are significant differences between regions globally [8]. In some
regions, the rate of deforestation is declining in recent decades due to large-scale plantation
establishment in some countries (i.e., China, Vietnam) and strict protection measures [9]. A
recent assessment using high-resolution imagery showed that the forest cover in Thailand
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during 2000–2019 remained almost stable at 32–33% [10], suggesting climate change as a
more salient pressure moving forward.

Global climate models project increased temperatures across the tropics, with ac-
companying variability in rainfall and with more extreme events such as droughts and
wildfires [11,11–14]. The fifth assessment report of the Intergovernmental Panel on Climate
Change (IPCC) compiled evidence that mean annual temperatures in SEA will increase by
2–4 ◦C by 2100 in addition to instances of prolonged droughts juxtaposed against periods
of excessive precipitation driven by the re-occurrence of irregular patterns of the El Nino
Southern Oscillation (ENSO) cycle [15,16]. The sixth assessment report added evidence
that monsoon precipitation is projected to intensify in the mid- to long-term over South
Asia and SEA [17].

Recent studies have indicated that climate change is likely to overtake land use change
in the next century as a primary driver of ecosystem disruption [18,19]. Altered climatic
conditions will potentially cause shifts in ecosystems, species distributions, and species
compositions [11,20–26] with the level of impact variable depending on the individual
responses of ecosystems and their constituent species [27]. Many global climate models
project a significant geographical shift and an increase in the extent of transition areas
between tropical forests and savanna [28,29], but this is not the case for most tropical cloud
forest species due to their restricted distributions [30]. Land species are often projected to
shift to cooler-temperature areas and higher altitudes [31,32]. In addition, studies suggest
tropical lowland species may contract their distribution or shift in phenotypes (plasticity) as
mean or extreme temperatures increase above their heat tolerance, but this scenario could
also lead to novel communities of heat-tolerant species [26,33,34]. The impacts of climate
change are projected to be greater for Dipterocarpaceae, Meliaceae, and Moraceae families
that are dominant in tropics [35,36] as these families are characterized by recalcitrant seeds
or short storage longevity [37].

The population dynamic processes of tree growth, mortality, and regeneration are lead-
ing to changes in species composition and ecosystem structure and function. The impact
of climate change on tropical tree distributions has been substantially studied [35,37–40].
However, studies on the consequences of species shifts may have on species composition
and floristic regions are lacking for tropical forests compared with temperate forests [41] and
grassland [18].

Thailand is recognized as a country with high species richness of both of flora and fauna.
Situated in the center of SEA, the country is at the crossroads of two major bio-geographical
regions, namely the Indochinese and Malaysian regions that are influenced by tropical mon-
soons, and the entire area is included in the Indo-Burma biodiversity hotspots [42]. A long-
term systematic study of the flora of Thailand, initiated in 1970, identified and described
about 14,000 species, of which 30–40% are angiosperm species [43,44]. Forest ecosystems are
classified into 11 forest types [45]. Mixed deciduous and dry deciduous dipterocarp forests are
dominating. Based on long-term botanical research and expert judgment [46], Thailand has
seven floristic regions in Thailand (Figure S1). Meanwhile, the most recent WWF ecoregion
maps show that Thailand contains 15 distinct eco-regions [47].

This research aims to answer three questions: (1) how will tropical tree species in
Thailand spatially respond to projected climate change; (2) how many floristic regions can
be delineated from the species distribution; and (3) how do the floristic regions respond to
projected climate change. The results of this research will significantly support the current
Thai government policy on national biodiversity master plan [48].

2. Methods
2.1. Study Area

Thailand is located in the middle of mainland SEA between latitude 5◦27′ and 20◦27′ N
and longitude 97◦27′ and 105◦37′ E, covering 513,115 km2 (“https://www.countryreports.
org/country/Thailand/geography.htm (accessed on 10 October 2023)”; Figure 1). The to-
pography in the north of the country is composed of high mountains along the borders with
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Myanmar and Lao PDR. The central plain is a lowland area comprised of alluvial deposits;
therefore, it has deep and fertile soils. The geography of eastern Thailand is characterized
by short mountain ranges, while the western region is characterized by high mountains
and steep river valleys (Figure S2). The northeastern section of the country, located on
the Khorat Plateau, has gently rolling low hills and shallow lakes. Plants in this region
experience seasonal water deficit due to the monsoon cycle and sandy soil. Peninsular
Thailand is an extension of the western mountains from the north, with the western coast
more rugged than the eastern coast of the peninsula. The climate of Thailand is tropical
and mainly influenced by two seasonal monsoon systems: the southwest monsoon and
the northeast monsoon. Based on the 1981–2010 climatic data record in Thailand (Thai
Meteorological Department n.d.), the mean annual temperature ranges from 23 ◦C in winter
to 29 ◦C in summer (Figure S3) and average annual rainfall ranges from 1200–1600 mm
(Figure S4). Highest rainfall is observed in the eastern region of the country mainland and
western coast of the Peninsula, due to their location in the windward side.
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The process of defining and mapping floristic regions comprised four main steps:
(1) species selection, (2) acquisition and selection of explanatory environmental variables,
(3) generating of distributions, (4) clustering of floristic or phyto-geographic regions. They
are described as follows:
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2.2. Species Selection

The localities of tree occurrence data were primarily obtained from the systematically
fixed plots ranging from 2.5 km× 2.5 km to 20 km× 20 km implemented by the Department
of National Parks, Wildlife and Plant Conservation [49].

