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Abstract: The reconstruction of regional fauna history is very important in the context of recent
climate change and anthropogenic transformation. We analyzed the mitochondrial nd1 gene poly-
morphism in populations of whitefish Coregonus lavaretus and certain widespread Eurasian ciscoes
species: vendace Coregonus albula and least cisco Coregonus sardinella, inhabiting waterbodies from
the Anadyr River in the east (the Pacific Ocean basin) to Loch Lomond in the west (the Atlantic
Ocean basin). Distinct phylogenetic lineages and secondary contact zones have been found in these
species. Most of these are species-specific with the exception of the zone from the Pechora River
basin to at least the western part of the Taymyr Peninsula, in which whitefish, vendace, and least
cisco share with each other and with various cold-water hydrobionts. We associate differences in
the geographical position and propagation of the secondary contact regions with the species-specific
morpho-ecological features, in particular, with the ability for long-term migrations. Based on the data
obtained, we also discuss certain limitations of the phylogeography and phylogeny of the considered
coregonid species and the correctness of the taxonomic status of certain populations or their groups.

Keywords: mitochondrial nd1 gene; Coregonus lavaretus; Coregonus albula; Coregonus sardinella; phylo-
geography; secondary contact

1. Introduction

The ichthyofauna of water bodies of northern temperate and arctic zones have re-
peatedly undergone significant transformations due to cyclic climate changes, namely
alternating periods of warming and cooling [1]. In accordance with the paleogeographic
data, more than twenty glaciation cycles occurred in the Pleistocene [2], each lasting about
100 thousand years, while interglacial periods lasted 10–12 thousand years [3–5].

Pleistocene glaciers radically modified freshwater systems, with some waterbodies
being destroyed and new lakes and rivers being formed everywhere. These changes dra-
matically affected the distribution of hydrobionts, leading to the repositioning, association,
and/or fragmentation of their populations [4,6–8]. The occupation of newly formed water-
bodies, as well as those now freed from ice, provided an opportunity for rapid evolutionary
transformations, while multiple cases of isolation in different periglacial waterbodies and
refugia led to the accumulation of genetic differences between populations [9]. These
processes resulted in the formation of distinct intraspecific phylogenetic lineages with
their own histories and distributions [10,11]. Repeated climate fluctuations also facilitated
secondary contacts between isolated groups [4,7,12–15], which also affected the specific
structures of modern populations [16].

The study of contact zones can allow researchers to obtain a better understanding of the
mechanisms of intraspecific differentiation, hybridization, and speciation in general [17–23],
etc. It helps elucidate the nature of the observed diversity and correctly reflects it in the
taxonomy of groups [24–28], etc. Moreover, the reconstruction of the history of the regional
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fauna is very important for modern biodiversity management, especially in the contexts
of climate change and anthropogenic transformation, accompanying biological invasions,
and the translocations of species [29,30].

The majority of northern Eurasian freshwater fishes are characterized by the presence
of several intraspecific phylogenetic lineages of mitochondrial DNA (mtDNA) (Table 1).

Table 1. The contact zone regions of the main species of Eurasian cold-water ichthyofauna.

Species NL Contact Zone in Arctic Eurasia Source of Data

Salmo trutta 5–7 Great Britain, the basins of the North and Baltic Seas, southern Europe [31–33]

Salvelinus alpinus 5 Western Greenland, lakes of the Norilo-Pyasinskaya water system
(Taymyr Peninsula), the Beringian region [34–38]

Thymallus arcticus 2 for T. thymallus: basins of the Danube and Weser rivers, Lake
Constance area; for T. arcticus and T. thymallus: the northern European
regions (Norway, Sweden, Finland), the Kola Peninsula, the northern
Dvina River, basins of the Pechora and Ob rivers; for T. thymallus and

other Siberian Thymallus sp.: Lake Khantayskoye

[39–44]
Thymallus thymallus 3

Osmerus mordax 7
the Kandalaksha Bay, the Kolguyev Island [21,45,46]

Osmerus eperlanus

Esox lucius 3 basins of the Baltic and North Seas, the Middle Danubian drainage,
southern Europe [28,47]

