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Abstract: Not only are the plants of the golden camellia group examples of high-quality camellia
germplasm, but they are also a plant group with rich medicinal and nutritional value, and these
plants are used as food, cosmetics and traditional medicine in China. There are approximately
50 species in this group around the world, and more than 30 species of golden camellia plants
have been listed in China. The leaves and flowers of these species have similar shapes, and as
such, they are often confused as the same species. Our study used simplified genome sequencing
technology to construct a phylogenetic tree of plants in the Chinese golden camellia group, and we
also described the evolutionary relationships. At the same time, the secondary metabolic indexes of
the total phenols, total flavonoids, total anthocyanins and ellagic acid in the leaves were determined,
and principal component clustering analysis was also performed. The results showed that the
phylogenetic relationship and genetic distance among the plant species of Chinese golden camellia
group plants were fully revealed. The cluster analysis of chemical secondary metabolism and
genetic phylogenetic trees showed some of the same trends, thereby indicating that secondary
metabolism golden camellia can be used as biomarkers for golden camellia. The research results
provide phylogenetic information for the genotype and performance diversity of the golden camellia
that is regionally distributed in China, as well as provide a theoretical basis for the research and
development of potential bioactive substances.

Keywords: Camellia Sect. Chrysantha; dd-RAD; Chemotaxonomy; TPC; TFC; TEC; TEA

1. Introduction

The Camellia Sect. Chrysantha is a group with yellow flowers in the genus Camellia of
the family Theaceae. Its precious and rare yellow gene fills the gap in the yellow camellia
that is coveted by horticulturists. It has essential ornamental value and scientific research
value. It is known as the “Queen of the Tea Clan”, the “Giant Panda of the Plant World”
and the “Fantasy Yellow Flower Tea”. It is also called “Oriental Magic Tea” abroad [1–3].
Since golden camellia was discovered, it has been widely used in the hybrid breeding of
yellow camellia and experimental research on cultivating excellent new varieties of hybrid
camellia. Chinese experts and scholars have developed new varieties “Liaoyan Beauty”,
“Nayue Hongyan”, “Xinhuang”, “Jinbei Danxin”, etc. [4,5]; and Japanese horticulturalists
have cultivated new varieties such as “Chuhuang”, “Golden Star” and “Kimiko” et al. [6,7],
which has greatly enriched the new tea variety market. Golden camellia is not only a
high-quality camellia germplasm resource, but also a natural tea drink. It is one of the
plants with the richest medicinal and nutritional value. The leaves and flowers of golden
camellia are not only rich in active ingredients such as polyphenols, flavonoids, saponins
and polysaccharides, but also rich in trace elements such as iron, selenium, copper, zinc,
vanadium and natural organic germanium. It also has other important health care effects
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on the human body [8–10]. “Guangxi Zhuang Autonomous Region Zhuang Medicine
Quality Standards” (Volume 2) records that golden camellia is slightly bitter and astringent,
and it has the functions of clearing away heat and detoxification, diuresis and swelling,
lowering blood sugar and cholesterol, preventing tumors, and anti-aging [11,12]. In 2010,
the Chinese Ministry of Health approved golden camellia as a new resource of food, and it
has been widely developed into scented tea, drinks, medicines, cosmetics, handicrafts, etc.
Furthermore, its products have also sold well in domestic and foreign markets [13].

Golden camellia has attracted the research attention of scholars from all walks of life
both at home and abroad because of its unique golden petals and rich medicinal value.
However, there are many varieties of Sect. Chrysantha, all with different sources and
large differences in quality, which is one of the main factors restricting the development
of the industry [2]. Sect. Chrysantha plants are mainly distributed in southwest China
and northern Vietnam and are divided into two major ecological distributions: karst and
non-karst [14]. There are more than 50 species of this group in the world, and more than
30 species of golden camellia plants have been recorded in China. Having said this, there
has been a long-standing controversy over the species’ classification [15]. The determination
of species in traditional taxonomy is mainly based on the morphological characteristics
of plants, such as stems, leaves, flowers and fruits. This approach has the advantages of
simplicity, convenience and intuitiveness; however, because environmental conditions can
easily affect morphological characteristics, they should not be used for identification. The
differences in the morphological characteristics of the Camellia species are particularly
minimal, and these characteristics are only suitable for use in the identification of samples
with apparent differences between varieties. The flowers and leaves of the Sect. Chrysantha
are very especially similar, and the identification between species often needs clarification;
therefore, these issues can oftentimes lead to uncertainty or incorrect taxonomy.

Modern molecular techniques provide powerful tools for solving taxonomic problems
in plant groups, especially in describing individual species. Many researchers have carried
out numerous genetic and taxonomic studies on golden camellia plants using molecular
markers such as RAPD, AFLP, SSR, ISSR, cpDNA and nDNA. Tang [16] used RAPD technol-
ogy to analyze six two-variant golden camellia plants including Camellia nitidissima, Camellia
nitidissima var.microcurpa, Camellia tunghinensis, etc. In addition, C.pubipetala was merged
into Camellia nitidissima var.microcurpa, and Camellia nitidissima var. phaeopubisperma was
incorporated into Camellia nitidissima. Amplified fragment length polymorphism (AFLP)
molecular markers were also used for cluster analysis, and it was concluded that Camellia
huana is a good species. Furthermore, Camellia ptilosperma, Camellia longruiensis, Camellia
longgangensis and Camellia longgangensis var.grandis were merged into Camellia flavida [17].
Xiao [18] used ISSR molecular marker technology to analyze the genetic relationships of
29 golden camellia species from the Golden Camellia Park in Nanning, Guangxi, and they
clustered the 29 golden camellia samples into three major groups. Among them, Camellia
achrysantha was placed into a separate category, Camellia terminalis and Camellia longzhouen-
sis were grouped into one category and other golden scented teas were grouped into one
category. Moreover, Camellia xiashiensis and Camellia micrantha were merged into Camellia
limonia; Camellia longgangensis and Camellia ptilosperma were merged into the same species;
Camellia longzhouensis was merged into one category; and Camellia chrysanthoides was clas-
sified as separate species. Chen [19] used SSR molecular markers to conduct research on
the genetic diversity and genetic structure of Camellia chrysanthoides and its related species.
Lu [20] used chloroplasts and single-copy-sequence molecular techniques to analyze the
phylogeography and conservation genetics of Camellia (Theaceae) in southern Guangxi,
China. Wei [21] used phylogenetics to calculate the taxonomic information of yellow camel-
lia plants in the Camellia family in China, and they found that the phylogeny of dd-RAD,
RNA-sep and the chloroplast genome in the genus Camellia in China was inconsistent.
Furthermore, it was also found that certain developmental trees were not separated or
had differences, thus making them difficult to distinguish between, and indicating that
hybridization and introgression affect the inconsistency between nuclear genes and the
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organelle genes of the genus Yellow Camellia. In summary, certain researchers have tried
to analyze and study the relationships between plants in the Camellia Scet. Chrysantha
family using single molecular markers or incomplete sampling. However, there is still a
lack of morphological and molecular plant phylogeny consensus regarding Camellia Scet.
Chrysantha in China.

