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Abstract: One of the most abundant fish species, Rutilus rutilus, is widely distributed in Lithuania
and its potential to adapt to environmental changes attracted our interest. Unfortunately, it is not
properly understood how anthropogenic activities can affect the genetic diversity within this species.
We studied three populations of roaches (samples collected in the Neris and Žeimena rivers, and Lake
Drūkšiai) over a period of five years (from 2017 to 2022) to determine genetic diversity using mtDNA
D-loop and ATP6 genetic markers. Genetic diversity parameters, AMOVA analysis, haplotype
network, and PCoA analysis revealed a greater genetic variability in roach samples collected in 2017,
and the greatest differences were noticed in the population inhabiting Lake Drūkšiai, as compared
with other samples studied over a five-year period. Differences in genetic diversity detected after
a five-year period led us to the assumption that roach populations may be related to the effects of
natural (changing climatic conditions) and anthropogenic (operating nuclear power plant) origin.
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1. Introduction

The genetic variation and population genetic structure of species can be affected by
many factors, such as climate change, natural barriers, migration behavior, or human
activities [1]. For instance, the fragmentation of river networks by dams induces changes in
fish communities, such as the loss of genetic diversity within populations, differentiation
among populations [2], and reduction of the opportunity for migration [3]. Over the long
term, anthropogenic structures have been shown to have a high impact on gene flow
and genetic drift [4]. The fragmentation may isolate populations, reduce gene flow, and
decrease genetic diversity through the processes of genetic drift, suggesting that there
are strong anthropogenic influences on population genetic structure [5]. Similarly, other
anthropogenic activities, such as rising temperatures of water, can change the freshwater
ecosystem [6]. Power plants and industrial factories are major sources that increase water
temperature. Cool water is withdrawn from streams, used for cooling generators or
other machinery, and then returned to the stream at higher temperatures [7]. In general,
water from cooling systems increases water temperature from 8 to 12 ◦C, which is enough
to potentially impact aquatic life [8]. Water temperature has many direct and indirect
effects on aquatic organisms, including physiological heat stress, water column stability,
dissolved oxygen concentrations, and nutrient dynamics [9]. The response of organisms to
anthropogenic impacts can reduce biological processes such as growth, development, and
reproduction [10], and they commonly result in changing genetic variation [11]. However,
previous reports showed that some natural populations can rapidly adapt to environmental
changes [12–15].

Fish are among the taxonomic groups of aquatic organisms that are most vulnerable to
hydrologic alteration because they need larger water volumes, have lower abundance, and
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have a longer generation time than macroinvertebrates or algae [16]. Rutilus rutilus, also
known as the common roach, belongs to the Cyprinidae family [17]. They are widely dis-
tributed throughout Europe [18] and can be found in various Lithuanian water bodies [19].
Their spread is dependent on hydrological changes such as weirs or dams that create
large extensions of habitat [20]. Roaches are adapted to various types of habitats, from
freshwater ponds smaller than 0.01 km2 to large water areas such as the Baltic Sea coast.
R. rutilus tolerates organic pollution and is one of the last species to disappear from polluted
waters [21]. They can survive in temperatures from close to freezing 4 ◦C (39 ◦F) up to
around 31 ◦C (88 ◦F) [20]. Due to its low economic value, this species does not receive much
attention. Therefore, little is known about their genetic diversity and how they respond
to anthropogenic impacts. Only a few studies have investigated the genetic diversity in
R. rutilus using AFLP [22], microsatellite [23] markers, or the mitochondrial cytochrome b
gene fragment [24].

In this study, we used two mitochondrial regions including D-loop and ATP6 gene
fragment to investigate the genetic diversity and differentiation among three geographically
separated populations of R. rutilus over a five-year period. Our attention was drawn to
Drūkšiai Lake, the largest freshwater lake in Lithuania, located in the northeastern part
of Lithuania and partly in the Vitebsk Voblast in Belarus. Water from the lake was used
to cool the reactors of the Ignalina Nuclear Power Plant (NPP) [25]. Research into genetic
diversity in the roaches inhabiting Lake Drūkšiai and other water bodies distributed in the
same geographic region of Lithuania—focusing on the changes in the genetic structure of
the population of this fish species over a five-year period dependent on the anthropogenic
impact or climatic changes—was the main goal of this study aimed at establishing the basis
for future genetic monitoring of selected fish species.