It should be noted that the inventory data were limited in the three southernmost
provinces as the result of security concerns. To minimize the problem of insufficient
presence points data in the southern range limits and along the national borders, the study
area extends 30 km beyond the national boundary. In addition, plant distribution data
obtained from the Global Biodiversity Information Facility (GBIF: “https://www.gbif.
org/ (accessed on 12 February 2022)”, the Botanical Information and Ecology Network
(BIEN: http://bien.nceas.ucsb.edu/bien/ (accessed on 29 March 2022)”), and specimen
data from the Bangkok Forest Herbarium were incorporated in the species distribution
models (SDMs).

To address the sampling bias in species occurrence data resulted from the different sys-
tematically inventory plots [49], we filtered the spatially auto-correlated occurrence records
at 10 km2 using the SDM tool [50] to reduce overfitting in ecological niche models [27] at the
landscape level. These clustered areas of high sample density were not the result ecological
factors, but were a result of the intensive systematically fixed plots of 2.5 km × 2.5 km in
some protected areas. This spatial thinning procedure avoids the spatially auto-correlated
occurrence records [51]. In addition, candidate tree species for distribution modeling were
required to have a minimum of 20 occurrence records in total to be sufficient for generating
species distribution models and testing the model performance [35,52–54].

2.3. Environmental Variables

Environmental variables that directly or indirectly affect the patterns of forest tree distribu-
tion within the landscape were selected and geo-processed to a consistent grid for modeling.
Non-climatic variables include topography, geology, soil properties, climate, and forest type.
Topographic (altitude and slope) and climatic variable were continuous numerical data, while
forest type, soil taxonomy, and geology were categorical data. Topographic variables were
obtained from Shuttle Radar Topography Mission—(SRTM). Geology type was derived from
Thailand’s Mineral Resources Department, while forest type was given by the Thailand Royal
Forest Department (RFD) [10]. Soil properties, including soil organic carbon (g kg−1), soil pH,
sand, silt, and clay fraction (%), bulk density (kg m−3), coarse fragments (%), soil organic carbon
stock (t ha−1), and depth to bedrock (cm), as well as USDA soil taxonomy orders were obtained
from Harmonized world soil database (version 1.2) [55]. The spatial resolution of topography,
soil properties, and climate are 30 s or roughly 927 m, while map scales of forest type and
geology type are 1:25,000 and 1:250,000. All environmental variables were converted to grid of
1 km resolution for species distribution modeling at the national level.

The 19 bioclimatic variables (BIO) developed from monthly rainfall (precipitation) and
monthly temperature represent biologically meaningful characteristics of climate in addition
to mean annual temperature and annual precipitation (Table 1). We obtained the bioclimatic
variables at present (averaged over 30 years 1970–2000 version 2.1) and in 2050 (averaged
over 20 years [2041–2060]) from WorldClim (“https://www.worldclim.org/ (accessed on
5 January 2022)”. Three projected climate scenarios were selected for this analysis includ-
ing very high (SSP5-8.5), high (SSP3-7.0), and intermediate greenhouse gas (GHG) emissions
(SSP2-4.5)—all of which were generated from the Coupled Model Intercomparison Project
Phase 6 (CMIP6) of the World Climate Research Program [17]. A scenario with very low and
low GHG emissions and CO2 emissions declining to net zero around or after 2050, followed by
varying levels of net negative CO2 emissions (SSP1-2.6), is unlikely to occur in in the Mekong
Region [24] and therefore was not chose for this analysis. CMIP6-era models include new and
better representation of physical, chemical and biological processes, as well as higher resolution,
compared to CMIP5 [17]. They also show a higher average climate sensitivity than CMIP5 mod-
els used in the previous reports. The projected climatic data were modeled with the Canadian
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Earth System Model version 5 (CanESM5) [56]. CanESM5 was selected because it exhibits good
performance in the region and well captures the observed annual precipitation cycle [57].

Table 1. Bioclimatic variables derived from the monthly temperature and rainfall values projected for
2050 (CanESM5 GMC).