The Camellia Scet.Chrysantha plants are mainly distributed in karst landforms, which
have a high degree of habitat heterogeneity, and they have a great impact on the evolution
of golden camellia plants [14]. Species migrate from one area to another. Changes in the
natural environment cause different changes in plant leaf and flower shapes. Hybridization
and penetration interfere with the division of plants. The phenotype of a plant is the sum
of the traits that are displayed by plants under certain environmental conditions. It is
the result of the interaction between genes and the environment. It is a manifestation of
plant adaptation to environmental variation, and it is one of the main factors affecting
plant survival. It reflects to a certain extent the genetic characteristics of the species [22].
Therefore, the development of molecular biology and chemical taxonomy may provide
a comprehensive solution for the accurate identification and definition of these golden
camellias. Chemotaxonomy is the practice of classifying plants based on their chemical
composition; furthermore, secondary metabolites and related biosynthetic pathways are
often specialized and are common in similar taxa, thus making them useful in taxonomic
definition. In fact, as recommended by the Plant Working Group of the Consortium for the
Barcode of Life (CBOL), plant barcodes of life have been used to provide information related
to the taxonomic classification and phylogeny of closely related and distantly related plant
species, and these have been used for the detection and utilization of biodiversity, species
identification and other aspects, which are of great significance [23]. The leaf of the golden
camellia group is the most important taxonomic organ. The leaf also serves as the chemical
composition study site of plants, and it aids in establishing the correlation between the
content of its secondary metabolic components and plant classification, which are both of
great research value. Using the phytochemical secondary metabolism in combination with
plant phylogeny to conduct collaborative research, not only can we systematically study
phytochemistry from the big picture of plant phylogeny, but we can also use the evidence
of phytochemistry to investigate plant systematic evolution.

Therefore, based on the above reasons, this study uses a combination of molecular
biology and chemical taxonomy to carry out research on the newly emerging frontier field
of evolutionary biology at the intersection of phytochemistry, plant taxonomy and plant
systematics. Reduced-Representation Genome Sequencing (RRGS) technology was used to
develop SNP and InDel markers to construct a plant phylogenetic tree of the Chinese golden
camellia group; at the same time, spectrophotometry and chromatography were used to
determine the total phenolics of the golden camellia group plants. For the determination
of the secondary metabolism indicators such as flavonoids, total anthocyanins and ellagic
acid, principal component clustering analysis was performed based on the similarities
and differences in the plant secondary metabolite profiles. The research aimed to provide
phylogenetic information for the genotype and performance diversity of the golden camellia
regionally distributed in China. We used a combination of molecular markers and chemical
classification to provide the most accurate classification of golden camellia plants (Le,
2023), and we revealed the phylogenetic relationship and genetic distance among the plant
species of Chinese golden camellia group plants and used the phylogenetic tree of species to
explore the evolution rules of phytochemical characteristics of Camellia Scet.chrysantha. By
achieving this, the findings could then be used for the selection of yellow tea varieties and
the identification of specific secondary metabolites, as well as help to provide a theoretical
basis for the research and development of potential bioactive substances.
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2. Materials and Methods
2.1. Genetic Part
2.1.1. Test Materials

According to the work commissioned by the Nanjing Environmental Science Institute
of the Ministry of Ecology and Environment, “Investigation and Evaluation of the Current
Situation and Protection Effectiveness of golden camellia Plants in Theaceae (837208)”,
the distribution range and population of wild resources of all species of golden camellia
plant in China were extensively investigated. In this study, 30 species of wild camellias
(including varieties) with clear wild resources were selected to detect the interspecific
relationship. The samples were collected from Guilin Botanical Garden, Guangxi, China
(25◦4014.8800 N, 110◦170.5700 E), and the sample species were identified by the researcher
Wei Xiao of Guangxi Institute of Botany (Table 1). A quantity of 2–3 healthy and young
fresh leaves from each plant were collected, three replicates were collected for each species,
and they were placed into tea bags and numbered. Finally, the samples were stored in a
sealed bag of color-changing silica gel in a dry state for use in dd-RAD sequencing.

Table 1. Sample collection information and place of origin.