2. Materials and Methods
2.1. Sampling, DNA Extraction

A total of 84 individuals of R. rutilus (average 51.6 ± 6.7 g) were collected from
3 different locations in Lithuania (Figure 1) using the appropriate permit issued by the
State Fish Monitoring Program. All fish specimens were caught by net and transferred to
the Laboratory of Molecular Ecology, Nature Research Centre (Vilnius, Lithuania). Fish
age (average 4 ± 1 years) was determined from scales [26]. All fish specimens (Table 1)
were stored at −20 ◦C prior to DNA extraction. Total genomic DNA was extracted from
frozen muscle tissues following the universal and rapid salt-extraction method [27]. The
quality and quantity of genomic DNA extracted were assessed using the “NanoPhotometer
P330” (IMPLEN, Munich, Germany). Total DNA obtained was analyzed on 1.5% agarose
gel in 1X Tris-acetate-EDTA (TAE) buffer using Thermo Scientific Gene-Ruler DNA ladder
(Thermo Fisher Scientific, Vilnius, Lithuania) and visualized by ethidium bromide staining.
DNA extracts were frozen at −20 ◦C until further use.

Table 1. Sampling information of R. rutilus collected from three different locations in Lithuania.

Sampling Locations Collection Date Population Code Number of Samples Location

Lake Drūkšiai 2017 D17 19 55◦38′45.7′′ N
26◦35′53.3′′ E2022 D22 15

Neris River 2017 N17 11 54◦57′24.8′′ N
23◦55′41.9′′ E2022 N22 12

Žeimena River 2017 Z17 12 55◦14′26.6′′ N
25◦58′48.3′′ E2022 Z22 15
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Figure 1. Drainage basins of the main rivers in Lithuania. Different river basins are highlighted in 
different shades. The locations of roach samples collected are represented by dots: the Neris River—
1, Žeimena River—2, and Lake Drūkšiai—3. 
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mocycler. The amplified products were analyzed by electrophoresis in 1.5% agarose gel 
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ing. The PCR products were purified with exonuclease I and FastAP Thermosensitive Al-
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quenced using 3500 Genetic Analyser (Applied Biosystems, Waltham, MA, USA). 
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Figure 1. Drainage basins of the main rivers in Lithuania. Different river basins are highlighted in
different shades. The locations of roach samples collected are represented by dots: the Neris River—1,
Žeimena River—2, and Lake Drūkšiai—3.

2.2. PCR Conditions and Sequencing

Amplifications were performed with the help of the following polymerase chain reac-
tions (PCRs) protocol presented in Table S1. PCR was performed in 10 µL of final solution
volume containing 2 µL of DNA (50 ng/µL), 1 µL of forward and 1 µL of reverse primer
(10 µM), 5 µL of DreamTaq DNA polymerase mix (Thermo Fisher Scientific Baltics, Vilnius,
Lithuania), and 1 µL of nuclease-free water in an Eppendorf Mastercycler thermocycler.
The amplified products were analyzed by electrophoresis in 1.5% agarose gel in 1X Tris-
acetate-EDTA (TAE) buffer using a Thermo Scientific Gene-Ruler DNA ladder (Thermo
Fisher Scientific, Vilnius, Lithuania) and visualized by ethidium bromide staining. The
PCR products were purified with exonuclease I and FastAP Thermosensitive Alkaline
Phosphatase (Thermo Fisher Scientific Baltics, Vilnius, Lithuania) and then sequenced
using 3500 Genetic Analyser (Applied Biosystems, Waltham, MA, USA).

2.3. Molecular Data Analysis

Sequenced mtDNA fragments were aligned using the MUSCLE [28] option in the
MEGA-X program [29]. The number of haplotypes (h), unique haplotypes (h’), haplotype
diversity (Hd), nucleotide diversity (π), the average number of haplotype differences (K),
and variable sites (S) were calculated by means of DnaSP 4.2 software [30] based on the
mtDNA D-loop, ATP6 partial gene, and ATP6-D-loop sequences. The median-joining haplo-
type networks were constructed using Network 4.6 software [31]. The analysis of molecular
variance (AMOVA), population differentiation (PhiPT) assessed with 1000 permutations,
and principal coordinates analysis (PCoA) of genetic variation were performed using
GenAlEx software (Ver. 6.50) [32]. Fu’s Fs [33] and Tajima’s D [34] neutrality tests were per-
formed with the help of Arlequin v3.5 software [35]. Statistical significance was calculated
by performing 1000 random permutations.
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3. Results
3.1. Sequence Variation and Genetic Diversity