Code Description Baseline Scenarios Change from Baseline

SSP2-4.5 SSP3-7.0 SSP5-8.5 2000—
SSP2-4.5

2000—
SSP3-7.0

2000—
SSP5-8.5

BIO1 Annual mean temperature 26.1 26.4 27.5 28.8 0.3 1.4 2.7
BIO2 Mean diurnal range 10.6 10.1 9.97 10.2 −0.5 −0.63 −0.4
BIO3 Isothermality 56.7 55.8 56.6 55.2 −0.9 −0.1 −1.5
BIO4 Temperature seasonality 187.5 203.4 200.7 213.1 15.9 13.2 25.6
BIO5 Maximum temperature of warmest month 34.9 37.3 36,1 38.3 2.4 1.2 3.4
BIO6 Minimum temperature of coldest month 15.9 18.7 18.1 19.4 2.8 2.2 3.5
BIO7 Temperature annual range 19.0 18.6 18.0 19.0 −0.4 −1 0
BIO8 Mean temperature of wettest quarter 26.6 28.4 27.8 29.0 1.8 1.2 2.4
BIO9 Mean temperature of driest quarter 23.8 25.8 25.4 26.4 2 1.6 2.6
BIO10 Mean temperature of warmest quarter 28.2 30.5 29.8 31.4 2.3 1.6 3.2
BIO11 Mean temperature of coldest quarter 23.4 25.5 24.9 26.1 2.1 1.5 2.7
BIO12 Annual precipitation 1495.2 1618.8 1530.4 1615.9 123.6 35.2 120.7
BIO13 Precipitation of wettest month 299.7 323.5 305.6 328.7 23.8 5.9 29
BIO14 Precipitation of driest month 10.2 8.34 8.0 8.2 −1.86 −2.2 −2
BIO15 Precipitation seasonality 79.6 85.7 86.6 87.4 6.1 7 7.8
BIO16 Precipitation of wettest quarter 756.8 841.9 802.2 857.4 85.1 45.4 100.6
BIO17 Precipitation of driest quarter 48.8 48.9 41.5 41.9 0.1 −7.3 −6.9
BIO18 Precipitation of warmest quarter 372.0 378.8 390.4 346.8 6.8 18.4 −25.2
BIO19 Precipitation of coldest quarter 120.7 126.1 130.3 124.2 5.4 9.6 3.5

Source: http://www.worldclim.org (accessed on 5 January 2022).

All bioclimatic and topographic variables were evaluated for collinearity using Pear-
son’s correlation analysis to limit highly correlated or colinear variables in the analysis [58].
If any pair of variables had correlation greater than 0.8, one variable (less meaningful) was
removed in the distribution modeling [35].

2.4. Generation of Species Distribution

The maximum entropy method (Maxent) was used to generate species distribution [59]
because it is well suited for presence-only occurrence data. The occurrence data of selected
tree species (>20 records) were sub-divided into two datasets. Seventy-five percent of the
occurrence data were used to generate species distribution models, while the remaining
25% were used as independent data for the performance assessment [60].

We used a default Maxent setting of 10,000 background points [59] to execute Maxent
for 10 replications to avoid sampling errors and to obtain stable patterns. The Maxent
outputs are the continuous probability of the model species, ranging between 0.0–1.0. The
percentage contribution of each environmental variable to species distribution was also
obtained. It is often more practical in conservation and environmental management practice
to transform the continuous probability maps binary presence/absence projections [60].
There are many approaches to determining the threshold to use in producing a binary
range map. In this study, we evaluated five threshold values, namely a maximum training
sensitivity plus specificity, 10 percentile training presence thresholds, equal training sensi-
tivity and specificity, equal test sensitivity and specificity, and maximum test sensitivity
plus specificity [35,38,61]. The presence–absence map that yields the highest accuracy as
evaluated by the confusion matrix was chosen for binary classification. Future distributions
were generated using the projected climatic variables in 2050, while other variables were
treated as stable. In addition, the binary distributions of all 201 species were superimposed
and reclassed into five richness classes in current climate and in all future climate change
scenarios. These classes were ‘none’ (0 species), ‘low richness’ (1–50 species), ‘moder-
ate richness’ (51–100 species), ‘high richness’ (101–150 species), and ‘very high richness’
(151–201 species).

http://www.worldclim.org
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2.5. Clustering Floristic Regions Based on SDMs

Cluster analysis was used to group each individual grid cells’ species composition,
derived from the projected presences–absence maps of the 201 species (current and future
climatic conditions). The projected presence and absence maps of the 201 target species
were grouped using R statistical software (ver 4.1.0) and particularly the ‘terra’ (ver 1.5–21)
and ‘cluster’ (ver 2.1.2).

We used Ward’s method of hierarchical cluster analysis with a flexible beta (β = −0.25)
method and squared Euclidean distance to perform cluster analyses on the projected
present-absence of plant species at the current time and in the future. This method was
chosen to minimize the within-cluster differences and to avoid problems with chaining
of the observations found in the single linkage method. Up to 20 potential clusters were
explored, and the optimum number of clusters (floristic regions) was determined using
agglomeration coefficient [62]. Small coefficients indicate more homogeneous clusters, thus
no further separation. Furthermore, we evaluated the presence of modeled species found
in each cluster group at the current and in the future scenarios to assess change in species
composition (Supplement Materials). The defined clusters were also compared with the
forest-type map [10] and 15 defined WWF eco-regions found in Thailand [47].