Nm. Scientific Name Code Place of Origin Habitat In Situ

1 Camellia achrysantha ZD Guangxi Karst
2 Camellia chrysanthoides BY Guangxi Karst
3 Camellia debaoensis DB Guangxi Karst
4 Camellia euphlebia XM Guangxi Non-Karst
5 Camellia fascicularis YN Yunnan Karst
6 Camellia flavida DH Guangxi Karst
7 Camellia huana GZ Guangxi/Guizhou Karst
8 Camellia impressinervis AM Guangxi Karst
9 Camellia libelofifilamenta LR Guangxi/Guizhou Karst
10 Camellia limonia NM Guangxi Karst
11 Camellia longgangensis NG Guangxi Karst
12 Camellia longzhouensis LZ Guangxi Karst
13 Camellia micrantha XH Guangxi Karst
14 Camellia mingii FN Yunnan/Guangxi Karst
15 Camellia multipetala DD Guangxi Karst
16 Camellia multipetala var. patens ZM Guangxi Karst
17 Camellia nitidissima PT Guangxi Non-Karst
18 Camellia nitidissima var. microcurpa XG Guangxi Karst
19 Camellia parvipetala XB Guangxi Non-Karst
20 Camellia perpetua SJ Guangxi Karst
21 Camellia pingguoensis PG Guangxi Karst
22 Camellia pingguoensis var. terminalis DS Guangxi Karst
23 Camellia ptilosperma MZ Guangxi Karst
24 Camellia pubipetala MB Guangxi Karst
25 Camellia quinqueloculosa WS Guangxi Karst
26 Camellia rostrata HG Guangxi Karst
27 Camellia tianeensis TE Guangxi Karst
28 Camellia tunghinensis DX Guangxi Non-Karst
29 Camellia wumingensis WM Guangxi Karst
30 Camellia xiashiensis XS Guangxi Karst

2.1.2. DNA Extraction, Enzyme Digestion and Library Construction for Sequencing

The genomic DNA of the 90 samples were extracted using a tissue DNA kit (OmegeBio-
Tek, Norcross, GA, USA). The DNA quality was assessed using 1% agarose gel electrophore-
sis and a Nanodrop 2000 (ThermoFisher, Waltham, MA, USA) spectrophotometer. The
DNA was quantified using Qubit3.0 (ThermoFisher) to ensure that each sample met the
following criteria: total mass value > 3 µg, concentration > 30 ng/µL and an OD value of
260/an OD value of 280 = 1.80–2.00. This study used dd-RAD technology to construct a
RAD-seq library, and we performed 150 paired-end sequences on the Illumina NovaSeq
6000 sequencing platform. The library construction and sequencing were entrusted to
Beijing Biomarker Technologies Co., Ltd., Beijing, China.
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2.1.3. SNP Calling

The raw data (raw date) were obtained via sequencing on the Illumina NovaSeq 6000 plat-
form, and FastQC software (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
accessed on 20 April 2023) was used to check the quality of the raw data to ensure that
qualified raw data were obtained. The process_radtags program in Stacks v2.54 software
was used to filter and correct the original data. The reads with lower quality, which con-
tained adapter sequences, were filtered and deleted. In addition, N (unidentified bases) was
determined to obtain high-quality sequencing data (clean data). The population module
in Stacks software was used to filter and output the SNP site information, and this was
performed according to a minimum allele frequency (MAF) of 0.05, a maximum miss-
ing rate (missing) of 0.5 and a maximum observed heterozygosity (maximum observed
heterozygosity) of a standard of 0.5 to filter the SNP variant sites in order to remove the
abnormal samples and those with high mutation loss rates. This was all conducted to obtain
high-quality SNP data for subsequent research on genetic diversity and phylogenetic trees.

2.1.4. Genetics Analysis

Based on SNP, the population structure of the samples was analyzed through ad-
mixture 1.3 software, and the clustering was performed via assuming that the number of
clusters (K value) of the samples was 1–10. SPAGeDi 2002 software can be used to estimate
the relative kinship between two individuals in a natural population. Through using
RAxML Version 8 software, a phylogenetic tree of the samples was constructed based on
the maximum likelihood method [24]. Then, gcta 1.91.7beta software was used to perform
PCA clustering on the samples, which was then combined with the phylogenetic tree and
genetic structure diagram obtained from the above analysis to view the stratification of
the population. The vcf-tools program was used based on the sliding window method
(the window was set to 3 kb) to calculate the expected heterozygosity (He), nucleotide
diversity (Nucleotide Diversity, Pi) and the inbreeding coefficient (Inbreeding Coefficient
of an Individual Relative to the Subpopulation, Fis). Lastly, the Shannon–Wiener diversity
index, shannon_Index, was used for analysis [25–27].

2.2. Chemical Profiling
2.2.1. Total Phenolic Content

The total phenols in the ground tea leaves of the golden camellia group were extracted
with a 70% methanol aqueous solution in a 70 ◦C water bath. Folin’s phenol reagent
oxidized the -OH group in the tea polyphenols and showed a blue color. The maximum
absorption wavelength was 765 nm, and gallic acid was used as a calibration standard to
quantify polyphenols [28,29]. The standard curve was as follows: y = 0.0042x + 0.0103,
R2 = 0.9992.

2.2.2. Total Flavonoid Content

Flavonoids are the general term for a class of natural compounds with a benzopyran
ring structure. The method used in this study utilizes flavonoids to perform a complex
reaction with aluminum salts to generate a yellow complex under alkaline conditions,
and its flavonoids are measured at a wavelength of 420 nm. The absorbance, within a
certain concentration range, was directly proportional to the content of the flavonoids.
Compared with the rutin standard, the total flavonoid content in the test substance was
determined in comparison with the rutin standard [30,31]. The standard curve was as
follows: y = 0.0011x − 0.0175, R2 = 0.9998.