Rutilus sp. 2

Aegean and Baltic Seas’ basins, the White Sea basin (the Northern
Dvina and Onega rivers), the Black Sea basin (the Upper Dnieper and

lower reaches of the Don River), the Caspian Sea basin (the Volga
River basin)

[25,48]

Lota lota 5 the Baltic region [49]

Gasterosteus aculeatus 6–7 the north-eastern part of the Atlantic Ocean, the Ph
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The patterns of these lineages’ propagation are commonly species-specific, however,
areas of secondary contact are similar. The mixing of different lineages is associated with
resettlement from the refugia via the same water corridors. Additionally, contact zones may
be formed in the piedmonts due to settlement through the low mountain passes during
periods of climate warming [59–61]. According to the literature, the contact zones are
most often noted in the basins of the North and Baltic Seas, the Alpine region, certain
water basins of southern Europe, the waterbodies of the Putorana Plateau and the Taimyr
Peninsula, and the Beringia region. Thus, Perca fluviatilis [53], Thymallus thymallus [40],
and Cottus gobio [57,58] recolonized Europe from several glacial refugia located around
the Scandinavian ice sheet. The postglacial invasion of Esox lucius, Coregonus albula, and
Salvelinus alpinus occurred along the east–west and/or south–north axes [26,34,47]. Many
European hydrobionts have distinct lineages, “local”, i.e., originating from European
refugia, and arrivals that penetrated into Europe from the east or west through the coastal
waters of the seas [62]. It is worth noting that in many of the above-listed cases, the study
of the history of the recolonization of territories rarely goes beyond the limits of the last
Quaternary Interglacial (115 thousand years ago) [32].
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In general, contact zones have different scales. In Europe, contact zones are formed
along the trajectories of the main resettlement pathways. For example, the Danube con-
tact zone exists along the Danube invasion corridor [63]. The Putorana Plateau is an
example of the Trans-Siberian contact zone, where the European and Siberian lineages
converge [26,36,38]. Transcontinental contact zones are located in the Beringian region and
the northern part of the Atlantic, where the mixing of the lineages of the two continents
occurs [37,45,47,64].

Populations living in the contact zones are commonly characterized by a high level
of genetic polymorphism relative to the populations belonging to separate phylogenet-
ics [4,47,55,58], etc. However, the distribution pattern of genetic polymorphism does not
always correspond to modern zoogeographic concepts since it is determined by geological
objects and the climate phenomena of the past [65].

Populations from the secondary contact zones often display morphological polymor-
phism as well. However, they may contain representatives of the same morphotype, but
with different origins, i.e., formed independently in distinct phylogenetic lineages [66–69].
This phenomenon indicates the similarity of the mechanisms and consequences of adap-
tive radiations in different phylogenetic lineages in response to similar environmental
cues. They may also include a number of distinct morphotypes formed in the phyloge-
netic lineages prior to their secondary contact. Without appropriate genetic studies, such
morphotypes are often mistaken for intraspecific or even supraspecific units of different
origin [70].

Here, we focus for the first time on the distribution pattern of the main mtDNA
phylogenetic lineages and their contact zones in whitefish Coregonus lavaretus and certain
widespread Eurasian ciscoes species, namely vendace Coregonus albula and least cisco
Coregonus sardinella, over a vast region of Arctic Eurasia from the Anadyr River in the east
(the Pacific Ocean basin) to Loch Lomond in the west (the Atlantic Ocean basin). Previous
studies considered the questions of the phylogeography of the populations of these species
only in limited areas [66,71–73], etc.

2. Materials and Methods
2.1. Sample Collection

We used both our own information and NCBI data on the nucleotide sequences of
the mitochondrial NADH dehydrogenase subunit 1 gene (nd1 mtDNA) in coregonids:
240 sequences of ciscoes from 51 populations, and 562 sequences of whitefish from 79 pop-
ulations were analyzed, including sympatric forms with a controversial systematic status
(Table S1). Thus, we discuss two forms of ciscoes of the Pechora River, named saurey and
zeld; different forms of whitefish, namely predator and mokchegor, from Lake Sobach’ye
(the Putorana Plateau); the lacustrine and lacustrine–riverine whitefishes with a different
number of gill rakers of Lake Dorong (the Transbaikal region), etc. A number of endemic
coregonid populations were also included in the study: the vendace of Lake Pleshcheyevo
(the Volga River drainage); the whitefish of Lake Teletskoye and reservoirs of the Todzha
River basin; and the dwarf form of whitefish of Lake Kubenskoye (the White Sea basin),
C. lavaretus nelmuschka.

