Longitudinal Changes in Diverse Assemblages of Water Mites (Hydrachnidia) along a Lowland River in Croatia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Laboratory Methods
2.3. Environmental Variables
2.4. Data Analysis
3. Results
4. Discussion
4.1. Longitudinal Gradient
4.2. Hydromorphological Alternation vs. Microhabitat Composition in Shaping Water Mite Assemblages
4.3. Environmental Variables
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smit, H. Water mites of the world, with keys to the families, subfamilies, genera and subgenera (Acari: Hydrachnidia). In Monografieën van de Nederlandse Entomologische Vereniging; Nederlandse Entomologische Vereniging (NEV): Leiden, The Netherlands, 2020; Volume 12, pp. 1–774. [Google Scholar]
- Krantz, G.W.; Walter, D.E. A Manual of Acarology, 3rd ed.; Texas Tech University Press: Lubbock, TX, USA, 2009; pp. 1–807. [Google Scholar]
- Tockner, K.; Pusch, M.; Borchardt, D.; Lorang, M.S. Multiple Stressors in Coupled River-Floodplain Ecosystems. Freshw. Biol. 2010, 55, 135–151. [Google Scholar] [CrossRef]
- Villeneuve, B.; Piffady, J.; Valette, L.; Souchon, Y.; Usseglio-Polatera, P. Direct and Indirect Effects of Multiple Stressors on Stream Invertebrates across Watershed, Reach and Site Scales: A Structural Equation Modelling Better Informing on Hydromorphological Impacts. Sci. Total Environ. 2018, 612, 660–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allan, J.D. Landscapes and Riverscapes: The Influence of Land Use on Stream Ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef] [Green Version]
- Novotny, V.; Bedoya, D.; Virani, H.; Manolakos, E. Linking Indices of Biotic Integrity to Environmental and Land Use Variables: Multimetric Clustering and Predictive Models. Water Sci. Technol. 2009, 59, 1–8. [Google Scholar] [CrossRef]
- Paul, M.J.; Meyer, J.L. Streams in the Urban Landscape. Annu. Rev. Ecol. Syst. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- Maoduš, I.V.; Pozojević, I.; Vilenica, M.; Mihaljević, Z. Longitudinal Dynamics of Odonata Assemblages in an Anthropogenically Impacted Lotic System. Int. J. Lim. 2022, 58, 7. [Google Scholar] [CrossRef]
- Vilenica, M.; Mihaljević, Z. Odonata Assemblages in Anthropogenically Impacted Habitats in the Drava River—A Long-Term Study. Water 2022, 14, 3119. [Google Scholar] [CrossRef]
- Šumanović, M.; Pozojević, I.; Mihaljević, Z.; Vučković, N.; Dorić, V.; Miliša, M. Invertebrate Functional Responses to Hydromorphological Degradation in Mediterranean Croatian Rivers. Fundam. Appl. Limnol. 2021, 194, 259–270. [Google Scholar] [CrossRef]
- Vilenica, M.; Kerovec, M.; Pozojević, I.; Mihaljević, Z. Mayfly Response to Different Stress Types in Small and Mid-Sized Lowland Rivers. ZooKeys 2020, 980, 57–77. [Google Scholar] [CrossRef]
- Kowalik, W.; Biesiadka, E. Occurence of water mites (Hydracarina) in the river Wieprz polluted with domestic-industry sewage. Acta Hydrobiol. 1981, 23, 331–348. [Google Scholar]
- Smit, H.; van der Hammen, H. Water Mites as Indicators of Natural Aquatic Ecosystems of the Coastal Dunes of the Netherlands and Northwestern France. Hydrobiologia 1992, 231, 51–64. [Google Scholar] [CrossRef]
- Pozojević, I.; Ternjej, I.; Mihaljević, Z.; Gottstein, S.; Vučković, N.; Dorić, V.; Rumišek, M. Prey Abundance Supporting Unusual Water Mite (Acari: Hydrachnidia) Community in a Sublacustrine Spring and Tributary River. Acta Biol. 2018, 25, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Zawal, A.; Stryjecki, R.; Stępień, E.; Buczyńska, E.; Buczyński, P.; Czachorowski, S.; Pakulnicka, J.; Śmietana, P. The Influence of Environmental Factors on Water Mite Assemblages (Acari, Hydrachnidia) in a Small Lowland River: An Analysis at Different Levels of Organization of the Environment. Limnology 2017, 18, 333–343. [Google Scholar] [CrossRef] [Green Version]