2.2.3. Total Anthocyanin Content

Procyanidins themselves are colorless. We thus placed them in an ampoule and pre-
cisely added 6 mL of hydrochloric acid-n-butanol solution (4.2.1) and 0.2 mL of ferric
ammonium sulfate solution (4.2.3). This was then mixed well, sealed with sealing pliers
and placed—after heating—in boiling water for 40 min; through this process, dark red an-

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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thocyanin ions can be generated. Spectrophotometry was used to measure the anthocyanin
ions generated during the hydrolysis of proanthocyanidins at a wavelength of 546 nm,
and the proanthocyanidin content in the sample was then calculated [32,33]. The standard
curve was as follows: y = 0.003x + 0.0076, R2 = 0.9995

2.2.4. Ellagic Acid Content

We accurately weighed 10 g of fresh goldenrod tea leaves. Next, 100 mL of deionized
water was added, which was then beat with a high-speed tissue masher. Furthermore,
50 mL of homogenate was taken and an equal volume of absolute ethanol was added. This
was then treated under ultrasonic conditions for 20 min and then centrifuged at 10,000 rpm
for 10 min. The supernatant was taken and 50 mL of a 50% ethanol solution was added to
the precipitate. The above steps were repeated twice; then, the supernatants were combined
and set aside at a volume of 200 mL. These were then filtered with 0.45 µm filter membrane
and stored at 4 ◦C for later use. Next, 20 µL of the sample was injected into a ZORBAX
SB-C18 column (4.6 × 250 mm, 5 µm) using ethylbenzene-1.2% phosphoric acid (18:82)
with a flow rate of 1 mL/min, as well as a DAD lamp with a wavelength of 254 nm for the
purpose of detection [34,35]. The peak area on the standard curve was used to calculate
the concentration of the ellagic acid in the sample solution (1 µg/mL, 5 µg/mL, 10 µg/mL,
20 µg/mL, 50 µg/mL, 100 µg/mL).

2.2.5. Data Analysis

Each experiment was repeated three times, and the statistics were performed in Excel
2021. The data were compared with the means and standard errors of different variables
using SPSS. The independent sample Duncan’s t test was used, and the significance level
was p < 0.05. SPSS19.0 statistical software was used to perform cluster analysis [36,37] and
a dendrogram was then constructed. Lastly, Origin2021 was used to create a principal
component analysis graph [38].

3. Results
3.1. SNP Calling Based on the Reference Genome

The library construction and sequencing of 90 samples (30 species) were completed,
and an average of 200,000 tags per sample were obtained. The average sequencing depth
was no less than 10×, thus ensuring Q30 reached 80%. A total of approximately 564.31 Mbp
of clean reads and 141.78 Gbp of clean data were obtained, with the Q30 average reaching
92.74%. Finally, we filtered and obtained 80,620 sites, including 75,548 SNPs and 5072 InDels.
Please see Figure 1.
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3.2. Genetic Relationship and Phylogenetic Analysis

A population genetic structure analysis can provide information on the origin and
composition of an individual’s lineage, and it is an important genetic relationship analysis
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tool. Based on SNP, the population structure of the samples was analyzed through admix-
ture software [39], and clustering was performed assuming that the number of clusters
(K value) of the samples was 1–10. We performed cross-validation on the clustering results,
and we determined the optimal number of clusters based on the valley value of the cross-
validation error rate. The clustering situation was outlined with a K value of 1–10 and the
cross-validation error rate was set such that it corresponded to each K value. The optimal
K value of this project was 1, which means that there is only one ancestral lineage in all
samples, that is, 30 camellia species. All were found to belong to the same ancestor. Kinship
itself is a relative value that defines the genetic similarity between two specific materials, or
indeed the genetic similarity between any materials. The SPAGeDi [40] software can be
used to estimate the relative kinship between two individuals in a natural population. It can
be seen from the Kinship clustering heat map, in Figure 2a, that Camellia debaoensis, Camellia
mingii and Camellia fascicularis have high genetic similarity; the PCA of the three species
also clustered together (Figure 2b). The genetic similarity between Camellia nitidissima and
Camellia rostrata was found to be high; the genetic distance between Camellia tianeensis and
Camellia pingguoensis was similar; the genetic similarity between Camellia hauna and Camellia
libelofilamenta was high; the genetic similarity between Camellia wumingensis and Camel-
lia terminalis was even higher; and the PCA also clustered together. Camellia parvipetala,
Camellia micrantha and Camellia xiashiensis have high genetic similarity and were clustered
together with Camellia limonia and Camellia multipetala. Camellia longzhouensis, Camellia
longgangensis var. patens, Camellia perpetua and Camellia achrysantha all have relatively high
genetic degrees and were clustered together using PCA.
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As can be seen from Figure 2c, based on the maximum likelihood method, a phylo-
genetic tree of all samples—based on the maximum likelihood method—was constructed,
and it intuitively displays the classification of the samples. The phylogeny based on whole-
genome data was well resolved, thereby improving the level of resolution to species and
within the species, with at least seven reticulation events in the plants of the Chinese Camel-
lia Scet.chrysantha. In the nuclear-dd-RAD tree, Camellia nitidissima, Camellia nitidissima
var.microcurpa, Camellia euphlebia, Camellia tunghinensis and Camellia rostrata came together;
Camellia limonia, Camellia xiashiensis, Camellia multipetala, Camellia parvipetala and Camellia
micrantha came together; Camellia achrysantha, Camellia longzhouensis, Camellia multipetala
var. Patens, Camellia perpetua and Camellia quinqueloculosa grouped together; and Camellia
debaoensis, Camellia fascicularis, Camellia mingii, Camellia pingguoensis var. terminalis and
Camellia wumingensis were grouped together. Furthermore, among them, Camellia debaoensis,
Camellia fascicularis and Camellia mingii were found to be closely related. Camellia impressin-
ervis, Camellia longgangensis and Camellia ptilosperma were closely related and were grouped
together. Camellia flavida, Camellia huana, Camellia libelofifilamenta, Camellia pingguoensis and
Camellia tianeensis were grouped together. Camellia pubipetala and Camellia chrysanthoides
were, with their thin leaves, a branch.