Fish from natural populations were caught with gillnets from 2003 to 2021. Some
samples of coregonid from waterbodies of the Yamal Peninsula were collected as a part of
the Yamal LNG (Liquefied Natural Gas) monitoring investigations. For subsequent genetic
analysis, tissue samples from the liver, white muscles, or adipose fin were stored in 96%
ethanol (1:5).

2.2. mtDNA Extraction and Sequencing

Total genomic DNA was extracted with the use of DIAtomTM DNAPrep100 (Isogen
Lab Ltd., Moscow; www.rugenlab.ru; accessed on 30 October 2022. www.dnalab.ru/
diagnostic-kits/dna-extraction accessed on 30 October 2022) or DNA-Extran-2 (Syntol,
Moscow; https://www.syntol.ru/catalog/nabory-reagentovdlya-vydeleniya-dnk-i-rnk/

www.rugenlab.ru
www.dnalab.ru/diagnostic-kits/dna-extraction
www.dnalab.ru/diagnostic-kits/dna-extraction
https://www.syntol.ru/catalog/nabory-reagentovdlya-vydeleniya-dnk-i-rnk/
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accessed on 30 October 2022) reagent kits. In several cases, the sequencing of the nd1
gene was preceded by the PCR-RFLP (polymerase chain reaction, restriction fragment
length polymorphism) analysis of ND1 fragment 2052 base pairs (bp) long, included a
part of the 16S rRNA gene and several tRNA genes flanking the protein gene [26,74]. This
technique allowed us to reduce the loss of information regarding the polymorphism of
coregonid populations during the random selection of specimens from large samples. For
sequencing of the mtDNA region, which was about 2000 bp long, several pairs of primers
were used [26,75–77]. Additionally, some of the primers were designed by us (Table S2).
PCR conditions as well as the composition of reaction mixtures are given in the description
of Table S2.

Sequences were run on an ABI 3500 automated analyzer (Applied Biosystems, United
States/Hitachi, Japan) at the Papanin Institute for Biology of Inland Waters of the Rus-
sian Academy of Sciences (Borok, Yaroslavl region, Russia) after the purification of PCR
products by DNA precipitation with an ethanol–ammonium acetate mixture (http://www.
genomecentre.ru/downloads/NH4Ac_EtOH.pdf accessed on 30 October 2022). The se-
quence reactions were carried out using a BigDye Terminator v3.1 Cycle Sequencing Kit
(Applied Biosystems, Austin, United States) as recommended by the manufacturer.

The length of the obtained sequences varied from 1846 bp to 1975 bp, and the sequences
taken from NCBI were also of different lengths. Therefore, it was decided to use only
the nd1 gene sequence, 975 bp long, without its flanking regions. As discussed earlier,
there was no significant loss of information during this manipulation, while at the same
time, it was possible to avoid the formation of star structures and closed loops in the
network [26]. All sequences derived by us, as well as those from NCBI, were aligned in
MEGA7.0 [78]. During this work, we deposited 93 nd1 gene sequences in the GenBank:
OQ026245–OQ026322 and OQ030167–OQ030187 (Table S1).

2.3. Phylogenetic and Phylogeographic Analyses

The analysis of the sequence polymorphism of the nd1 gene of coregonids was carried
out using the MEGA7.0 and DNAsp5.0 [79] software. For each sample, the average number
of nucleotide differences (k), the number of polymorphic sites (S), and haplotype (Hd) and
nucleotide (π) diversities were estimated. Additionally, we calculated intra- and interpop-
ulation p-distances using the TN93 model of nucleotide substitutions [80]; bootstrapping
(500 replications) was used to calculate the standard error of the distance. Intrapopulation
p-distance values were used to discuss the level of polymorphism of coregonid populations
from contact zones. Median-joining networks of ciscoes and whitefish nd1 haplotypes were
constructed using Network 10.2.0.0 software [81].