- Miccoli, F.P.; Lombardo, P.; Cicolani, B. Indicator Value of Lotic Water Mites (Acari: Hydrachnidia) and Their Use in Macroinvertebrate-Based Indices for Water Quality Assessment Purposes. Knowl. Managt. Aquatic Ecosyst. 2013, 411, 8. [Google Scholar] [CrossRef] [Green Version]
- Knehtl, M.; Podgornik, S.; Urbanič, G. Scale-Depended Effects of Hydromorphology and Riparian Land-Use on Benthic Invertebrates and Fish: Implications for Large River Management. Hydrobiologia 2021, 848, 3447–3467. [Google Scholar] [CrossRef]
- Urbanič, G.; Mihaljević, Z.; Petkovska, V.; Pavlin Urbanič, M. Back to Ecology: Reference Conditions as a Basis for Assessment, Restoration and Sustainable Management of Large Rivers. Water 2021, 13, 2596. [Google Scholar] [CrossRef]
- AQEM Consortium: Manual for the Application of the AQEM Method A Comprehensive Method to Assess European Streams Using Benthic Macroinvertebrates, Developed for the Purpose of the Water Framework Directive; Version 1.0. 2002. Available online: https://scholar.google./scholar?q=AQEM+Consortium.+2002.+Manual+for+the+application+of+the+AQEM+system%3A+a+comprehensive+method+to+assess+European+streams+using+benthic+macroinvertebrates%2C+developed+for+the+purpose+of+the+Water+Framework+Directive.+Version+1.0%2C+February+2002%2C+202+%D1%80 (accessed on 16 January 2023).
- Bartsch, I.; Davids, K.; Deichsel, R.; Di Sabatino, A.; Gabrys, G.; Gledhill, T.; Jäger, P.; Makol, J.; Smit, H.; van der Hammen, H.; et al. Süßwasserfauna von Mitteleuropa, Vol. 7/2-1 Chelicerata: Araneae/Acari I; Gerecke, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef] [Green Version]
- Di Sabatino, A.; Gerecke, R.; Gledhill, T.; Smit, H. Süßwasserfauna von Mitteleuropa, Vol. 7/2-2 Chelicerata: Acari II; Gerecke, R., Ed.; Spektrum: Heidelberg, Germany, 2010. [Google Scholar]
- Gerecke, R.; Gledhill, T.; Pešić, V.; Smit, H. Süßwasserfauna von Mitteleuropa, Bd. 7/2-3 Chelicerata; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Tuzovskij, P.V. Key to Deutonymphs of Water Mites [Opredelitel’ Deutonymphs Vodyanykh Kleshchey]; Akademia Nauka UdSSR: Moscow, Russia, 1990; pp. 1–238. [Google Scholar]
- UNE EN 15843; Water Quality—Guidance Standard on Determining the Degree of Modification of River Hydromorphology. CEN: Brussels, Belgium, 2010. Available online: https://www.en-standard.eu/une-en-15843-2010-water-quality-guidance-standard-on-determining-the-degree-of-modification-of-river-hydromorphology/ (accessed on 11 November 2022).
- Rom, D.M. An improved Hochberg procedure for multiple tests of significance. Br. J. Math. Stat. Psychol. 2013, 66, 189–196. [Google Scholar] [CrossRef]
- Clarke, K.R.; Gorley, R.N. PRIMER v7 User Manual/Tutorial. PRIMER-EPlymouth—References—Scientific Research Publishing. 2015. Available online: https://www.scirp.org/(S(oyulxb452alnt1aej1nfow45))/reference/ReferencesPapers.aspx?ReferenceID=1894960 (accessed on 11 November 2022).
- TIBCO Statistica® Document Management System 13.3.0. Available online: https://docs.tibco.com/products/tibco-statistica-document-management-system-13-3-0 (accessed on 11 November 2022).
- ScienceOpen. Canoco Reference Manual and User’s Guide: Software for Ordination (Version 5.0). Available online: https://www.scienceopen.com/document?vid=8b35db20-453f-48e0-89e5-d4f23f0cd6df (accessed on 11 November 2022).