A total of 84 R. rutilus specimens, collected from three different locations in 2017 and
in 2022, were successfully sequenced determining 466 bp of the mtDNA partial D-loop
sequence and 460 bp of the ATP6 gene fragment. The highest values of h, h’, S, π, and
K parameters were observed in the D17 population (h = 10, h’ = 6, S = 8; Pi = 0.0038,
K = 1.8011), whereas the lowest ones were detected in Z22 population (h = 4, h’ = 2, S = 6;
Hd = 0.4416, π =0.0010, K = 0.4833) (Table 2). For the ATP6 partial gene sequences, the
results of the genetic diversity showed a lower haplotype diversity and nucleotide diversity
(Hd = 0.3207; π = 0.0008) as compared with D-loop sequences (Hd = 0.7938; π = 0.0033).
The average number of haplotype differences was lowest in Z17 (K = 0.1666) and highest
in N17 (K = 0.5090). The highest number of unique haplotypes was detected in the D17
population (h’ = 4), whereas only one unique haplotype was found in the N17, Z17, and Z22
populations. By combining sequences of the ATP6 partial gene and the D-loop region, most
populations exhibited a relatively high haplotype diversity (0.6476–0.9142) due to the large
number of unique haplotypes. However, nucleotide diversity was relatively low, ranging
from 0.0011 in the Z22 population to 0.0024 in the D17 and Z17 populations. Overall, the
results showed a decrease in values of genetic diversity over a five-year period in each
population studied.

Table 2. Genetic diversity and neutrality test for R. rutilus by sampling localities, years, and markers.

Population
Code h h’ Hd S π K Neutrality Test

Tajima’s D Fu’s Fs

D-loop

D17 10 6 0.8245 8 0.0038 1.8011 −0.7288 −5.3827 **
D22 7 4 0.8761 4 0.0025 1.6190 0.8942 −2.5570 *
N17 7 4 0.8727 6 0.0033 1.5636 −0.9370 −3.7031 **
N22 6 2 0.6818 7 0.0030 1.4090 −1.5344 −2.2953 *
Z17 4 2 0.7424 4 0.0027 1.2575 −0.1778 −0.1272
Z22 4 2 0.4667 3 0.0011 0.5142 −1.3165 −1.7972 *
Total 26 20 0.7938 14 0.0033 1.5140 −0.6334 −2.6438

ATP6

D17 5 4 0.3859 4 0.0009 0.4210 −1.8612 * −3.5705 *
D22 2 0 0.3428 1 0.0007 0.3428 0.2350 0.5966
N17 3 1 0.4727 2 0.0011 0.5090 −0.7781 −0.6587
N22 2 0 0.3030 1 0.0006 0.3030 −0.1949 0.2973
Z17 2 1 0.1666 1 0.0003 0.1666 −1.1405 −0.4756
Z22 3 1 0.2571 2 0.0005 0.2666 −1.4905 * −1.5463 *
Total 9 7 0.3207 8 0.0008 0.3445 −0.8717 −0.8928 *

ATP6-D-loop

D17 12 8 0.8713 12 0.0024 2.2222 −1.2836 −7.4378 **
D22 8 6 0.9142 5 0.0016 1.9619 0.8148 −3.1514 *
N17 7 4 0.8727 7 0.0019 1.7818 −1.0325 −3.2539 *
N22 6 2 0.8181 5 0.0013 1.2424 −0.9201 −2.6663 **
Z17 7 6 0.9090 7 0.0024 2.2727 −0.0763 −2.1626
Z22 6 3 0.6476 7 0.0011 1.0476 −1.8487 * −2.6661 *
Total 35 29 0.9036 26 0.0022 2.0981 −0.7244 −3.5564 *

h = number of haplotypes; h’ = number of unique haplotypes; Hd = haplotype diversity; π = nucleotide diversity;
K = average number of haplotype differences; S = variable sites. * p < 0.05; ** p < 0.01.