3. Results
3.1. Candidate Tree Species for Modeling

Based on the combined systematic inventory data [49], whole distribution data (GBIF,
BIEN and specimen data from the Bangkok Forest Herbarium) and additional surveys,
there were 64,554 records available belonging to 157 families, 679 genera and 2000 species
or 14% of the total described species in Thailand [63]. The dominant families were Ru-
biceae, Fabaceae, Euphobiaceae, Annonaceae, Rutaceae, Lauraceae, Phyllanthaceae, Dipte-
rocarpaceae, and Rutaceae, they had more than 2000 occurrences. High occurrence density
per species was observed for Rutaceae, Lamiaceae, Salicaceae, Pentaphylacaceae, and
Dipterocarpaceae. The most abundant species was Pterocarpus macrocarpus of the Fabaceae
family, for which more than 800 occurrences were recorded, followed by Canarium subu-
latum of the Burseraceae family (700 occurrences), Tectona grandis of the Lamiacea family
(661 occurrences), Xylia xylocarpa var. kerri, Facility Fabaceae (616 occurrences), Shorea
siamensis (559 occurrences), and S. obtusa (544 occurrences) of the Dipterocarpaceae family.
In contrast, 475 species had only one occurrence record e.g., Rinorea hornei, Dendrocnide
stimulans, and Enkleia malaccensis.

Dense occurrence records were found in protected areas, with markedly less concen-
trated occurrence data outside protected areas (Figure 1). Moreover, there were fewer plots
distributed in the northeast and the central of Thailand, due to the survey only having
been conducted in forest areas and remnant forests remaining in these regions. In addition,
few records were observed in the three southernmost provinces due to a lack of inventory
data for security reasons. Based on the pre-established criterion of modeled species having
occurrence data comprising more than 20 records for distribution modeling, 201 species
belonging to 56 families and 134 genera were ultimately selected. Among the total mod-
eled species, 106 species are classified as deciduous species, 72 species are evergreen, and
23 species are semi-deciduous or semi-evergreen.

3.2. Selected Environmental Variables and Their Contributions

The results of the Pearson’s correlation analysis showed that eight bioclimatic variables
were highly correlated (r values > 0.8), including (1) mean diurnal range, (2) isothermality,
(3) temperature seasonality, (4) maximum temperature of warmest month, (5) minimum
temperature of coldest month, (6) precipitation of wettest month, (7) precipitation of driest
month, and Precipitation of driest quarter. Therefore, they were excluded from distribution
modeling. Altitude had a very high correlation with annual mean temperature (−0.96)
but low to moderate correlation with other temperature variables. In addition, it was
negatively and highly correlated (r values > 0.84) with mean temperatures of the wettest,
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driest, warmest, and coldest quarters. Therefore, the remaining 10 bioclimatic variables
(annual mean temperature, mean temperatures of the wettest quarter, mean temperature
of driest quarter, mean temperature of warmest quarter, mean temperature of coldest
quarter, annual precipitation, precipitation of wettest quarter, precipitation of driest quarter,
precipitation of warmest quarter, precipitation of coldest quarter), geology, soil properties,
forest types, and topographic variables were then selected as the input variables in the
Maxent model.

Altitude (16.2%), geology (15.1%), forest type (13.4%), and slope (12.4%) were identi-
fied as the strongest variables for the selected plant distribution at the landscape level. In
addition, among the 10 selected bioclimatic variables (BIO), precipitation of wettest quarter
(BIO16: 4.4%), precipitation of coldest quarter (BIO19: 8.3%), mean temperature of the
coldest quarter bio11 (2%), the precipitation of driest quarter (BIO17: 2.5%) were moderate
contributors. The remaining bioclimatic variables had comparatively low contributions
(Figure 2). However, the relative contribution of these variables differed widely among the
selected species. For example, the contribution of altitude for Castanopsis tribuloides was
65%, but it contributed 0% for 30 species or about 15% of all target species.

Diversity 2023, 15, x FOR PEER REVIEW 7 of 17 
 

 

201 species belonging to 56 families and 134 genera were ultimately selected. Among the 
total modeled species, 106 species are classified as deciduous species, 72 species are ever-
green, and 23 species are semi-deciduous or semi-evergreen.  

3.2. Selected Environmental Variables and Their Contributions 
The results of the Pearson’s correlation analysis showed that eight bioclimatic varia-

bles were highly correlated (r values > 0.8), including (1) mean diurnal range, (2) isother-
mality, (3) temperature seasonality, (4) maximum temperature of warmest month, (5) min-
imum temperature of coldest month, (6) precipitation of wettest month, (7) precipitation 
of driest month, and Precipitation of driest quarter. Therefore, they were excluded from 
distribution modeling. Altitude had a very high correlation with annual mean tempera-
ture (−0.96) but low to moderate correlation with other temperature variables. In addition, 
it was negatively and highly correlated (r values > 0.84) with mean temperatures of the 
wettest, driest, warmest, and coldest quarters. Therefore, the remaining 10 bioclimatic var-
iables (annual mean temperature, mean temperatures of the wettest quarter, mean tem-
perature of driest quarter, mean temperature of warmest quarter, mean temperature of 
coldest quarter, annual precipitation, precipitation of wettest quarter, precipitation of dri-
est quarter, precipitation of warmest quarter, precipitation of coldest quarter), geology, 
soil properties, forest types, and topographic variables were then selected as the input 
variables in the Maxent model.  