- Pešić, V.; Asadi, M.; Cimpean, M.; Dabert, M.; Esen, Y.; Gerecke, R.; Martin, P.; Savić, A.; Smit, H.; Stur, E. Six species in one: Evidence of cryptic speciation in the Hygrobates fluviatilis complex (Acariformes, Hydrachnidia, Hygrobatidae). Syst. Appl. Acarol. 2017, 22, 1327–1377. [Google Scholar] [CrossRef]
- Pešić, V.; Saboori, A.; Zawal, A.; Dabert, M. Hidden but not enough: DNA barcodes reveal two new species in Hygrobates fluviatilis complex from Iran (Acariformes, Hydrachnidia, Hygrobatidae). Syst. Appl. Acarol. 2019, 24, 2439–2459. [Google Scholar] [CrossRef]
- Pešić, V.; Jovanović, M.; Manović, A.; Zawal, A.; Bańkowska, A.; Lyubomirova, L.; Karaouzas, I.; Dabert, M. Molecular evidence for two new species of the Hygrobates fluviatilis-complex from the Balkan Peninsula (Acariformes, Hydrachnidia, Hygrobatidae). Syst. Appl. Acarol. 2020, 25, 1702–1719. [Google Scholar] [CrossRef]
- Tuzovskij, P.V. A New Water Mite Species of the Hygrobates Fluviatilis-Complex from Russia (Acari, Hydrachnidia, Hygrobatidae). Zootaxa 2021, 4974. [Google Scholar] [CrossRef] [PubMed]
- Gerecke, R.; Hörweg, C. Water Mites of the Genus Atractides (Acari: Hydrachnidia: Hygrobatidae) from the Gesäuse National Park (Austria, Styria). Lauterbornia 2013, 76, 69–76. [Google Scholar]
- Gerecke, R. The Water Mites of the Genus Atractides Koch, 1837 (Acari, Hydrachnidia: Hygrobatidae) in Corsica and Sardinia. Zoosystema 2014, 36, 735–759. [Google Scholar] [CrossRef]
- Smit, H.; Gerecke, R.; Di Sabatino, A. A catalogue of water-mites of the superfamily Arrenuroidea (Acari: Hydrachnidia) from the Mediterranean countries. Arch. Hydrobiol. Suppl. 2000, 121, 201–267. [Google Scholar]
- Gerecke, R.; Martin, P.; Gledhill, T. Water Mites (Acari: Parasitengona: Hydrachnidia) as Inhabitants of Groundwater-Influenced Habitats—Considerations Following an Update of Limnofauna Europaea. Limnologica 2018, 69, 81–93. [Google Scholar] [CrossRef]
- Pešić, V.; Savić, A.; Jabłońska, A.; Michoński, G.; Grabowski, M.; Bańkowska, A.; Zawal, A. Environmental factors affecting water mite assemblages along eucrenon-hypocrenon gradients in Mediterranean karstic springs. Exp. Appl. Acarol. 2019, 77, 471–486. [Google Scholar] [CrossRef]
- Pozojević, I.; Pešić, V.; Goldschmidt, T.; Gottstein, S. Crenal Habitats: Sources of Water Mite (Acari: Hydrachnidia) Diversity. Diversity 2020, 12, 316. [Google Scholar] [CrossRef]
- Carpenter, S.R. Submersed vegetation: An internal factor in lake ecosystem succession. Am. Nat. 1981, 118, 372–383. [Google Scholar] [CrossRef]
- Opatrilova, L. (Ed.) WFD Intercalibration Phase 2: Milestone 5 Report—River/EC GIG/Benthic Invertebrates; European Commission Directorate General, JRC, Institute of Environment and Sustainability: Brussels, Belgium, 2011. [Google Scholar]
- Pozojević, I.; Vučković, N.; Dorić, V.; Šumanović, M.; Ternjej, I. Contribution to the knowledgeof the water mite (Acari: Hydrachnidia) fauna of Croatia—New data and records from a permanent pool in the Dinaric karst region. Persian J. Acarol. 2021, 10, 1–7. [Google Scholar]
- Di Sabatino, A.; Cicolani, B. On the Presence of the Family Torrenticolidae Piersig (Acari, Hydrachnidia) in Interstitial Waters of Sicily (South Italy): Description of a New Species. Ann. Limnol.-Int. J. Lim. 1993, 29, 31–39. [Google Scholar] [CrossRef]
- Esen, Y.; Erman, O. Kahramanmaraş ili Torrenticola Piersig, 1896 ve Monatractides K. Viets, 1926 (Acari: Hydrachnidia: Torrenticolidae) türleri ve Türkiye faunası için iki yeni kayıt. Firat Univ. J. Sci. 2014, 26, 39–44. Available online: https://www.bingol.edu.tr/documents/Mara%C5%9F_Torrenticolidae_Esen&Erman_2014.pdf (accessed on 16 January 2023).