Based on D-loop sequences, the neutrality test showed mostly negative and non-
significant values of the Tajima’s D test (D = −0.6334, p > 0.1; Table 3), and significantly
negative values of Fu’s Fs test were obtained in the D17, D22, N17, N22, and Z22 popu-
lations. Similarly, negative values of neutrality tests were obtained in most populations
using ATP6 partial gene sequences. Significant values of Tajima’s D and Fu’s Fs tests
were detected in the D17 (Tajima’s D = −1.8612, Fu’s Fs = −3.5705, p < 0.05) and Z22
(Tajima’s D = −1.4905, Fu’s Fs = −1.5463, p < 0.05) populations, suggesting the effects of ei-
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ther positive selection or population expansion in D17 and Z22. Based on the concatenated
ATP6 partial gene and D-loop region sequences, non-significant values of Tajima’s D and
significantly negative values of Fu’s Fs were obtained for most populations studied, indi-
cating a departure from neutrality. Additionally, both neutrality tests showed significantly
negative values in Z22 (Tajima’s D = −1.8487, Fu’s Fs = −2.6661, p < 0.05), suggesting the
largest population expansion.

Table 3. Results of AMOVA using mtDNA D-loop, ATP6 partial gene, and ATP6-D-loop sequences
for populations of R. rutilus.

Sequence Source of Variation d.f. Sum of Squares Percentage of
Variance, % PhiPT

D-loop
Whole Among populations 5 13.681 18 0.177 ***

Within populations 78 53.629 82
Total 83 67.310 100

2017-year group Among populations 2 6.126 17 0.174 ***
Within populations 39 30.945 83
Total 41 37.071 100

2022-year group Among populations 2 3.531 13 0.128 ***
Within populations 39 22.683 87
Total 41 26.214 100

ATP6
Whole Among populations 5 1.113 2 0.022

Within populations 78 13.185 98
Total 83 14.298 100

2017-year group Among populations 2 0.510 3 0.027
Within populations 39 7.252 97
Total 41 7.762 100

2022-year group Among populations 2 0.186 0 −0.029
Within populations 39 5.933 100
Total 41 6.119 100

ATP6-D-loop
Whole Among populations 5 17.762 18 0.177 ***

Within populations 78 69.309 82
Total 83 87.071 100

2017-year group Among populations 2 8.615 18 0.184 ***
Within populations 39 41.409 82
Total 41 50.024 100

2022-year group Among populations 2 3.862 11 0.109 ***
Within populations 39 27.900 89
Total 41 31.762 100

d.f. = degrees of freedom; *** p < 0.001.

3.2. Haplotype Network Analysis

The D-loop haplotype network was constructed based on sequences of roaches col-
lected in 2017, which displayed two common haplotypes (HD_5 and HD_8) separated by a
single mutational step (Figure 2A). The common haplotype HD_5 was detected in 11 (26.2%)
individuals from all three different locations, and HD_8 was found in 10 individuals (23.8%)
from two locations (the Žeimena River and Lake Drūkšiai). Five years later, however, the
number of detected haplotypes decreased in Lake Drūkšiai and the Neris River, but it
remained unchanged in the Žeimena River (Figure 2B). A total of 15 variable sites were
identified, and 26 haplotypes—based on mtDNA D-loop region sequences of the roaches
from three locations (the Žeimena and Neris rivers and Drūkšiai Lake) collected in 2017 and
2022—were defined (Figure S1). The haplotype HD_5 was the core haplotype in roaches
and appeared in 33 (39.3%) individuals representing all populations studied, including
2 individuals of D17, 4 of D22, 4 of N17, 7 of N22, 5 of Z17, and 11 of Z22. The second
most abundant haplotype, HD_8, was detected in 10 individuals (11.9%) representing
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only the D17 and N17 populations collected in 2017. The lowest numbers of haplotypes
and unique haplotypes were detected in the Z17 and Z22 (h = 4; h’ = 2) populations. The
largest numbers of haplotypes and unique haplotypes were observed in D17 (h = 10; h’ = 6).
Analyzing the haplotype networks of the roaches collected in 2017 and 2022 in each location,
the results showed a classic star-like pattern with HD_5 as a center haplotype in the Neris
and Žeimena rivers (Figure S2). In the case of Lake Drūkšiai, based on the mtDNA D-loop
region sequences, fifteen different haplotypes, with two shared haplotypes among the
2017 and 2022 samples (HD_5 and HD_6), were detected. Eight unique haplotypes were
observed in the D17 population and five in the D22 population.
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Figure 2. Median-joining haplotype networks of R. rutilus using mtDNA D-loop region sequences.
(A) Haplotype network of roaches collected from three different locations in 2017; (B) Haplotype
network of roaches collected from three different locations in 2022. Each circle represents a haplotype,
and the size of a circle is proportional to the number of sequences assigned to that haplotype. The
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hatch marks indicates the number of nucleotide differences that separate the haplotypes.