3.3. Comparison of the Genetic Diversity between Karst and Non-Karst

Camellia Scet.Chrysantha plants are widely distributed in karst landforms, and the
phenotypic characteristics of plants are affected by the combined effects of genetic genes and
the environment. Research on the genetic diversity of golden camellia plant species in karst
and non-karst areas will help reveal the factors influencing the phenotypic characteristics
of Camellia Scet. Chrysantha plants [25]. The Shannon–Wiener diversity index is an index
used to investigate the diversity (α-diversity) of plant communities in local habitats. It can
also be used to measure the polymorphism of SNP sites. As can be seen from Figure 3,
the genetic diversity index (0.892) in non-karst areas was higher than that in karst areas
(0.531). The high genetic diversity of golden camellia was preserved in non-karst areas.
The higher the expected heterozygosity value He, the lower the genetic consistency and the
richer the genetic diversity of the population. The results showed that the He value (0.259)
in karst areas was lower than that in non-karst areas (0.396). The PI values ranged from
0 to 1, with larger values representing higher diversity and smaller values representing
lower diversity. The PI value of golden flower tea in karst areas was 0.0002 and that in
non-karst areas was 0.00027. Selection elimination analysis was conducted based on two
indicators: Fst and PI. The window (3 kb sliding window along the genome) where Fst
between different subgroups is greater than 0.25 and log2 (PI ratio) is greater than 1 or less
than −1 is subject to strong selection. Regions of stress that are Related to differentiation
between different subpopulations, as well as the distribution of genes in these regions,
may be associated with the phenotypic differences between the two groups. As can be
seen from Figure 3, golden camellia genes in karst areas were selected by the karst natural
environment, and polymorphisms were eliminated in order to adapt to the special karst
habitats; the genetic diversity of the areas where the species were selected and eliminated
was significantly reduced.

3.4. Chemical Activity and Cluster Analysis of Plant Leaves of Camellia Scet. Chrysantha
3.4.1. Chemical Profile Content Comparative Analysis

Phenols and flavonoids are secondary metabolites of plants that contain at least one
aromatic ring and a hydroxyl group; these compounds play an important physiological
role in preventing the action of free radicals [41,42]; therefore, they can be used as pre-
ventive agents in the human body. They are a good source for treating cardiovascular
disease [43,44], cancer [45–47], diabetes [48], weight loss and lipid lowering [49,50], and
neurodegenerative diseases [51,52]. Using gallic acid and rutin as standards, the total
phenolic content (TPC) and total flavonoid content (TFC) of each extract were determined
using a colorimetric method with gallic acid and rutin as the standards. The results show
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that the active ingredients of golden camellia with a karst distribution and non-karst dis-
tribution were quite different. The average contents of the total phenols, total flavonoids,
total proanthocyanidins and ellagic acid of golden camellia with a karst distribution were
2.339 g/100 g, 0.035 g/100 g, 2.640 g/100 g and 4.891 g/100 g, respectively. These val-
ues were all significantly higher than the average contents of the total phenols (1.471),
total flavonoids (0.026), total proanthocyanidins (0.616) and total ellagic acid (2.189) in the
non-karst distributed golden camellia.
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The total phenolic content and total flavonoid content of the leaves of the golden
camellia group plants varied greatly. The highest total phenolic content was in Camellia
mingii (4.563 ± 0.049 g/100 g), followed by Camellia achrysantha (4.203 ± 0.004 g/100 g).
The lowest contents were in Camellia tunghinensis and Camellia huana, both 0.600 g/100 g. In
terms of total flavonoids, the performance was inconsistent with the total phenolic content.
Among the 21 species of the golden camellia group, the highest total flavonoid content
was in Camellia pubipetala (10.718 ± 0.010 g/100 g), followed by Camellia quinqueloculosa
(8.133 ± 0.044 g/100 g) and the Camellia flavida (7.013 ± 0.003 g/100 g), and the lowest
content was in Camellia tunghinensis (0.368 ± 0.001 g/100 g).

Proanthocyanidin (PC) is a mixture of bioflavonoids with a special molecular structure.
Oligomeric proanthocyanidin (OPC) is currently internationally recognized as an effective
natural antioxidant that scavenges free radicals in the human body. It is a biological
flavonoid with a special molecular structure. Flavonoids are natural antioxidants that
are effective in scavenging free radicals in the human body [53,54]. The trend is similar
to that of TFC. The highest ones are in Camellia impressinervis (6.560 ± 0.058 g/100 g),
Camellia quinqueloculosa (5.720 ± 0.012 g/100 g), Camellia flavida (4.943 ± 0.009 g/100 g) and
Camellia pubipetala (4.460 ± 0.058 g/100 g), and the lowest content is Camellia tunghinensis
(0.004 ± 0.001 g/100 g).
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Ellagic acid is a natural polyphenol component that is widely present in various soft
fruits, nuts and other plant tissues. The color reaction between ellagic acid and ferric
chloride is one that turns blue; however, when exposed to sulfuric acid, it turns yellow.
Ellagic acid has a significant inhibitory effect on chemically induced carcinogenesis and var-
ious other cancers, especially on colon cancer, esophageal cancer, liver cancer, lung cancer,
tongue and skin tumors, etc. It is mainly used in pharmaceuticals, as well as in additives
for health foods and cosmetics, with high potential economic value [55–57]. The one with
the highest ellagic acid content was found in Camellia limonia (0.090 ± 0.001), followed by
Camellia chrysanthoides (0.083 ± 0.003), Camellia achrysantha (0.072 ± 0.001), Camellia perpetua
(0.071 ± 0.0003) and then Camellia euphlebia (0.070 ± 0.001). The lowest contents were found
in Camellia tunghinensis (0.002 ± 0.0003) and Camellia huana (0.002 ± 0.0011), which also
showed a similar trend to the TOC. See Table 2.

Table 2. Total phenolic content (TPC), total flavonoid content (TFC), total anthocyanin content (TAC)
and ellagic acid content (TEA) in methanolic extracts of 21 golden camellias.