Station Site Number | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | Sum |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Atractides loricatus (Piersig, 1898) | 2 | 2 | |||||||||||||||||
Atractides sp. (Koch, 1837) | 1 | 1 | 1 | 3 | |||||||||||||||
Aturus scaber (Kramer, 1875) | 1 | 1 | 2 | ||||||||||||||||
Hydrachnidia non. det. (larvae) | 1 | 1 | 1 | 1 | 1 | 1 | 6 | ||||||||||||
Hygrobates calliger (Piersig, 1896) | 1 | 7 | 12 | 1 | 1 | 3 | 1 | 4 | 1 | 10 | 11 | 3 | 55 | ||||||
Hygrobates fluviatilis (Ström, 1768) | 1 | 2 | 20 | 6 | 5 | 5 | 27 | 24 | 2 | 1 | 4 | 3 | 16 | 2 | 118 | ||||
Hygrobates longiporus (Thor, 1898) | 2 | 2 | 4 | ||||||||||||||||
Hygrobates sp. (Koch, 1837) | 2 | 1 | 1 | 1 | 5 | ||||||||||||||
Hygrobates trigonicus * (Koenike, 1895) | 3 | 5 | 8 | ||||||||||||||||
Lebertia sp. (Neuman, ¸1880) | 1 | 1 | 10 | 4 | 14 | 9 | 1 | 4 | 13 | 4 | 3 | 4 | 14 | 1 | 5 | 5 | 4 | 97 | |
Mideopsis orbicularis (Muller, 1776) | 1 | 41 | 1 | 4 | 3 | 7 | 57 | ||||||||||||
Mideopsis sp. (Neuman, 1880) | 1 | 1 | |||||||||||||||||
Neoacarus hibernicus * (Halbert, 1944) | 2 | 1 | 3 | ||||||||||||||||
Nudomideopsis cf. motasi ** (Petrova, 1966) | 1 | 1 | |||||||||||||||||
Protzia sp. (Piersig, 1896) | 1 | 1 | |||||||||||||||||
Sperchon clupeifer (Piersig, 1896) | 1 | 1 | 1 | 3 | |||||||||||||||
Sperchon compactilis * (Koenike, 1911) | 1 | 1 | 2 | ||||||||||||||||
Sperchon denticulates group | 1 | 1 | 1 | 1 | 1 | 5 | |||||||||||||
Sperchon hibernicus (Halbert, 1944) | 2 | 3 | 1 | 6 | |||||||||||||||
Sperchon hispidus (Koenike, 1895) | 6 | 1 | 7 | ||||||||||||||||
Sperchon insignis (Walter, 1906) | 1 | 1 | |||||||||||||||||
Sperchon papillosus * (Thor, 1901) | 1 | 2 | 1 | 3 | 27 | 34 | |||||||||||||
Sperchon sp. (Kramer, 1877) | 3 | 3 | |||||||||||||||||
Sperchonopsis verrucosa (Protz, 1896) | 3 | 1 | 3 | 1 | 8 | ||||||||||||||
Torrenticola amplexa (Koenike, 1908) | 8 | 8 | |||||||||||||||||
Torrenticola elliptica (Maglio, 1909) | 1 | 1 | |||||||||||||||||
Torrenticola hyporheica * (Di Sabatino & Cicolani, 1993) | 1 | 1 | |||||||||||||||||
Torrenticola ischnophallus * (Lundblad, 1956) | 5 | 1 | 6 | ||||||||||||||||
Torrenticola laskai * (Di Sabatino, 2009) | 1 | 1 | |||||||||||||||||
Torrenticola sp. (Piersig, 1896) | 1 | 1 | |||||||||||||||||
Torrenticola ungeri * (Szalay, 1927) | 1 | 1 | |||||||||||||||||
Sum | 7 | 5 | 33 | 18 | 53 | 17 | 30 | 75 | 30 | 5 | 12 | 14 | 49 | 1 | 18 | 49 | 20 | 15 | 451 |
HYMO Feature | SR | N | H′ (Loge) | |||
---|---|---|---|---|---|---|
r | p | r | p | r | p | |
Riparian vegetation type and structure | 0.329 | 0.0051 | 0.400 | 0.0006 | 0.329 | 0.0035 |
Modification of channel | 0.338 | 0.0039 | 0.376 | 0.0012 | 0.338 | 0.0027 |
Riverbed structure and modification | 0.379 | 0.0010 | 0.431 | 0.0002 | 0.379 | 0.0007 |