Altitude (16.2%), geology (15.1%), forest type (13.4%), and slope (12.4%) were identi-
fied as the strongest variables for the selected plant distribution at the landscape level. In 
addition, among the 10 selected bioclimatic variables (BIO), precipitation of wettest quar-
ter (BIO16: 4.4%), precipitation of coldest quarter (BIO19: 8.3%), mean temperature of the 
coldest quarter bio11 (2%), the precipitation of driest quarter (BIO17: 2.5%) were moderate 
contributors. The remaining bioclimatic variables had comparatively low contributions 
(Figure 2). However, the relative contribution of these variables differed widely among 
the selected species. For example, the contribution of altitude for Castanopsis tribuloides 
was 65%, but it contributed 0% for 30 species or about 15% of all target species.  

 
Figure 2. Percentage of relative contributions of the environmental variables to the Maxent model. 
Notes: bio1 = annual mean temperature, bio2 = mean diurnal range, bio9 = mean temperature of 
driest quarter, bio10 = mean temperature of warmest quarter, bio11 = mean temperature of coldest 

Figure 2. Percentage of relative contributions of the environmental variables to the Maxent model.
Notes: bio1 = annual mean temperature, bio2 = mean diurnal range, bio9 = mean temperature of driest
quarter, bio10 = mean temperature of warmest quarter, bio11 = mean temperature of coldest quarter,
bio12 = annual precipitation, bio16 = precipitation of wettest quarter, bio17 = precipitation of driest
quarter, bio18 = precipitation of warmest quarter, bio19 = precipitation of coldest quarter, bdt = soil
depth (cm), bld = bulk density (kg m−3), crf = coarse fragments, ocs = soil organic carbon (g kg−1),
pH = soil pH, snd = percentage of sand particle, slt = percentage of silt particle, cly = percentage of
clay particle, dem = altitude, slop = percent slope, geo, usda = USDA soil taxonomy suborders.

The Maxent models derived from the training dataset showed good to excellent
performance for defining the distributions of all selected plant species. The AUC values
varied from 0.70 (Lophopetalum duperreanum) to 0.98 (Monoon membranifolium) with the
average value of 0.90. The continuous logistic values derived from the Maxent model
were reclassified into a binary prediction using the five chosen threshold values based on
the model performance. The results show that the 10-percentile training presence (10P)
generated the highest accuracy for 93 species, or 46% of total species used, followed by
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equal training sensitivity and specificity (45 species), maximum training sensitivity plus
specificity (35 species), equal test sensitivity and specificity (20 species), and the maximum
test sensitivity and specificity (8 species).

3.3. Projected Species Ranges

The results of Maxent models for 201 plant species indicated that the maximum extent
of occurrence at current is projected for Dipterocarpus obtusifolius and Lophopetalum duperre-
anum, covering 34% of the country area (Figure S5). In addition, eight species have a pro-
jected geographical extent greater than 20% of the study area. These species are Gluta glabra,
Artocarpus nitidus, Shorea roxburghii, Magnolia baillonii, Chukrasia tabularis, Wrightia pubescens,
and Crypteronia paniculate – all of which are classified as common species [63]. In contrast,
37 species have suitable habitats in less than 5% of the study area and the minimum range is
projected for Ardisia sanguinolenta var. sanguinolenta, covering less than 1%.

3.4. Changes in Suitable Range for the Modeled Species

Under SSP2-4.5 and SSP3-7.0 scenarios, 85 species or 42% of modeled plant species
are projected to decline in the extent of their current suitable habitats. However, only a
few species would lose more than 20% of their current habitats. For example, a significant
decline is suitable range is projected for Garcinia cowa in which more than 80% of its habitat
is projected to become unsuitable. In addition, about 100 species or 41% are projected
to gain suitable range, while about 10% of all target species would have similar extents.
The model results indicated that 18 species would gain more than 30% of their current
distribution range (e.g., Careya arborea, Careya arborea, Helicia nilagirica) under SSP3-7.0 and
increase to 20 species under SSP2-4.5.

About 56% of modeled species (114 species) are projected to lose all currently suitable
range under SSP5-8.5 scenario in 2050. Additionally the number of the species that were
projected to gain additional suitable habitats under SSP5-8.5 scenario is also the lowest
among scenarios – 86 species as compared to f102 species under SSP3-7.0 and 110 species
under SSP2-4.5 in 2050.The areas with species richness are at the current and in the future
under projected climate change show similar patterns. They are concentrated in the Central
(Dong Phayayen-Khao Yai Complex: DYKY), West (Western Forest Complex: WEFCOM),
North (Phu Kha-Mae Chaem Complex: PKMC), and Northeast (Phu Khieo-Nam Nao
Complex: PKNN) (Figure 3). The maximum number of species in a grid cell increases from
151 species at the current to 162 species under SSP3-7.0. However, the areas within high
(100–150 species) and very high species richness (151–200 species) are likely to increase from
3.1% of the country land area to 4.3%, 4.0% and 4.6% under SSP2-4.5, SSP3-7.0 and SSP5-8.5,
respectively. In addition, high concentration areas in the north (Salawin Complex: SWC) are
likely to shift from the west toward the east. Lastly, the areas projected as non-suitable for
all target species will increase from 21% at the current to 75% under the SSP5-8.5 scenario.