Species TPCg/100 g TEAg/100 g TACg/100 g TFCg/100 g

C. mingii 4.563 ± 0.049 m 0.048 ± 0.001 g 3.950 ± 0.006 n 4.064 ± 0.003 i

C. fascicularis 1.603 ± 0.009 d 0.036 ± 0.001 ef 1.743 ± 0.005 i 6.970 ± 0.012 o

C. wumingensis 2.310 ± 0.015 g 0.024 ± 0.0003 cd 3.450 ± 0.006 m 4.661 ± 0.002 l

C. tunghinensis 0.600 ± 0.012 a 0.002 ± 0.0003 a 0.004 ± 0.001 a 0.368 ± 0.001 a

C. rostrata 1.217 ± 0.045 b 0.028 ± 0.001 de 0.479 ± 0.001 c 1.083 ± 0.003 b

C. quinqueloculosa 3.220 ± 0.047 k 0.001 ± 0.0003 a 5.720 ± 0.012 q 8.133 ± 0.044 s

C. pubipetala 2.807 ± 0.003 i 0.002 ± 0.001 ab 4.460 ± 0.058 o 10.718 ± 0.010 t

C. pingguoensis 1.403 ± 0.004 c 0.039 ± 0.017 fg 0.790 ± 0.005 d 1.530 ± 0.003 c

C. pingguoensis var. terminalis 1.803 ± 0.003 e 0.061 ± 0.001 h 0.937 ± 0.002 e 1.874 ± 0.010 d

C. perpetua 3.253 ± 0.029 k 0.071 ± 0.0003 h 2.430 ± 0.005 k 4.437 ± 0.033 j

C. nitidissima var. microcurpa 0.617 ± 0.017 a 0.002 ± 0.0003 ab 0.213 ± 0.009 b 2.594 ± 0.004 f

C. nitidissima 1.410 ± 0.006 c 0.006 ± 0.0003 ab 0.801 ± 0.006 d 2.614 ± 0.002 f

C. longzhouensis 2.405 ± 0.003 h 0.045 ± 0.0003 fg 2.282 ± 0.002 j 5.352 ± 0.002 m

C. limonia 2.070 ± 0.035 f 0.090 ± 0.001 i 1.315 ± 0.003 g 4.573 ± 0.001 k

C. impressinervis 2.810 ± 0.006 i 0.002 ± 0.0003 a 6.560 ± 0.058 s 7.590 ± 0.006 q

C. huana 0.600 ± 0.006 a 0.002 ± 0.0011 ab 0.004 ± 0.0003 a 2.2763 ± 0.003 e

C. flavida 3.016 ± 0.017 j 0.011 ± 0.001 ab 4.943 ± 0.009 p 7.013 ± 0.003 p

C. euphlebia 2.403 ± 0.004 h 0.070 ± 0.001 h 1.044 ± 0.001 f 3.587 ± 0.007 h

C. debaoensis 1.403 ± 0.004 c 0.014 ± 0.001 bc 1.467 ± 0.005 h 5.838 ± 0.002 n

C. chrysanthoides 2.805 ± 0.006 i 0.083 ± 0.003 i 3.276 ± 0.018 l 5.840 ± 0.026 n

C. achrysantha 4.203 ± 0.004 l 0.072 ± 0.001 h 3.500 ± 0.012 m 3.497 ± 0.012 g

Notes: different letters in the same column represent results with a statistical difference, according to Student’s
t-test (p < 0.05).

3.4.2. Principal Component Cluster Analysis

As can be seen from Table 3, two principal components were extracted based on the
principal component eigenvalue being greater than 1. The first principal component (PC1)
had an eigenvalue of 2.359 and a variance contribution rate of 59.0%. The second principal
component (PC2) had an eigenvalue of 1.235 and a variance contribution rate of 30.9%. The
cumulative variance contribution rate of the two principal components reached 90%, and
this reflected 90% of the information of the original evaluation index.

Table 3. Variance analysis of active ingredient contents in 21 species of Sect. Chrysantha leaves.

Principal
Component Number Eigenvalue Percentage of

Variance (%) Cumulative (%)

1 2.359 58.984 58.983
2 1.235 30.880 89.864
3 0.335 8.364 98.228
4 0.071 1.772 100
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The principal component load matrix reflected the magnitude and direction of the
matching action of each evaluation index. As can be seen from the chart, the PCI was mainly
integrated into the three indexes of the total phenols, proanthocyanidins and flavonoids,
and the variance contribution value reached 59.0%. All of them were positively correlated
with PC1, thereby indicating that the higher the content of these three indexes, the greater
the PC1 load. The loading values of the total phenols and procyanidins in 21 kinds of
golden flower tea were similar, and the loading values of both were higher than that of
total flavonoids. In addition, the loading value of the procyanidins in PC1 was higher
than that of total phenols, thus indicating that the procyanidins had a greater effect on
PC1. Therefore, procyanidins were selected to represent PC1. PC2 mainly synthesized
ellagic acid and the total phenol, and the variance contribution value was 30.9%. Both
were positively correlated with PC2, thereby indicating that the higher ellagic acid and
total phenol contents were, the greater the PC2 load was. The loading value of ellagic acid
was significantly higher than that of the total phenol; as such, ellagic acid was chosen to
represent PC2. Please see Table 4 and Figure 4.

Table 4. Principal component load matrix and component score coefficient matrix of the active
ingredient.

