Plant Diversity Responses of Ulmus pumila L. Communities to Grazing Management in Hunshandak Sandy Land, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Field Sampling and Climate Data Gathering
2.3. Molecular Methods
2.4. Data Analyses
3. Results
3.1. Effect of Grazing Intensity on Plant Species Diversity
3.2. Effect of Grazing Intensity on Plant Genetic Diversity
3.3. Correlations between Plant Species and Genetic Diversity
3.4. Correlations between Climatic and Species–Genetic Diversity
4. Discussion
4.1. Responses of Species Diversity to Grazing Types
4.2. Responses of Genetic Diversity and Difference to Grazing Types
4.3. Relationship between Species and Genetic Diversity
4.4. Effects of Climate Factors on Plant Species and Genetic Diversity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wehenkel, C.; Bergmann, F.; Gregorius, H.R. Is there a trade-off between species diversity and genetic diversity in forest tree communities? Plant Ecol. 2006, 185, 151–161. [Google Scholar] [CrossRef]
- Bergmann, F.; Gregorius, H.R.; Kownatzki, D.; Wehenkel, C. Different diversity measures assess species-genetic diversity relationships differently: A marker-based case study in forest tree communities. Silvae Genet. 2013, 62, 25–38. [Google Scholar] [CrossRef]
- Lamy, T.; Jarne, P.; Laroche, F.; Pointier, J.P.; Huth, G.; Segard, A.; David, P. Variation in habitat connectivity generates positive correlations between species and genetic diversity in a metacommunity. Mol. Ecol. 2013, 22, 4445–4456. [Google Scholar] [CrossRef] [PubMed]
- Odat, N.; Hellwig, F.H.; Jetschke, G.; Fischer, M. On the relationship between plant species diversity and genetic diversity of Plantago lanceolata (Plantaginaceae) within and between grassland communities. J. Plant Ecol. 2010, 3, 41–48. [Google Scholar] [CrossRef]
- Aavik, T.; Helm, A. Restoration of plant species and genetic diversity depends on landscape-scale dispersal. Restor. Ecol. 2018, 26, S92–S102. [Google Scholar] [CrossRef]
- Li, Q.M.; Cai, C.N.; Xu, W.M.; Cao, M.; Sha, L.Q.; Lin, L.X.; He, T.H. Adaptive genetic diversity of dominant species contributes to species co-existence and community assembly. Plant Divers. 2022, 44, 271–278. [Google Scholar] [CrossRef]
- Vellend, M.; Geber, M.A. Connections between species diversity and genetic diversity. Ecol. Lett. 2005, 8, 767–781. [Google Scholar] [CrossRef]
- Schöb, C.; Kerle, S.; Karley, A.J.; Morcillo, L.; Pakeman, R.J.; Newton, A.C.; Brooker, R.W. Intraspecific genetic diversity and composition modify species-level diversity-productivity relationships. New Phytol. 2015, 205, 720–730. [Google Scholar] [CrossRef]
- Silvertown, J.; Biss, P.M.; Freeland, J. Community genetics: Resource addition has opposing effects on genetic and species diversity in a 150-year experiment. Ecol. Lett. 2009, 12, 165–170. [Google Scholar] [CrossRef]