The haplotype network was constructed based on sequences of the roaches collected
in 2017 (Figure 3A). The results showed seven unique haplotypes, four of which belonged
to the D17 population (Figure 3A). Five years later, two haplotypes (HA_3 and HA_6) were
observed in all locations studied, and only one singleton was detected in Z22 (Figure 3B).
Based on ATP6 partial gene sequences, only eight variable sites were identified, and
9 haplotypes were defined among all of the 84 roach specimens studied (Figure S3). The
haplotype network showed a star-like pattern with the main haplotype HA_3 identified in
69 (82.1%) individuals from all the populations studied. The largest number of haplotypes
was also detected in D17 (h = 5) with four unique singletons. Classic star-like haplotype
networks were observed in all studied locations (Figure S4). The haplotype network of
Lake Drūkšiai and the Žeimena River displayed one common haplotype (HA_3), while
two common haplotypes (HA_3 and HA_6) among the samples collected in 2017 and 2022
were detected in the Neris River.

Comparing the haplotype networks constructed based on sequences of the concate-
nated ATP6 partial gene and the D-loop region of the roaches collected in 2017 and 2022,
a similar trend was observed; the number of unique haplotypes is significantly larger in
2017 than that in 2022, especially in Lake Drūkšiai (Figure 4). Overall, 26 variable sites
were identified, with 6 shared haplotypes from 84 individuals of roaches (Figure S5). The
haplotype HC_5 was detected in 24 out of 84 (28.6%) individuals distributed among all
the populations studied. The second most common haplotype, HC_19, was detected in
the Neris (2017 and 2022) and Žeimena (2022) rivers. Four other haplotypes occurred in
two locations, and another 29 haplotypes were unique to specific localities. Similarly, in the
case of the D-loop and the ATP6 partial gene sequences, the largest number of haplotypes
and unique haplotypes were detected in D17 (h = 12; h’ = 8). It should be noted that the
third most common haplotype, HC_8, found that distributed with 77.78% and 22.22%
frequency among the roach samples collected in 2017 representing Lake Drūkšiai and the
Neris River populations, respectively, was not detected in these populations in 2022. The
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other two haplotypes (HC_19 and HC_25) were found only in two river populations in 2022.
Haplotype networks of the R. rutilus collected in 2017 and 2022 displayed star-like haplo-
type networks with the main haplotype HC_5 in the Neris and Žeimena Rivers, whereas
two common haplotypes (HC_5 and HC_6) were detected in Lake Drūkšiai (Figure S6).
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3.3. Population Genetic Structure

Molecular variance parameters (AMOVA results) were calculated based on mtDNA D-
loop region sequences among six hypothetical populations of roaches (Table 3). The results
of AMOVA showed significant differentiation (p < 0.001), with 82% of molecular differences
within the populations and 18% of the molecular differences among the populations. A
significant differentiation was also observed among populations studied at a group level
based on year and population (Table S2). The highest level of genetic differentiation among
populations (21%) was detected in Lake Drūkšiai over a period of five years. Based on ATP6
partial gene sequences, the AMOVA results revealed that most of the genetic variation
observed could be attributed to differences within the populations (98%) rather than to
the variation among the populations (2%). The PhiPT values were not significant, and
lower than those when D-loop sequences were used. The genetic variation among the
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populations was not detected in 2022 (0%), while only 2% of genetic variation among the
populations was observed in 2017. The highest level of genetic variation between years
was detected in Lake Drūkšiai (3%) compared with that in other locations. The AMOVA
results were obtained using concatenated ATP6 partial gene and D-loop region sequences
with 82% of the molecular differences within the populations studied, and a significant
genetic differentiation among populations studied was observed (PhiPT = 0.177, p < 0.001).
A significant genetic differentiation was also detected in all locations studied at the group
level based on the year and population (Table S2).