Active
Ingredient Index

Factor Load Value Component Score Coefficient
Matrix

F1 F2 F1 F2

TPC 0.903 0.336 0.903 0.336
TEA 0.182 0.925 0.182 0.925
TAC 0.958 −0.120 0.958 −0.120
TFC 0.701 −0.510 0.701 −0.510
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4. Discussion
4.1. Relationship between Plant Species in Camellia Sect. Chrysantha

dd-RAD technology was used to better classify the plants of the Camellia Sect.
Chrysantha; the research results were different from Wei’s grouping of the golden camellia
group into 10 reticular events. Because the plants of the Camellia Sect. Chrysantha are
all diploid, the hybridization rate between species was relatively low. The high, repro-
ductive barriers were weak, and the hybridization and introgression affected the nuclear
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gene results of the Camellia Sect. Chrysantha; as such, further verification was needed to
accurately infer the grid time. Compared with the results of Wei’s research [21], the species
clustering results of the Camellia Sect. Chrysantha were mostly consistent. Camellia nitidis-
sima, Camellia tunghinensis, Camellia nitidissima var. microcurpa and Camellia euphlebia were
clustered together; Camellia limonia, Camellia multipetala, Camellia parvipetala and Camellia
micrantha were clustered together; Camellia xiashiensis, Camellia pingguoensis var. terminalis
and Camellia wumingensis were clustered together; Camellia hauna, Camellia libelofilamenta
and Camellia pingguoensis were clustered together; Camellia impressinervis, Camellia long-
gangensis and Camellia ptilosperma came together; Camellia perpetua, Camellia achrysantha,
Camellia quinqueloculosa and Camellia longgangensis var. patens were clustered together; and
Camellia chrysanthoides and Camellia pubipetala were clustered together. However, the dif-
ference was that our research showed that Camellia longzhouensis grouped with Camellia
perpetua, Camellia achrysantha, Camellia quinqueloculosa, Camellia longgangensis var. patens and
Camellia longzhouensis. In terms of morphological characteristics, the leaf shape and flower
characteristics of Camellia longzhouensis and Camellia longgangensis var. patens were also
relatively similar, while the leaf characteristics of Camellia chrysanthoides were found to be
quite different from them (and the leaves were also thinner (Figure 5)). Camellia multipetala
was a branch with Camellia limonia, Camellia parvipetala and Camellia micrantha. Its flower
color was white with yellow, the flowers were small, and the flower characteristics were
also found to be relatively similar (Figure 6). The clustering of Camellia rostrata and Camellia
nitidissima is inconsistent with the study of Wei [21], which may be related to the number
of samples collected. There were particularly few wild resources of Camellia rostrata, and
only five strains were found. Based on the simplified genome data, we better interpreted
the phylogenetic relationships of the Chinese golden camellia plants, as well as better
established their interspecific relationships. Combined with the external morphological
analysis results, we provided more information and a scientific basis for the classification
of the Chinese Camellia Sect. Chrysantha plants.
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Based on the results of dd-RAD, this study showed that the plant species of 30 golden
camellia groups were derived from a common ancestor and had the same phenotype. Based
on a large number of homologous low-copy nuclear genes, Zhang [58] also confirmed the
monophyletism of golden camellia. Since none of the proposed intra-genus parts were
monophyletic, rapid diversification may have been the main driving force for the gene tree
inconsistencies, which may, in turn, have been influenced by hybridization/introspection,
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etc. Wei, based on dd-RAD and RNA-seq molecular markers, also detected strong hy-
bridization/introgression signals in the golden camellia group, and the reticular evolution
was the main cause of this inconsistent pattern. The topological structure of the phyloge-
netic tree was found to be inconsistent, which means that the information sites were not
comprehensive enough to distinguish the interspecific relationships effectively. In addition,
the expression genes of the transcriptomes and metabolomes were inconsistent under
different environmental pressure selection. Thus, the phylogenetic comparisons based on
selection pressure mechanisms suggested that genes that evolve under different selection
forces can provide valuable and complementary information on interspecific relationships
and developmental trees [59].
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4.2. Effects of the Different Environmental Pressures on the Evolutionary Selection of Camellia
Sect. Chrysantha

The smaller the PI value, the lower the nucleic acid diversity of the corresponding
population at the location, and the greater the possibility of selection pressure by natural,
or other, factors. According to the results, the natural selection pressure faced by the golden
camellia group plants distributed in karst areas is greater than that faced by the golden
camellia group plants distributed in non-karst areas. According to the expected heterozy-
gosity, He also showed that the polymorphism of golden tea plants in non-karst areas was
higher than that in karst areas. The gene of golden camellia in karst areas was selected
due to the pressures of the natural environment of karst; likewise, the polymorphism was
thus eliminated to adapt to the special habitat of karst. Regional genetic diversity was
also significantly reduced through the selective elimination of species. The pressure of
different natural environments has caused the inconsistency we see in the gene selection
and adaptability of golden camellia, which has affected its evolution and development.