- Li, X.B.; Xin, L.Y.; Dou, H.S.; Dang, D.L.; Li, S.K.; Li, X.; Li, M.Y.; Xuan, X.J. Strengthening grazing pressure management to improve grassland ecosystem services. Glob. Ecol. Conserv. 2021, 31, e01782. [Google Scholar] [CrossRef]
- Guo, F.H.; Li, X.L.; Yin, J.J.; Jimoh, S.O.; Hou, X.Y. Grazing-induced legacy effects enhance plant adaption to drought by larger root allocation plasticity. J. Plant Ecol. 2021, 14, 1024–1029. [Google Scholar] [CrossRef]
- Wu, X.L.; Dang, X.H.; Meng, Z.J.; Fu, D.S.; Cong, W.C.; Zhao, F.Y.; Guo, J.J. Mechanisms of grazing management impact on preferential water flow and infiltration patterns in a semi-arid grassland in northern China. Sci. Total Environ. 2022, 813, 152082. [Google Scholar] [CrossRef] [PubMed]
- Papanastasis, V.P. Restoration of degraded grazing lands through grazing management: Can it work? Restor. Ecol. 2009, 17, 441–445. [Google Scholar] [CrossRef]
- Fang, Q.X.; Harmel, R.D.; Ma, L.; Bartling, P.N.S.; Derner, J.D.; Jeong, J.; Williams, J.R.; Boone, R.B. Evaluating the APEX model for alternative cow-calf grazing management strategies in Central Texas. Agric. Syst. 2022, 195, 103287. [Google Scholar] [CrossRef]
- Li, X.L.; Png, G.K.; Li, Y.H.; Jimoh, S.O.; Ding, Y.; Li, P.; Sun, S.X. Leaf plasticity contributes to plant anti-herbivore defenses and indicates selective foraging: Implications for sustainable grazing. Ecol. Indic. 2021, 122, 107273. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Wang, J.S.; Niu, S.L. Toward a sustainable grazing management based on biodiversity and ecosystem multifunctionality in drylands. Curr. Opin. Environ. Sustain. 2021, 48, 36–43. [Google Scholar] [CrossRef]
- Chen, J.N.; Deng, F.; Wu, E.T.; Wu, W.J.; Cai, L.Y.; Ma, H.L. 10 years remote sensing monitoring analysis of desertification land of representative region in Hunshandake. Chin. Agric. Sci. Bull. 2015, 31, 227–234. [Google Scholar] [CrossRef]
- Castillo-Garcia, M.; Alados, C.L.; Ramos, J.; Moret, D.; Barrantes, O.; Pueyo, Y. Understanding herbivore-plant-soil feedbacks to improve grazing management on mediterranean mountain grasslands. Agric. Ecosyst. Environ. 2022, 327, 107833. [Google Scholar] [CrossRef]
- Ding, G.D.; Li, S.Y.; Cai, J.Y.; Zhao, T.N.; Wang, X.; Ling, X. Pasture resources evaluation and stocking density in Hunshandake Sandy Land: Case study of Zhenglan Banner, Inner Mongolia. Chin. J. Ecol. 2005, 24, 1038–1042. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Wu, H.Y.; Ding, G.D.; Gao, G.L.; Tu, W.Z. A review on the aeolian desertification in the Otindag Sandy Land. J. Desert Res. 2020, 40, 101–111. [Google Scholar] [CrossRef]
- Zhang, Z.Y. Spatial Distribution of Vegetation and Soil in Temperate Savanna Ecosystem, Inner Mongolia. Ph.D. Thesis, Chinese Academy of Forestry, Beijing, China, 2017. [Google Scholar]
- Song, Y.X. A Primary study on the correlation between climate factors and soil texture in Hunshandake sand-land. Acta Sci. Nat. Univ. NeiMongol. 2003, 34, 334–337. [Google Scholar]