Phylogenetic reconstructions were performed using the Bayesian inference (BI) ap-
proach. First, the sequences were collapsed into common haplotypes using DNAsp
5.10.01. For further analysis, two haplotype data files (for whitefish and ciscoes sepa-
rately) were converted using programs Geneious 7.0.6 (Biomatters Ltd., Auckland, New
Zealand; https://www.geneious.com/ accessed on 25 July 2022) and ALTER [82]. Then,
we determined the best-fitting models of nucleotide substitution for each (first, second,
and third) nucleotide position in the codon using the PartitionFinder 2.1.1 software [83]
on the basis of the Bayesian information criterion (BIC). The models of nucleotide sub-
stitutions were identified as follows: for the ciscoes group, 1st nd1–K80 + I, 2nd nd1–
HKY + I, and 3rd nd1–GTR + G; for the whitefish group 1st nd1–K80 + G, 2nd nd1–F81
+ I, and 3rd nd1–GTR + G. Bayesian phylogenetic inference (BI) was carried out in Mr-
Bayes v.3.2.5 software [84]. Two simultaneous analyses were run for 10,000,000 genera-
tions each with four MCMC chains sampled every 1000 generations. The first 25% of
runs were discarded as burn-in. The phylogenetic trees resulting from the BI analyses
were visualized and edited using FigTree v.1.4.2 software [85]. During phylogenetic and
phylogeographic analyses, other species of genera, Prosopium and Coregonus, were in-
cluded in the study: P. cylindraceum MF621767; C. anaulorum MT995292–MT995300; C. clu-
peaformis JQ390060, JQ661482–JQ661487, MH301057, and MH301058; C. fluviatilis KX151804–

http://www.genomecentre.ru/downloads/NH4Ac_EtOH.pdf
http://www.genomecentre.ru/downloads/NH4Ac_EtOH.pdf
https://www.geneious.com/
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KX151807; C. chadary KX431963, KX431964; C. migratorius MN394787–MN394789; C. nasus
JQ390058; and C. ussuriensis KX431965–KX431971 (all species names are given according
NCBI sequences annotations).

Demographic analysis was performed according to [66,86,87]. For time estimates, we
used a mean generation length of 6 years. The assumption of neutrality was tested by
Tajima’s D-test [88,89] in DNAsp 5.10.01 software. As this test has low statistical power [90],
we additionally used the Fs value [91] with a higher power. The Fs values were calculated
in Arlequin 3.01 software [92]. Estimates for expansion time at the rate of 1–2% sequence
divergence per million years were given only for clades with significant negative values of
Fu’s test and Tajima’s D-test. It is important to note that since variances in estimates of the
timing of the population expansion are large, results are suggestive only.

3. Results

The analysis of both haplotype networks and phylogenetic trees showed the existence
of several mtDNA phylogenetic lineages in whitefish C. lavaretus and cisco-considered
species, namely vendace C. albula and least cisco C. sardinella (Figure S1–S4). Our data
confirmed the nonrandom distribution of the identified phylogeographic groups. There
were two large clusters with a similar time of dispersal start for both species (Table 2),
the first at 220–110 thousand years ago and the second at 180–90 thousand years ago. In
addition, the architecture of haplotype networks is also similar. Star structures were typical
for both species, which indicated dispersal after a period of isolation in the refugium.
However, the species differed in the patterns of the geographical distribution of haplotype
groups and the contact zones of different phylogenetic lineages (Figures 1 and 2).

Table 2. Pairwise sequence divergence statistics (mismatch analysis) based on the frequency of
haplotypes in considered cisco species (C. albula and C. sardinella) and whitefish (C. lavaretus) phylo-
genetic lineages.