3.5. Potential Floristic Regions

Based on the optimal number of cluster groups using the agglomeration coefficient,
floristic regions in Thailand can be divided into 12 regions, excluding agricultural and
built-up areas (identified as cluster 1). The geographical distributions of the 12 regions
are presented in Figure 4. Cluster 1 is simple, defined as non-forest area (agricultural and
built-up areas) associated with remnant forests, covering about two-third of the study area
or 78% (Table 2) and widespread across the country.

Cluster 2 is recognized as seasonal evergreen forest or dry evergreen forest, covering
approximately 10% of the country land area. It is dominant in the west, north of Thailand.
Small remnants are projected along the Cambodian borders. Floristic regions in the northern
and northeastern regions are more complex due to heterogeneous topographic features and
climatic conditions. Three floristic regions or clusters were projected, including clusters 3, 4,
and 5. Cluster 3 is scattered throughout the mountain forest of the upper northern Thailand
(SWC), covering 4.5%. It is associated with mixed deciduous forest, especially teak (Tectona
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grandis). Cluster 4 is ranked third (approximately 7%) after cluster 0 and combined clusters
1 and 3. It is widespread in western and in the northern Thailand (Tenasserim range or
Western Forest Complex). This cluster is mainly associated and recognized as moist dry
evergreen forest. Cluster 5 is scattered in northern Thailand along the border with Laos
(Phu Kha-Mae Chaem) and in northeast Thailand. It is influenced by the Indo-Chinese
flora. Typical vegetation types include deciduous species found in dry dipterocarp forest
and partially lower montane forest such as Gmelina arborea, Dolichandrone serrulata, Shorea
gratissima, Pometia pinnata and Canarium denticulatum, where Pinus mekusii is detected at
higher elevations.
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Peninsular Thailand is split into two distinct floristic regions (clusters 7 and 12).
Cluster 7 is recognized as Peninsular Wet Seasonal Evergreen Dipterocarp Forest [45],
found in the norther part of the peninsular and eastern Thailand. The remaining area of
cluster 7 is less than 1% due to huge conversion to rubber and oil palm plantation [10].
Dominant species include Anneslea fragrans, Parkia speciosa, Dipterocarpus baudii, and Hopea
pierrei. Cluster 12 is restricted in the southern part below Isthmus of Kra at 10 degree north
latitude, covering 1.87%. Dominant species found in cluster 12 include Parashorea stellate,
Dipterocarpus kerrii, Parkia sumatrana subsp. streptocarpa, and Shorea gratissima.
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Table 2. Extent and changes of floristic regions in the current and in the future (2050).

Extent at
Present SSP2-4.5 in 2050 SSP3-7.0 in 2050 SSP5-8.5 in 2050 % Found in Protected Areas

Cluster Total (%) Total
(%)

Change
(%)

Total
(%)

Change
(%)

Total
(%)

Change
(%) 2000 SSP2-45 SSP3-70 SSP5-85

0 1 67.61 67.61 0.00 67.61 0.00 67.61 0.00 4.41 4.41 4.41 4.41
1/3 2 10.42 10.15 −2.63 10.13 −2.82 10.08 −3.26 49.84 49.16 50.97 47.47

2 4.50 4.61 2.57 4.55 1.30 4.16 −7.51 72.15 71.90 68.72 72.38
4 6.98 6.45 −7.69 6.82 −2.39 6.83 −2.27 55.07 57.03 54.30 57.98
5 1.15 1.37 19.05 1.44 25.40 1.33 16.03 77.01 79.86 75.43 96.67
6 1.85 2.08 12.18 1.67 −9.70 1.81 −2.07 42.31 40.01 41.97 36.92
7 0.88 0.79 −11.20 0.51 −42.40 0.78 −11.81 96.96 95.40 92.87 92.09
8 0.89 0.79 −11.60 0.99 11.01 1.08 21.74 99.22 102.34 95.56 101.62
9 0.54 0.43 −21.40 0.62 14.19 0.54 0.37 90.26 94.03 89.96 92.42

10 1.32 1.42 7.24 1.56 18.64 1.69 28.15 96.23 92.79 91.66 88.83
11 1.98 2.25 13.59 1.96 −1.14 1.94 −2.06 75.94 71.34 74.53 72.69
12 1.87 2.07 10.95 2.14 14.28 2.14 14.37 87.21 87.23 90.64 87.60

100.00 100.00 100.00 100.00

Note: 1 Non-nature areas. 2 Clusters 1 and 3 were merged.

Besides cluster 5, northeast Thailand also comprises additional three main floristic
regions or clusters (9, 10 and 11). Cluster 9 is distinctly and entirely located in Khao Yai
National Park, which is a part of Dong Phrayayen-Khao Yai. It covers approximately 0.9%
of the country land area. This floristic region is influenced by the Central and Southern
Indo-Chinese flora and dominated by members of the Dipterocarpaceae family such as
Dipterocarpus obtusifolius, D. alatus, D.tuberculatus, Shorea obtusa, and S. siamensis. Cluster 10
is widespread in the Korat plateau, especially in the Dong Phrayayen-Khao Yai, which
covers 1.3% of the country area. It contains 123 species, which is the highest among
the 12 clusters (Figure 3). Cluster 11 is mainly distributed in the northeast and only
small remnants remain. It covers an area of 1.9% of the country. The remaining clusters
encompass small percentages of the country and are scattered in the northeast and north
regions of Thailand.