Genetic distance between 84 individual roaches was visualized through principal
coordinates analysis (PCoA) based on concatenated ATP6 partial gene and D-loop region
sequences (Figure 5). The first two principal coordinates explained 31.48% of the variation
(17.12% and 14.36%, respectively). The results revealed that sampled specimens could be
divided into four main groups. The first two groups consisted only of individual roaches
collected in 2017 (D17 and D17, N17, respectively). The third group consisted only of fishes
from Lake Drūkšiai collected in 2017 and 2022. The fourth group comprised representatives
of all studied populations except the D17 population. Generally, D17 showed a separation
from other populations, indicating a strong genetic differentiation from other populations.
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Figure 5. Principal component analysis of roaches based on ATP6-D-loop markers. Individuals are
color-coded by sampled population and plotted on the first two coordinates.

4. Discussion

This study, for the first time, analyzed the genetic diversity and population structure
of roaches over a five-year period, from 2017 to 2022, in two rivers (Žeimena and Neris)
and Lake Drūkšiai in Lithuania based on mtDNA markers.

4.1. Genetic Diversity

mtDNA markers are the most widely used molecular markers and play an important
role in genetic research, including information about population decline or explosion [36].
Previous reports have explored the genetic diversity within different R. rutilus populations
based on microsatellite loci [21,23,37,38] or using the mtDNA cytochrome b gene [24]. The
D-loop region, with a high nucleotide substitution rate, was indicated as an effective genetic
marker for genetic structure studies in fish populations [39]. To the best of our knowledge,
there are no previous studies into genetic diversity analysis of the roach population using
the D-loop region or ATP6 gene sequences. However, both the D-loop [40–42] and ATP6
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gene [43–45] sequences are widely used as genetic markers to study the genetic structure of
other fish species. Our results showed that genetic diversity values were higher based on
the D-loop region than those using the ATP6 partial gene fragment. The difference may
be attributed to a higher mutation and evolutionary rate in the D-loop region than that
in ATP6 gene sequences [46]. Therefore, the D-loop region is more sensitive to detecting
genetic variability in species and may provide an explanation for differences between the
genetic variability data obtained using various mtDNA markers. In this study, haplotype
8 (HC_8 and HD_8) was detected in 10 roach specimens collected in the Neris River in
2017 (two samples of roaches) and especially in Lake Drūkšiai (eight specimens of roaches).
However, haplotype 8 was not observed in the roach samples collected in 2022. The absence
of haplotype 8 in the samples collected in 2022 can be interpreted as a disappearance of
current point mutation due to a drift, negative selection, or the small sample size selected
in this study. Since the mtDNA D-loop region has a higher mutation frequency, to analyze
the results obtained in more detail, ATP6 gene sequences as a genetic marker—which is less
affected by random mutations—was also used. The results obtained in this study showed
that both the mtDNA D-loop region and ATP6 partial gene markers can be very helpful in
analyzing the genetic variation of R. rutilus.

Genetic diversity is influenced by many factors, including natural barriers or anthro-
pogenic activities. For instance, damming and isolation of populations can reduce the
population size, leading to genetic differentiation via increased genetic drift [47]. Compar-
ing the results obtained over a five-year period, it was observed that the level of genetic
diversity decreased in most populations studied in 2022. The populations of roaches
studied may have experienced a decline in population, resulting in the loss of genetic
diversity [48] due to a partial elimination of genetic variability that was represented in 2017
in three roach populations studied. The samples studied are not large enough to reflect
a significant decrease in the genetic diversity of the population in 2022. However, after
comparing haplotype networks constructed using samples collected in 2017 and 2022 in
Lake Drūkšiai, twelve haplotypes in 2017 and eight haplotypes in 2022 were observed.
Only two common haplotypes were detected in both years using the ATP6-D-loop marker
(Figure S6). This relatively large difference was not detected between the samples collected
in the Neris (seven haplotypes in 2017 and six haplotypes in 2022, with two of them being
common haplotypes detected in both years) and the Žeimena (seven haplotypes in 2017 and
six haplotypes in 2022, of which only one common haplotype was detected in both years)
rivers when comparing the samples collected in 2017 and 2022 from the same location.
This change in genetic diversity could be attributed to the drift, negative natural selec-
tion of most sensitive haplotypes eliminated from the population due to environmental
stresses, or the impacts of over-fishing [49]. Since roaches are one of the most abundant
species—though not a very popular type in fishing—it is more likely that such a change
in genetic variability was caused by the modification of the environment. Previous re-
ports also showed the abundance of unique haplotypes in the perch population inhabiting
Lake Drūkšiai [50], indicating that the environmental conditions of Lake Drūkšiai that
served as a cooling source for NPP were different from other water bodies. One of the
reasons could be increased water temperature that affected the fish population of Lake
Drūkšiai during a period of longer than twenty years. A reduction in genetic diversity in
Lake Drūkšiai in 2022 may be related to restoring water quality condition after decommis-
sioning NPP. However, to confirm or deny the possible effects of anthropogenic activities
in Lake Drūkšiai, it is necessary to investigate a larger number of roach samples, including
samples of fishes directly affected by increased water temperature.