4.3. Principal Component Cluster Analysis

There are still many differences in the interspecific relationships of golden camellia; as
such, more evidence is needed to analyze its classification system. The secondary metabo-
lites of plants are also widely used in plant systematics. Li et al. [60] used 25 flavonoid
components as chemical markers through which to study the evolutionary relationship of
plants in Sect. Camellia. Based on the polyphenol components, Li et al. studied the variety
classification and origin of tea trees [61], as well as the relationship between the hybrid
offspring of tea trees and their parents. The results showed that the diversity of secondary
metabolites in the evolution of seed plants was more influenced by environmental or exter-
nal factors, while the influence of genetic evolutionary factors was limited. The leaves of
golden camellia are its most important taxonomic organ and chemical component research
site, and the correlation between the content of secondary metabolic components and
plant classification has important research value. Cooperative research was carried out by
combining phytochemical secondary metabolism with plant phylogeny, the evolutionary
mechanism and plant geography. Not only can phytochemistry be systematically studied
from the general pattern of plant phylogeny, but the evidence of phytochemistry can also
be used to study plant phylogeny.
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Cluster analysis was performed on 21 species of golden camellia using the content
of the four effective active ingredients in the leaves of Camellia Sect. Chrysantha plants
as parameter combinations (Figure 7). The results showed (Figure 2c) that the dendro-
gram results were significantly consistent and had a corresponding relationship with the
molecular clustering of Camellia Sect. Chrysantha plants. When the distance coefficient
was 5, the overall classification could be divided into seven categories. The first category
included Camellia fascicularis, Camellia debaoensis, Camellia pubipetala, Camellia longzhouensis
and Camellia chrysanthoides; the second category included Camellia nitidissima var. microcurpa
and Camellia hauna; the third category included Camellia euphlebia and Camellia nitidis-
sima; and the fourth category included Camellia quinqueloculosa, Camellia flavida, Camellia
wumingensis and Camellia impressinervis. These kinds of plant nutrient contents saw the
highest relative nutritional value among all the kinds of golden camellia species. Cate-
gory 5 included Camellia mingii and Camellia achrysantha; Category 6 included Camellia
pingguoensisa, Camellia terminalis, Camellia rostrata and Camellia perpetua; and Category 7
included Camellia tunghinensis (which has a relatively low phytonutrient content and a
relatively low medicinal value). The research results of the cluster analysis of the active
chemical ingredients also proved the classification relationship of dd-RAD—the cluster-
ing relationship between Camellia fascicularis and Camellia debaoensis was relatively close;
the relationship between Camellia nitidissima, Camellia limonia and Camellia euphlebia was
consistent; Camellia wumingensis and Camellia impressinervis were clustered in the same
way; and Camellia pingguoensis, Camellia pingguoensis var. terminalis and Camellia pubipetala
were clustered together as a whole and were consistent. Based on the cluster analysis of
four active ingredients, the similarity rate with Min’s classification system was relatively
high [62]. The classification relationship of Camellia nitidissima, Camellia euphlebia and
Camellia nitidissima var. microcurpa was similar; moreover, the classification relationship
of Camellia flavida and Camellia hauna was also similar. Similarly, Camellia pingguoensis
var. terminalis, as a variant of Camellia pingguoensis, can be defined as a species; however,
Camellia tunghinensis is a separate category. The diversity and particularity of a species will
inevitably lead to a diversity and particularity in the types of phytochemical components.
The diversity of the phytochemical components will inevitably lead to a diversity and
particularity in biological activities. The distribution of secondary metabolites in the tree of
life, if it is selective, will definitely show certain phylogenetic signals [63,64]. Therefore, we
can analyze and evaluate the evolutionary relationships between plant groups through the
distribution characteristics of secondary metabolites on the evolutionary branches on the
plant phylogenetic tree (or tree of life), thereby providing evidence for plant classification
and phylogenetic evolution.
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5. Conclusions

Compared with previous RAPD, AFLP and SSR molecular marker methods that could
not provide sufficient genetic markers and informative loci, the development of SNP mark-
ers based on dd-RAD sequencing technology has shown higher feasibility and reliability in
taxonomic research on Camellia Sect. Chrysantha, and it is an ideal approach to research
that is not limited by the reference genome method. We successfully used dd-RAD se-
quencing technology to develop 75,548 high-quality SNPs and 5072 InDels from the sample
population. Using the SNP genetic information developed with dd-RAD-seq, we conducted
a genetic relationship and phylogenetic analysis of 30 species of Camellia Sect. Chrysantha
from China. It was found that the Chinese golden camellia group can be divided into seven
reticular taxa: Camellia nitidissima, Camellia nitidissima var. microcurpa, Camellia euphlebia,
Camellia tunghinensis and Camellia rostrata came together; Camellia limonia, Camellia xiashien-
sis, Camellia multipetala, Camellia parvipetala and Camellia micrantha came together; Camellia
achrysantha, Camellia longzhouensis, Camellia multipetala var. Patens, Camellia perpetua and
Camellia quinqueloculosa were grouped together; Camellia debaoensis, Camellia fascicularis,
Camellia mingii, Camellia pingguoensis var. terminalis and Camellia wumingensis were grouped
together; and, among them, Camellia debaoensis, Camellia fascicularis and Camellia mingii
were closely related. Camellia impressinervis, Camellia longgangensis and Camellia ptilosperma
were closely related and were grouped together. Camellia flavida, Camellia huana, Camellia
libelofifilamenta, Camellia pingguoensis and Camellia tianeensis were grouped together. Camellia
pubipetala and Camellia chrysanthoides were one branch. Combined with chemical classifi-
cation research, a cluster analysis of 21 species of Camellia Sect. Chrysantha also proved
the classification relationship of dd-RAD: the first category included Camellia fascicularis,
Camellia debaoensis, Camellia pubipetala, Camellia longzhouensis and Camellia chrysanthoides;
the second category included Camellia nitidissima var. microcurpa and Camellia hauna; the
third category included Camellia euphlebia and Camellia nitidissima; and the fourth category
included Camellia quinqueloculosa, Camellia flavida, Camellia wumingensis and Camellia im-
pressinervis. These kinds of plant nutrient contents had the highest relative nutritional value
among all of the kinds of golden camellia species studied. The phylogenetic signal refers to
the similarity between the related traits that evolved in similar groups on the phylogenetic
tree, that is, the correlation of evolution in the similar groups and similarity of traits. The
phylogenetic signal can be divided into high and low. When the phylogenetic signal is high,
it means that the traits between the similar taxa are similar. According to the phylogenetic
information of the genetic and chemical phenotypes, the specific secondary metabolites of
golden camellia showed a clustered distribution pattern in specific groups. One group was
Camellia pubipetala, Camellia longzhouensis, Camellia chrysanthoides, Camellia debaoensis and
Camellia fascicularis; the other group was Camellia quinqueloculosa, Camellia impressinervis,
Camellia flavida and Camellia wumingensis. Furthermore, these two groups were categorized
according to their leaf parts with high potential medicinal value. The plant groups outlined
in this paper have important development potential and application prospects.
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