Lineages
Level of
Clades

Subdivison
N S k τ Theta Obs. Theta0 Ri

Tajima’s
D Fs Time Since

Expansion

Cisco species

All
haplotypes 2–1 240 137 6.706 1.770 24.770 4.936 0.008 −2.259 ** −24.611 *** 91 425–45 712

IC 1–1 59 53 4.414 4.414 11.838 0 0.018 −2.130 * −25.751 *** 227 052–113 529

IIC 1–2 167 93 3.967 3.591 17.392 0.396 0.030 −2.421 ** −25.691 *** 184 912–92 456

IIIC 1–3 7 3 1.238 0.566 1.224 0.673 0.277 0.050 NS 0.406 NS –

IVC 1–4 7 5 2.095 2.095 2.041 0 0.091 0.132 NS −1.447 NS –

Whitefish

All
haplotypes 3–1 562 175 6.058 4.967 27.939 1.091 0.006 −2.313 ** −24.406 *** 255 242–127 621

IW 2–1 330 123 5.072 4.280 20.550 0.791 0.010 −2.272 ** −24.898 *** 219 938–109 969

IIW 2–2 232 99 3.526 3.526 17.437 0 0.026 −2.447 ** −25.798 *** 180 820–90 410

IW1 1–1 91 12 1.878 0.998 2.361 0.880 0.027 −0.550
NS −1.242 NS –

IW2 1–2 239 113 4.646 4.202 19.830 0.444 0.018 −2.355 ** −25.211 *** 215 930–107 965

N—number of sequences, S—number of polymorphic sites, k—mean number of pairwise differences,
τ—mutational time since demographic expansion, theta—the mutation parameter as observed and prior to
(theta0) expansion. Ri—Harpending’s raggedness index, Fs—Fu’s test value. * p < 0.05, ** p < 0.01, *** p < 0.001,
NS—not significant, “–“ no data.
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Figure 1. The distribution of phylogenetic mitochondrial lineages of considered cisco species over
waterbodies of Arctic Eurasia: red circles—lineage IC, green—IIC, light purple—IIIC, pink—IVC. Lo-
cation of populations: 1–Lake Stechlin (C. albula and C. fontanae); 2–lakes of Poland: Bytyń, Płociowe,
Drawsko, Marta, Miedwie, Morzycko, Wigry, Ostrowieckie, Żerdno, and Narie; 3–Lake Vištytis, Kalin-
ingrad Region; 4–Lake Khedo; 5–Lake Ladoga; 6–lakes of the Solovetsky Archipelago: Bol’shoye Kras-
noye, Gremyacheye, and Bol’shoye Ostrech’ye; 7–Lake Onega; 8–Lake Beloye; 9–Lake Pleshcheyevo;
10–Lake Vodlozero; 11–Lake Kenozero; 12–Lake Lyokshmozero; 13–Rybinsk Reservoir; 14–Gorky
Reservoir; 15–Kuybyshev Reservoir; 16–waterbodies of the Kolguyev Island; 17–Pechora River, Lake
Golodnaya Guba, saurey; 18–Pechora River, watercourse and estuary, zeld; 19–Nyakharvangata-
Yakha River; 20–Sabetta-Yakha River; 21–Venujmue-Yakha River; 22–Lake Yoserotato; 23–Nyojta-
Yakha River; 24–Messo-Yakha River; 25–Lake Ingol (introduced population of C. albula, denoted
by red circle); 26–Pyasina River; 27–Yenisey River; 28–Lake Lama; 29–Lake Sobach’ye; 30–Lake
Kutaramakan; 31–Kureyka Reservoir; 32–Yenisey River, Kureyka River mouth; 33–Khatanga River;
34–Anabar River; 35–Tiksi Bay; 36–Lena River; 37–Yana River; 38–Indigirka River; 39–Kolyma River.
More detailed information about ciscoes samples is given in Table S1.

3.1. Phylogenetic Lineages and Their Contact Zones in Considered Cisco Species

In the case of the considered ciscoes, the geographical distribution of the four differ-
entiated lineages was confined to certain regions. The first lineage, IC, is most common
in Siberian waterbodies, and the frequencies of its haplotypes decrease from east to west.
The haplotypes of this lineage were the only ones to be found in the populations of the
Lena, Yana, Indigirka, and Kolyma rivers (Figure 1). There are also numerous carriers of
this lineage in the Yenisey River, waterbodies of the Taymyr and Yamal peninsulas, and
in the Ob and Pechora rivers and their basins, where they already coexist with carriers of
haplotypes of the second large Eurasian lineage—IIC. Lake Pleshcheyevo (the Volga River
basin, Yaroslavl region) is the westernmost point, where the haplotype belonging to the IC
lineage is revealed.