- Yao, X.L.; Li, L.; Wang, F.; Liu, S.R.; Wu, B.; Guo, X.J. Effects of grazing management on the degradation of Ulmus pumila open forest in Otindag Sandy Land. Acta Ecol. Sin. 2020, 40, 1663–1671. [Google Scholar] [CrossRef]
- Li, S.Y. A Study on Evaluation of Grassland Resources and Grazing Capacity in Hunshandake–With Zhenglan County in Inner Mongolia as an Example. Master’s Thesis, Beijing Forestry University, Beijing, China, 2004. [Google Scholar]
- Chen, W.Q.; Huang, D.; Liu, N.; Zhang, Y.J.; Badgery, W.B.; Wang, X.Y.; Shen, Y. Improved grazing management may increase soil carbon sequestration in temperate steppe. Sci. Rep. 2015, 5, 10892. [Google Scholar] [CrossRef]
- Yang, H.X.; Chu, J.M.; Lu, Q.; Gao, T. Relationships of native trees with grasses in a temperate, semi-arid sandy ecosystem of northern China. Appl. Veg. Sci. 2014, 17, 338–345. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, S.Q.; Huang, Z.J.; Liu, Y.L.; Hu, H.F. A study on resistibility of Agropyron mongolicum against the allelopathy of Stellera chamaejasme. Chin. J. Grassl. 2008, 30, 107–112. [Google Scholar]
- Zhang, Z.Y.; Yang, X.H.; Zhang, X.; Liu, Y.S.; Shi, Z.J. Structure and dynamic characteristics of Ulmus pumila population in the Otindag Sandy Land. J. Desert Res. 2018, 38, 524–534. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, B.; Zhang, K.B.; Zhou, J.X.; Ahmad, B. The spatial pattern and interactions of woody plants on the temperature savanna of Inner Mongolia, China: The effects of alternating seasonal grazing-mowing regimes. PLoS ONE 2015, 10, e0133277. [Google Scholar] [CrossRef]
- Yao, X.L.; Zhou, L.H.; Yang, G.Q.; Jiang, L.N. Effects of grazing on the Ulmus pumila population in Hunshandake Sandy Land. Grass Feedind Livestock 2023, 7, 41–46. [Google Scholar] [CrossRef]
- Tate, J.A.; Simpson, A.B. Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploidy species. Syst. Bot 2003, 28, 723–737. [Google Scholar] [CrossRef]
- Taberlet, P.; Gielly, L.; Pautou, G.; Bouvet, J. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol. Biol. 1991, 17, 1105–1109. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocol: A Guide to Methods and Applications; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Jacqueline, E.; Gerald, W.; Josetta, S.; White, C.Y. Using Simpson’s diversity index to examine multidimensional models of diversity in health professions education. Int. J. Med. Educ. 2016, 7, 1–5. [Google Scholar] [CrossRef]
- Curtis, J.T.; Mcintosh, R.P. The interrelations of certain analytic and synthetic phytosociological characters. Ecology 1950, 31, 434–455. [Google Scholar] [CrossRef]
- Excoffier, L.; Listcher, H.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Etienne, R.S. A new sampling formula for neutral biodiversity. Ecol. Lett. 2005, 8, 253–260. [Google Scholar] [CrossRef]