The remaining clusters encompass small percentages of the country and scattered in
the northeast and north of Thailand. For example, cluster 8 is scattered in the mountain
forest of the upper northern Thailand. This cluster is dominated by species found in
mountain temperate forest associated with pine forest, which are influenced by Indo-
Burmese flora [46].

Among the 201 species, Shorea roxburghii and Afzelia xylocarpa are found most of the
defined cluster, except clusters 1 and 3, and cluster 11, respectively. In contrast, 17 species
such as Mallotus philippensis, Sterculia pexa, Careya arborea, S. gratissima, Callicarpa arborea,
Quercus brandisiana are recognized as indicator species for each cluster. This is due to them
being present in only one designed cluster. For example, Mallotus philippensis only present
in cluster 1, while Sterculia pexa is only projected in cluster 10.

3.6. Changes in Habitat of Individual Potential Floristic Regions

The future climatic conditions would make changes in plant composition and alter the
extent of floristic regions (clusters) due to gaining or losing extent of suitable range. The
projected SSP2-4.5 climate scenario favors floristic regions 2, 5, 6, 10, 11, and 12, especially
the floristic regions in which the extent of occurrences would increase from 2.57% (floristic
region 2) to 19% for floristic region 5. However, substantial losses are projected for the
floristic regions 7 (−11.20), 8 (−11.60%), and 9 (−21.40%) (Table 2, Figure S6). The patterns
of geographical change under SSP3-7.0 and SSP5-8.5 are similar, but SSP2-4.5 favors floristic
region 5, while SSP5-85 supports floristic regions 8 and 10. Approximately, 42% of floristic
region 7 is projected to be transferred to other regions under the SSP2-4.5. The Sankey
transition plots (Figure S6) shows that about 50% of floristic region 9 can remain in the
same area, the rest will be transferred to floristic regions 5 and 10. Meanwhile, about 60%
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of floristic regions 6, 7, and 8 can persist in the same locations. Under SSP3-7.0, about
50% of current extents of floristic regions 6 and 7 will be transferred to other floristic
regions. The projected climatic data on SSP5-8.5 indicate similar transformation patterns of
floristic regions.

4. Discussion
4.1. How Do Tropical Tree Species in Thailand Spatially Response to Future Climate Change?

To our knowledge, this is the first attempt to evaluate the climate change impact using
high resolution of CMIP6 dataset [17] on plant species distributions and floristic regions
in the Mekong region. We were able to produce distribution models for 201 terrestrial
plant species under three scenarios of change out of the over 2000 species with occurrence
records in the database. Scenarios of change included very high (SSP5-8.5), high (SSP3-7.0),
and intermediate GHG emissions (SSP2-4.5) to cover a range of possible future climate
trajectories in the region.

The vulnerability of tropical tree species to the three future climate data projections,
varies among tree species. The modeled results showed that 89% of the modeled deciduous
species, 61% of modeled evergreen species, and 74% of the modeled semi-deciduous or semi-
evergreen species would experience >30% change in distribution relative to their current
range. This result is consistent with previous studies conducted in northern Thailand using
CMIP3 era projections including the HadCM3A2 scenario [38] and in Peninsular Thailand
using the HadCM3 B2a scenario [35]. Under both scenarios, the mean annual temperature
is projected to increase by more than 2 ◦C by 2050 [64]. Greater impacts in terms of loss
of suitable habitats and shifts in distribution were projected under the SSP5-8.5 scenario,
where annual mean temperature would increase 2.7 ◦C, the maximum temperature of the
warmest month and the minimum temperature of the coldest month would increase by
3.4 ◦C and 3.5 ◦C by 2050, respectively (Table 1). This projected temperature increase is
far in excess of the Paris Agreement goal of 1.5 ◦C [65] and is beyond the tipping point at
which many plant species are able to adapt and would have substantial impacts on tropical
plant species and/or vegetation communities.

Some plant species may be more resilient to projected climate change due to plasticity
in facing recurrent drought conditions and then enhanced growth rates, and recovery when
favorable conditions return. However, many of the species, in particular, Dipterocarps,
which are a dominant family of species modeled in this study (10% of all species) are com-
paratively recalcitrant and are not expected to demonstrate plasticity to warming/drought
conditions [66–69].

4.2. How Many Optimum Floristic Regions Can Be Delineated in Thailand Based on the Current
Species Distribution?

Seven floristic regions in Thailand were previously defined using administration
boundary [46]. These regions include the (1) Northern Region, (2) North-Eastern Region,
(3) Eastern Region, (4) South-Western Region, (5) Central Region, (6) South-Eastern Region,
and (7) Peninsular Region [46]. In addition, WWF Global 200 eco-regions recently defined
15 eco-regions in Thailand based on biomes and biogeographic realms [47,70].