The lineage IIC is associated with western waterbodies. In all of the studied European
populations of cisco to the Ural Mountains, the haplotypes of other lineages were noted
only in lakes Lyokshmozero and Pleshcheyevo, in the Rybinsk Reservoir, and the Pechora
River (Figure 1; Table S3). However, even to the east of the Ural Mountains, there are
populations where the frequency of the haplotypes of this lineage reaches 100%, namely in
the lakes of the Putorana Plateau—Lama, Kutaramakan, and Sobach’ye. The frequency of
occurrence of IIC haplotype carriers is also high in the waterbodies of the Yamal Peninsula,
and in the Yenisey and Pyasina rivers. Only east of the Yenisey, haplotypes of this lineage
were not found. It should be noted that the IIC lineage is younger than the IC (Table 2).
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Figure 2. The distribution of phylogenetic mitochondrial lineages of whitefish over water bodies of
Arctic Eurasia: red circles–lineage IW, subclade IW2, light pink–lineage IW, subclade IW1, blue–IIW.
Location of populations: 1–Loch Lomond; 2–Vidaa River (C. oxyrhynchus); 3–waterbodies of Denmark:
Nissum and Ringkøbing fjords, Kilen, lakes Tange and Flyder; 4–Achterwasser; 5–Lake Hallstatt and
Koppentraun; 6–lakes of Poland: Sremski, Insko, Miedwie, Morzycko, and Marianovo; 7–Havgajávri;
8–Tuloma River; 9–Keret’ River; 10–Lake Topozero; 11–Lake Kamennoye; 12–Lake Onega; 13–Lake
Ladoga; 14–the Gulf of Finland; 15–Baltic Sea, Estonian coast, 16–Lake Peipus; 17–Lake Kubenskoye
(dwarf form of whitefish); 18–Lake Sevan (introduced population, denoted by red circle); 19–Sabetta-
Yakha and Venujmue-Yakha rivers; 20–Lake Langtibeito; 21–Sob River; 22–Lake Varchaty and Voykar
River; 23–Northern Sosva River; 24–Taz River; 25–Yenisey River; 26–Lake Lama; 27–Lake Sobach’ye,
mokchegor; 28–Lake Sobach’ye, predator; 29–Lake Kutaramakan; 30–Irkingda River, lakes Keta
and Khantayskoye; 31–Kureyka River; 32–Nizhnyaya Tunguska River; 33–Ayakhta River; 34–Lake
Teletskoye; 35–Lake Todzha and Khamsara River; 36–Zakharova Rassokha River; 37–Popigay River;
38–Anabar River; 39–Olenek channel of the Lena River; 40–Olenek River (settlement of Taymylyr);
41–Olenek River (middle course); 42–Tiksi Bay; 43–Markha River; 44–Upper Lena River; 45–Buotoma
River; 46–Lake Bolshoye Toko; 47–Lake Dorong; 48–Lake Kapylyushi, pidschian; 49–Lake Kapy-
lyushi, C. l. baunti; 50–Omoloy River; 51–Yana River; 52–Khroma River; 53–Suturuokha River;
54–Moma River; 55–Kuydusun River, lakes Ichilyakh and Labynkyr; 56–Kolyma River; 57–Lake
Ilirney; 58–Anadyr River. More detailed information about whitefish samples is given in Table S1.

Two more lineages found in C. albula are rare, and their areas of occurrence are
significantly limited. Lineage IIIC is found in Lake Lyokshmozero (the White Sea basin)
and the Rybinsk Reservoir (Volga River), where it mixes with the IIC lineage. The IVC
lineage is revealed in Lake Pleshcheyevo, where it coexisted with carriers of the IC and
IIC lineages; the origin and distribution of this lineage was discussed in our previous
publications [26,93,94]. Obviously, the IVC clade is the most ancient in vendace. Its p-
distance with other lineages equals 2.6–2.9%, while the distance between the IC and IIC
lineages is only 0.7% (Table S4). The genetic differentiation of IC and IIC lineages with
whitefish haplotype groups is 3.4 and 3.7%, respectively.