4.2. Population Genetic Structure

Based on the outcome of AMOVA, the genetic differentiation within the population
of R. rutilus, which accounted for from 82% (D-loop and ATP6-D-loop) to 98% (ATP6) of
the total genetic variance, was much higher than that among other populations (Table 3).
The highest genetic difference over a five-year period detected in Lake Drūkšiai varied
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from 7% (ATP6) to 21% (D-loop) (Table S2). The PCoA analysis showed that in 2017,
individuals were divided into four clear groups; however, in 2022, only two groups were
detected using the concatenated ATP6 partial gene and D-loop region sequences (Figure 5).
Similarly, the greatest separation from other populations was found in D17, which was
detected in three clusters, but not in the fourth group that comprised other populations
studied. The third group consisted only of the samples from Lake Drūkšiai collected in
2017 and 2022. The genetic differentiation pattern of fish is usually consistent with the
water system pattern of distribution [51,52]. Demandt [37] showed that detected changes
to R. rutilus in genetic diversity were related to geographic isolation lasting for 23 years,
using microsatellite markers. In this study, Lake Drūkšiai is the largest water body studied
and differs from other locations studied; this may account for the appearance of the third
group consisting only of D17 and D22 populations. However, a considerable difference
was identified between the samples collected in 2017 and 2022 in Lake Drūkšiai; this
may be related to environmental changes in Lake Drūkšiai after the decommissioning
of NPP, and subsequently this caused changes in the population genetic structure of the
roach recorded during a five-year period. Population genetic differentiation can be driven
by ecological and evolutionary factors. In this region, no information is available on
the studies related to the impact of anthropogenic activities on the genetic variability of
roaches and how it changes within a short period of time—in this case, five years. The
association of the results obtained with the anthropogenic activity is tentative as we did
not perform a real-time analysis of water quality parameters during the study period.
The cyprinid fish roach has developed a high degree of adaptability to the environment
during its long evolution [53]. Genetic diversity reflects evolutionary biology and is linked
to biological complexity, ecosystem restoration, and the ability of species to respond to
environmental changes [54]. Previous studies showed that the modification of ecological
environments by human activities can affect fish population genetic structure [55,56]. One
of the anthropogenic activities is NPPs, usually located near the coast or even rivers or
lakes to guarantee the required water supply during the operational stage [57]. Near Lake
Drūkšiai, the Ignalina NPP was built and started supplying electricity to its users in 1983
and was in operation until 2009 [58]. The nuclear power plant used Lake Drūkšiai as a
natural reservoir for cooling water. The temperature of the lake increased by about 3 ◦C
(5.4 ◦F), causing thermal pollution [59,60]. Despite the fact that freshwater fish can be
negatively affected by thermal pollution [61], several studies showed that due to higher
water temperature in Lake Drūkšiai, the population of widely distributed fish such as perch
and roach has increased [62,63]. Our study showed a higher level of genetic diversity in
roaches collected in Lake Drūkšiai in 2017, which may also be related to an increase in
water temperature, especially during the period between 1983 and 2009. Previous studies
already indicated that higher temperature could affect the mutation rates of organisms,
resulting in more abundant genetic diversity [64–66].

5. Conclusions

The decreasing genetic diversity in roach populations over a five-year period was
established in all locations studied using D-loop and ATP6 genetic markers in Eastern
Lithuania. However, based on comparisons between samples of roaches over a five-year
period, the highest genetic variation among roaches was detected in the Lake Drūkšiai pop-
ulation in 2017. Also, the results of genetic diversity, AMOVA analysis, haplotype network
analysis, and PCoA analysis suggested that a significantly greater genetic variability was
established in Lake Drūkšiai in 2017. Although this study has some limitations, our results
point to the possibility of revealing the impact of anthropogenic activities in Lake Drūkšiai,
which may be related to the earlier operating Ignalina Nuclear Power Plant.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/d15111113/s1.
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