- Evanno, G.; Castella, E.; Antoine, C.; Pailla, T.G.; Goudet, J. Parallel changes in genetic diversity and species diversity following a natural disturbance. Mol. Ecol. 2009, 18, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Wright, S. The genetic structure of populations. Ann. Eugen. 1951, 15, 323–354. [Google Scholar] [CrossRef]
- terBraak, C.J.F.; Šmilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5); Microcomputer Power: Ithaca, NY, USA, 2002; 500p. [Google Scholar]
- Zhang, L.J.; Yue, M.; Zhang, Y.D.; Gu, F.X.; Pan, X.L.; Zhao, G.F. Characteristics of plant community species diversity of Oasis desert ecotone in Fukang, Xinjiang. Sci. Geogr. Sin. 2003, 23, 329–334. [Google Scholar] [CrossRef]
- Bai, Y.F. Studies on Species Diversity and Functional Diversity of Ulmus lamellose Community in Taiyue Mountain of Shanxi. Master’s Thesis, Shanxi Normal University, Xi’an, China, 2014. [Google Scholar]
- Zhang, Z.Y.; Shi, Z.J.; Yang, X.H.; Liu, Y.S.; Zhang, X. Analysis on spatial pattern and intraspecific and interspecific relationships of woody plants in Ulmus pumila-dominated savanna in Otindag Sandy Land. J. Plant Resour. Environ. 2019, 28, 33–43. [Google Scholar] [CrossRef]
- Zhao, L.Y.; Zhong, H.S.; Zhao, M.Y.; Zhang, J. Effect of enclosure and grazed management on aboveground biomass and species diversity in sandy grasslands of Horqin Sandy Land, Eastern Inner Mongolia, China. Ecol. Environ. Sci. 2018, 27, 1783–1790. [Google Scholar] [CrossRef]
- Qi, Y.; Jiang, Q.O.; Guo, J.B.; Zhang, X.X. Effects of seasonal grazing on vegetation and soil in Gan Nanal pine meadow. Acta Agrestia Sin. 2019, 27, 3–06. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.H.; Deng, L.; Wu, G.L. Species diversity and functional groups responses to different seasonal grazing in alpine grassland. Pratacultural. Sci. 2016, 33, 1403–1409. [Google Scholar] [CrossRef]
- Qi, D.H.; Yang, H.X.; Lu, Q.; Gan, H.H.; Chu, J.M. Types and characteristics of plant communities in the Otingdag Sandy Land. J. Desert Res. 2021, 41, 23–33. [Google Scholar]
- Drouin, G.; Daoud, H.; Xia, J.N. Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants. Mol. Phylogenetics Evol. 2008, 49, 827–831. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, D.J.; Wang, K.; Cong, P.H.; Zhang, C.X.; Li, L.W.; Pu, J.C. Chloroplast DNA variation and genetic evolution of Malus sieversii (Ledeb.) M. Roem. J. Plant Genet. Resour. 2020, 21, 579–587. [Google Scholar] [CrossRef]
- Wei, X.; Jiang, M. Contrasting relationships between species diversity and genetic diversity in natural and disturbed forest tree communities. New Phytol. 2012, 193, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Shan, D.; Zhao, M.L.; Han, B.; Han, G.D. Genetic diversity of Stipa grandis under different grazing pressures. Acta Ecol. Sin. 2006, 26, 3175–3183. [Google Scholar] [CrossRef]
- Ma, D.T.; Guo, Y.X.; Hou, F.J.; Zhai, X.Y.; Wang, W.; Tian, M.; Wang, C.Z.; Yan, X.B. Plant genetic diversity and grazing management on the Qinghai-Tibetan plateau: A case study of a dominant native wheatgrass (Elymus nutans). Biochem. Syst. Ecol. 2014, 56, 16–23. [Google Scholar] [CrossRef]