Connection to floodplains | 0.359 | 0.0021 | 0.402 | 0.0005 | 0.359 | 0.0014 |
Mean value of hydromorphological alteration score | 0.356 | 0.0023 | 0.407 | 0.0004 | 0.356 | 0.0014 |
Parameter | Variation Explained % | Contribution in Analysis % | Pseudo-F | p |
---|---|---|---|---|
PO₄3⁻ (orthophosphate concentration) | 3.9 | 39 | 2.8 | 0.012 |
Ʃ N (total nitrogen) | 1.1 | 10.9 | 0.8 | 0.477 |
COD (chemical oxygen demand) | 1.3 | 13.1 | 0.9 | 0.367 |
Oxygen saturation | 1.2 | 12.5 | 0.9 | 0.499 |
Water temperature | 0.9 | 9.3 | 0.7 | 0.658 |
Ʃ p (total phosphorus) | 0.9 | 9.5 | 0.7 | 0.607 |
Conductivity | 0.6 | 5.7 | 0.4 | 0.924 |
PARAMETER | Atractides loricatus | Hygrobates fluviatilis | Lebertia sp. | Mideopsis orbicularis | Sperchon hispidus | Sperchonopsis verrucosa | Torrenticola hyporheica | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | r | p | r | p | r | p | |
Maximum water velocity (m/s) | 0.288 | 0.0149 | 0.330 | 0.0049 | 0.396 | 0.0006 | 0.329 | 0.0051 | 0.328 | 0.0052 | ||||
Distance from the source (m) | 0.288 | 0.0149 | 0.284 | 0.0162 | ||||||||||
Oxygen saturation | 0.357 | 0.0022 | ||||||||||||
Conductivity | −0.350 | 0.0027 | ||||||||||||
pH | 0.288 | 0.0148 | 0.321 | 0.0063 | 0.284 | 0.0163 | ||||||||
COD (chemical oxygen demand) | 0.287 | 0.0153 | 0.308 | 0.0089 | ||||||||||
BOD (biochemical oxygen demand) | 0.263 | 0.0267 | ||||||||||||
NO3− (nitrate concentration) | 0.282 | 0.0170 | 0.271 | 0.0221 | ||||||||||
Ʃ N (total nitrogen) | 0.264 | 0.0264 | 0.276 | 0.0198 | ||||||||||
PO43−(orthophosphate concentration) | 0.319 | 0.0068 | 0.262 | 0.0270 | ||||||||||
Ʃ p (total phosphorous) | 0.400 | 0.0005 | 0.276 | 0.0198 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žeželj Vidoša, T.; Pozojević, I.; Vidaković Maoduš, I.; Mihaljević, Z. Longitudinal Changes in Diverse Assemblages of Water Mites (Hydrachnidia) along a Lowland River in Croatia. Diversity 2023, 15, 139. https://doi.org/10.3390/d15020139
Žeželj Vidoša T, Pozojević I, Vidaković Maoduš I, Mihaljević Z. Longitudinal Changes in Diverse Assemblages of Water Mites (Hydrachnidia) along a Lowland River in Croatia. Diversity. 2023; 15(2):139. https://doi.org/10.3390/d15020139
Chicago/Turabian StyleŽeželj Vidoša, Tia, Ivana Pozojević, Iva Vidaković Maoduš, and Zlatko Mihaljević. 2023. "Longitudinal Changes in Diverse Assemblages of Water Mites (Hydrachnidia) along a Lowland River in Croatia" Diversity 15, no. 2: 139. https://doi.org/10.3390/d15020139
APA StyleŽeželj Vidoša, T., Pozojević, I., Vidaković Maoduš, I., & Mihaljević, Z. (2023). Longitudinal Changes in Diverse Assemblages of Water Mites (Hydrachnidia) along a Lowland River in Croatia. Diversity, 15(2), 139. https://doi.org/10.3390/d15020139