Based on quantitative analysis and projected species distribution modeling [59] of
201 species, we can define 12 potential floristic regions. Our results are a data-driven
alternative to the previous phyto-geographic regions, which were delineated by using the
administration boundary and expert judgments [46]. All defined clusters are related to
terrestrial floristic region, with freshwater and estuary/marine floristic regions lacking
sufficient observation data to model distributions in this study [44,49]. Moreover, there
may be gaps in observations/sampling density resulting from limited accessibility to the
remote areas along the national boundaries due to rugged terrain and security issues.
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4.3. Which Floristic Regions Are Vulnerable to Climate Change?

More than 80% of the distribution of floristic regions 1, 2, 4, 10, and 12 would remain
stable under the three scenarios of the CMIP6 dataset used in this study. Floristic regions 5,
8, 10, and 12 would benefit from increased rainfall (SSP3-7.0 and SSP5-8.5), especially in
the west parts of the country. In contrast, floristic regions 6, 7, and 9 are projected to lose
more than 40% of their current distribution. Although average annual precipitation is
projected to increase by 120 mm (SSP2-4.5 and SPP5-8.5) and 35 mm (SSP3-7.0) (Table 1),
the rainfall increases are predominantly limited to dry months and are concurrent with
projected increases in temperature. This seasonal timing of the projected changes in climate
will have negative impacts on evergreen species associated with floristic regions 7 and 9
found in the Peninsular and the Dong Phayayen-Khao Yai Complex, respectively. The
centroid of clusters 3, 5, 10, and 11 (dry evergreen forests) are projected to move to lower
altitudes, potentially responding to greater moisture content during the dry months. In
contrast, the remaining clusters associated with deciduous forests are projected to move
towards higher altitudes and compete with or supplant evergreen floristic regions. These
results are consistent with previous studies in the region, which have shown that extremely
hot and moist, extremely hot and xeric, and extremely hot and mesic climate classifications
would expand in the Lower Mekong Sub-region [24] and in Yunnan, China [28], and the
expansion of forests and treeless vegetation in tropical and subtropical Americas [28], while
there is a substantial decrease predicted in the warm temperate/mesic bioclimatic zone.

4.4. Conservation Implications

A collection of government policies at national [48], regional [13], and international [71]
levels enhance efforts to conserve biodiversity and protect vulnerable areas affected by
underlying climate and non-climate drivers. For example, the Target 3 of the Kunming-
Montreal Global Biodiversity Framework (GBF) agreed on at the 15th COP to the UN
Convention on Biological Diversity [72] called members to increase protected areas from the
17% of the planet mentioned in the Aichi target to at least 30% of the planet by 2030 through
a well-connected and effective system of protected areas and through other effective land-
based conservation measures [70].

The existing protected areas in Thailand, such as national parks and wildlife sanctuar-
ies, cover more than 21% of the country land area, which is greater than the 17% defined in
the CBD Aichi target 11 by 2020. However, the current protected areas are largely located at
higher elevations and do not well represent all natural ecosystems of Thailand. In addition,
the protected area network is also highly fragmented [70]. Presently, more than 90% of
floristic regions 7, 8, 9, and 10 are located inside protected areas. However, the projections
of climate change (SSP5-85) decrease the representation of floristic region 10. The model
results of this study also suggest that a half of floristic region 4 and less than a half of
regions 6, 1, and 3 are located inside protected areas, and their representations in the future
under all scenarios are projected to decline (Table 2 and Figure S7). This is due to their shift
distributions to more suitable locations in the future, while the boundaries of protected
areas are static.

The Thai Government aims to increase protected area coverage to 25% and potentially
may consider expanding to meet the proposed area target of 30% through a well-connected
and effective system of protected areas and through other effective land-based conservation
measures [70] by 2030 as mentioned in the CBD’s Kunming-Montreal GBF targets (www.
cbd.int/sp/targets/). It is strongly recommended that future protected area expansion
should address unrepresented ecoregions and the climatically vulnerable floristic regions
suggested by this study.

5. Conclusions

This research evaluates the impacts of three scenarios of climate forcing and socio-
economic development (SSP2-4.5, SSP3-7.0 and SSP5-8.5) generated from the CMIP6. Based
on the occurrence data gathered from systematic forest inventory plots and global database,

www.cbd.int/sp/targets/
www.cbd.int/sp/targets/
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201 candidate tree species were selected for distribution modeling. The results of vegetation
community cluster analysis revealed 12 potential floristic regions under the current and
future scenarios of climate chage, excluding non-nature areas, covering 67% of the country
area. Floristic regions in Peninsular Thailand, and central, western, and eastern Thailand are
quite distinct, but they are complex in the north because of heterogenous topography and
variation of climatic conditions. The cluster analysis of the projected species distributions
for the year 2050 show substantial changes. Five floristic regions (1, 2, 4, 10 and 12) would
maintain their distributions in the same areas while the remaining regions would shift
from the current more than 40% of their current extents. In addition, the composition
of indicator species for most floristic regions are projected to change from the current
conditions. At present, floristic regions 5–10 account for less than 2% of the country area
for each region. In addition, approximately 50% of floristic regions 4 and 6 are located
inside protected areas, and they are likely to be less represented in the future. Therefore,
the expansion of Thailand’s protected areas to achieve the Kunming-Montreal Global
Biodiversity Framework by 2030 should address the unrepresented species and floristic
regions, which are vulnerable to climate change.
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