- Odat, N.; Jetschke, G.; Hellwig, F.H. Genetic diversity of Ranunculus acris L. (Ranunculaceae) populations in relation to species diversity and habitat type in grassland communities. Mol. Ecol. 2010, 13, 1251–1257. [Google Scholar] [CrossRef]
- Wang, Y.K.; Ding, X.F.; Wang, X.P.; Wu, M.; Gao, S.B.; Yang, X.; Zhao, N.X.; Gao, Y.B. Genotypic diversity of a dominant species Leymus chinensis inhibited ecological function of species diversity in the Inner Mongolia Steppe. Acta Ecol. Sin. 2019, 39, 1507–1516. [Google Scholar] [CrossRef]
- Kahilainen, A.; Puurtinen, M.; Kotiaho, J.S. Conservation implications of species-genetic diversity correlations. Glob. Ecol. Conserv. 2014, 2, 315–323. [Google Scholar] [CrossRef]
- Huang, W.D.; Zhao, X.Y.; Zhao, X.; Li, Y.Q.; Lian, J.; Yun, J.Y. Relationship between the genetic diversity of Artemisia halodendron and climatic factors. Acta Oecol. 2014, 55, 97–103. [Google Scholar] [CrossRef]
- Huang, W.D.; Zhao, X.Y.; Zhao, X.; Li, Y.L.; Lian, J. Effects of environmental factors on genetic diversity of Canagana microphylla in Horqin Sandy Land, northeast China. Ecol. Evol. 2016, 6, 8256–8266. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.J.; Ding, Y.; Xu, H.; Deng, F.Y.; Yao, L.; Ai, X.R.; Zang, R.G. Patterns of diversity change for forest vegetation across different climatic regions—A compound habitat gradient analysis approach. Glob. Ecol. Conserv. 2020, 23, e01106. [Google Scholar] [CrossRef]
- Ali, A.; Sanaei, A.; Li, M.S.; Nalivan, O.A.; Pour, M.J.; Valipour, A.; Karami, J.; Aminpour, M.; Kaboli, H.; Askari, Y. Big-trees-Energy mechanism underlies forest diversity and aboveground biomass. Forest Ecol. Manag. 2020, 461, 117968. [Google Scholar] [CrossRef]
- Liang, H.; Fu, T.; Gao, H.; Li, M.; Liu, J. Climatic and non-climatic drivers of plant diversity along analtitudinal gradient in the Taihang mountains of northern China. Diversity 2023, 15, 66. [Google Scholar] [CrossRef]
Grazing Management Types | Number of Ulmus pumila Samples | Species Name and Number of Other Dominant Species Samples besides U. pumila |
---|---|---|
BG | 20 | Agropyron cristatum (L.) Gaertn. (2) |
Artemisia frigida Willd. (3) | ||
Artemisia halodendron Turcz. (4) | ||
Artemisia scoparia Waldst. et Kit (4) | ||
Caragana korshinskii Kom(2) | ||
Carduus crispus L. (2) | ||
Cleistogenes squarrosa (Trin.) Keng (2) | ||
Setaria viridis (L.) Beauv. (4) | ||
Spiraea trilobata L. (3) | ||
SG | 16 | Artemisia frigida Willd. (2) |
Artemisia halodendron Turcz. (4) | ||
Caragana microphylla Lam. (4) | ||
Carex duriuscula C. A. Mey. (3) | ||
Chenopodium acuminatum Willd. (3) | ||
Leymus secalinus (Georgi) Tzvel. (2) | ||
Setaria viridis (L.) Beauv. (2) | ||
Spiraea trilobata L. (4) | ||
DG | 12 | Artemisia halodendron Turcz. (8) |
Corispermum mongolicum Iliin. (4) | ||
Salix cheilophila Schneid. (2) | ||
Salix gordejevii Y. L. Chang et Skv. (8) |
Primer | Sequence (5′–3′) | References | |
---|---|---|---|
cpDNA | psbA-trnH | F: GTTATGCATGAACGTAATGCTC R: CGCGCATGGTGGATTCACAATCC | Tate et al., 2003 [31] |
trnL-trnF | F: CGAAATCGGTAGACGCTACG R: ATTTGAACTGGTGACACGAG | Taberlet et al., 1991 [32] | |
nrDNA | ITS1-ITS4 | F: AGGTGACCTGCGGAAGGATCATT R: GGTAGTCCCGCCTGACCTGG | White et al., 1990 [33] |
Species | Life-Form | Important Value (%) | ||
---|---|---|---|---|
BG | SG | DG | ||
Setaria viridis (L.)Beauv. | annual | 0.43 | 0.32 | 0.08 |
Corispermum mongolicum Iliin. | 0.25 | 0.50 | 0.33 | |
Chenopodium aristatum L. | 0.24 | 0.19 | 0.09 | |
Bassia dasyphylla (Fisch. et C. A. Mey.) Kuntze | 0.04 | 0.08 | 0.06 | |
Salsola collina Pall. | 0.02 | 0.14 | 0.07 | |
Chenopodium acuminatum Willd. | 0.02 | 0.08 | 0.05 | |
Artemisia palustris Linn. | 0.05 | 0.01 | ||
Echinops gmelini Turcz. | 0.01 | 0.01 | ||
Cannabis sativa L. | 0.01 | 0.05 | ||
Xanthium sibiricum Patrin ex Widder | 0.01 | |||
Agriophyllum squarrosum (Linn.) Moq. | 0.07 | |||
Eragrostis pilosa (Linn.) Beauv | 0.01 | |||
Artemisia scoparia Waldst. et Kit | biennial | 0.19 | 0.11 | |
Artemisia sieversiana Ehrhart ex Willd. | 0.08 | 0.01 | ||
Lappula myosotis V. Wolf | 0.04 | 0.05 | ||
Sonchus oleraceus L. | 0.01 | 0.01 | ||
Dontostemon dentatus (Bunge) Ledeb. | 0.03 | 0.08 | ||
Carduus crispus L. | 0.53 | |||
Silene aprica Turcx. ex Fisch. et Mey. | 0.01 | |||
Agropyron cristatum (L.) Gaertn. | perennial | 0.46 | 0.28 | 0.19 |
Artemisia frigida Willd. | 0.42 | 0.29 | 0.03 | |
Carex duriuscula C. A. Mey. | 0.26 | 0.24 | 0.24 | |
Cleistogenes squarrosa (Trin.) Keng | 0.26 | 0.14 | 0.02 | |
Potentilla acaulis L. | 0.10 | 0.01 | 0.01 | |
Medicago ruthenica (L.) Trautv. | 0.07 | 0.02 | 0.13 | |
Carex tristachya Thunb. | 0.02 | 0.11 | 0.03 | |
Bromus inermis Leyss. | 0.01 | 0.01 | 0.04 | |
Leymus secalinus (Georgi) Tzvel. | 0.01 | 0.25 | 0.01 | |
Allium tenuissimum L. | 0.05 | 0.01 | ||
Poa sphondylodes Trin. | 0.04 | 0.01 | ||
Potentilla bifurca Linn. | 0.04 | 0.02 | ||
Achnatherum sibiricum (L.) Keng | 0.02 | 0.09 | ||
Allium senescens L. | 0.02 | 0.04 | ||
Allium mongolicum Regel. | 0.01 | 0.02 | ||
Stipa grandis P.A. Smirn. | 0.05 | 0.01 | ||
Leymus chinensis (Trin.) Tzvel. | 0.02 | 0.09 | ||
Phragmites australis (Cav.) Trin. ex Steu. | 0.08 | 0.01 | ||
Leontopodium leontopodioides (Willd.) Beauv. | 0.34 | |||
Dianthus chinensis L. | 0.10 | |||
Ferula bungeana Kitag. | 0.08 | |||
Heteropappus altaicus (Willd.) Novopokr. | 0.04 | |||
Oxytropis racemosa Turcz. | 0.03 | |||
Erodium stephanianum Willd. | 0.02 | |||
Psammochloa villosa (Trin.) Bor | 0.02 | |||
Astragalus laxmannii Jacquin | 0.02 | |||
Allium ramosum L. | 0.01 | |||
Oxytropis racemosa Turcz. | 0.01 | |||
Calamagrostis pseudophragmites (Haller f.) Koeler | 0.02 | |||
Chamaerhodos canescens Krause | 0.02 | |||
Thalictrum petaloideum L. | 0.02 | |||
Polygonum sibiricum Laxm. | 0.01 | |||
Polygonum divaricatum L. | 0.09 | |||
Hedysarum gmelinii Ledeb. | 0.04 | |||
Ptilotricum canescens (DC.) C. A. Mey. | 0.02 | |||
Ulmus pumila L. | shrub | 1.15 | 1.55 | 1.03 |
Artemisia halodendron Turcz. | 0.42 | 1.08 | 0.78 | |
Spiraea trilobata L. | 2.58 | 0.98 | ||
Caragana microphylla Lam. | 0.03 | 1.40 | ||
Thymus mongolicus Ronn. | 0.01 | 0.02 | ||
Caragana korshinskii Kom. | 0.27 | |||
Lespedeza daurica (Laxm.) Schindl. | 0.03 | |||
Kochia prostrata (L.) Schrad. | 0.02 | |||
Cynanchum thesioides (Freyn) K. Schum. | 0.01 | |||
Berberis poiretii Schneid. | 0.10 | |||
Salix gordejevii Y. L. Chang et Skv. | 0.58 | |||
Salix cheilophila Schneid. | 0.42 | |||
Hedysarum fruticosum.Pall. | 0.04 |
Gene | Species | H | Hd ± SD | AR ± SD | HE ± SD | Gd ± SD |
---|---|---|---|---|---|---|
cpDNA | U | 20 | 0.497 ± 0.163 | 2.968 ± 0.649 | 0.252 ± 0.133 | 0.848 ± 0.079 |
NU | 34 | 0.584 ± 0.233 | 3.467 ± 0.639 | 0.435 ± 0.187 | 0.847 ± 0.034 | |
nrDNA | U | 22 | 0.649 ± 0.136 | 3.163 ± 1.02 | 0.281 ± 0.185 | 0.905 ± 0.040 |
NU | 38 | 0.754 ± 0.189 | 3.660 ± 1.071 | 0.378 ± 0.215 | 0.942 ± 0.034 | |
COM | U | 27 | 0.762 ± 0.228 | 3.134 ± 1.067 | 0.268 ± 0.184 | 0.865 ± 0.018 |
NU | 45 | 0. 791 ± 0.272 | 3.332 ± 1.011 | 0.394 ± 0.200 | 0.907 ± 0.012 |
Species | Source of Variation | df | Percentage of Variation | Fixation Indices | p |
---|---|---|---|---|---|
U | Among populations | 11 | 1.92 | FST = 0.0192 | p < 0.001 |
Within population | 36 | 98.08 | |||
Total | 48 | ||||
Among grazing types | 2 | 1.16 | FCT = 0.0116 | p < 0.001 | |
Within population among grazing types | 9 | 13.35 | FSC = 0.1319 | p < 0.001 | |
Total | 36 | 87.82 | FST = 0.1219 | p < 0.001 | |
NU | Among populations | 11 | 4.75 | FST = 0.0475 | p = 0.004 |
Within population | 132 | 95.25 | |||
Total | 144 | ||||
Among grazing types | 2 | 1.70 | FCT = 0.0170 | p = 0.003 | |
Within population among grazing types | 9 | 24.08 | FSC = 0.2367 | p < 0.001 | |
Total | 132 | 77.62 | FST = 0.2238 | p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; He, Y.; Zhao, X.; Yang, H.; Gan, H.; Zhao, X. Plant Diversity Responses of Ulmus pumila L. Communities to Grazing Management in Hunshandak Sandy Land, China. Diversity 2023, 15, 1221. https://doi.org/10.3390/d15121221
Huang W, He Y, Zhao X, Yang H, Gan H, Zhao X. Plant Diversity Responses of Ulmus pumila L. Communities to Grazing Management in Hunshandak Sandy Land, China. Diversity. 2023; 15(12):1221. https://doi.org/10.3390/d15121221
Chicago/Turabian StyleHuang, Wenda, Yuanzheng He, Xueyong Zhao, Hongxiao Yang, Honghao Gan, and Xin Zhao. 2023. "Plant Diversity Responses of Ulmus pumila L. Communities to Grazing Management in Hunshandak Sandy Land, China" Diversity 15, no. 12: 1221. https://doi.org/10.3390/d15121221
APA StyleHuang, W., He, Y., Zhao, X., Yang, H., Gan, H., & Zhao, X. (2023). Plant Diversity Responses of Ulmus pumila L. Communities to Grazing Management in Hunshandak Sandy Land, China. Diversity, 15(12), 1221. https://doi.org/10.3390/d15121221