It is worth noting that we cannot correlate lineage IC with least cisco, and lineage IIC
with vendace. Haplotypes of both the first and second lineages are noted in the populations
of both species. In our previous work, we discussed the close relation of these species
(Table 3) and suggested their conspecificity [26].
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Table 3. Inter- and intraspecies p-distance values (as %) for coregonid species; minimum, maximum,
and mean values are given.

CA CS CF CL COx CPr CBt CAn CFl CCl CMg CCd CUs CN PC

CA 0–3.3
0.1

CS 0–3.4
0.1

0–1.6
0.1

CF 0–3.1
0.6

0.03–0.1
0.06

0.02–0.04
0.03

CL 3.1–4.5
3.6

2.8–4.3
3.5

3.0–4.1
3.5

0–1.4
0.1

COx 3.3–4.0
3.5

2.9–3.8
3.4

3.4–3.6
3.5

0–1.2
0.06

0–0.1
0.02

CPr 2.9–4.7
3.7

2.8–4.2
3.5

3.4–3.8
3.6

0.01–1.4
0.06

0.02–0.1
0.06

0.01–0.1
0.03

CBt 3.3–3.6
3.5

3.0–3.8
3.4

3.1–3.6
3.5

0–1.1
0.06

0.03–0.1
0.05

0.03–0.1
0.06

0–0.05
0.02

CAn 4.0–4.7
4.1

3.9–4.2
4.0

3.9–4.4
4.1

2.9–3.4
3.1

2.5–3.6
3.1

2.5–3.4
3.1

2.6–3.5
3.0

0.01–0.1
0.04

CFl 3.5–4.1
3.6

3.2–3.9
3.5

3.5–3.7
3.6

1.4–2.0
1.7

0.02–2.0
1.7

1.4–2.0
1.7

1.1–1.9
1.5

2.0–2.9
2.5

0.02–0.1
0.04

CCl 2.9–3.6
3.1

2.7–3.4
3.1

3.1–3.3
3.15

1.6–2.2
1.9

1.8–2.1
1.9

1.6–2.2
1.9

1.7–2.1
1.8

2.5–3.4
2.8

1.7–2.2
1.9

0–0.03
0.01

CMg 3.5–4.3
3.7

3.3–4.3
3.6

3.5–4.1
3.7

1.8–2.4
2.1

1.9–2.5
2.1

1.7–2.6
2.1

0–2.5
1.7

2.7–3.8
3.2

1.1–1.9
1.5

1.8–2.5
2.0

0.01–0.1
0.03

CCd 4.5–5.3
4.7

4.5–5.1
4.6

4.4–4.9
4.7

2.6–3.3
2.9

2.8–3.2
3.0

2.8–3.3
3.1

2.4–3.1
2.8

3.2–4.0
3.6

2.3–2.8
2.6

2.9–3.1
2.95

2.4–2.8
2.6 0.04

CUs 4.4–5.2
4.6

4.1–4.8
4.5

4.3–4.8
4.6

2.7–3.2
2.9

2.9–3.3
3.0

2.6–3.3
3.0

2.3–3.2
2.8

3.1–4.0
3.5

2.2–2.8
2.5

2.7–3.1
2.8

2.3–2.8
2.5

0.04–0.1
0.05

0–0.04
0.02

CN 3.8–4.3
4.0

3.8–4.6
3.9

4.1–4.4
4.3

2.4–3.0
2.6

2.9–3.2
3.0

2.7–3.2
2.9

2.6–3.2
2.9

3.4–4.1
3.7

2.8–3.2
0.3

2.7–3.0
2.8

3.2–3.6
3.4

4.2–4.3
4.25

4.0–4.3
4.2 nc

PC 17.1–17.5
17.2

17.0–17.6
17.3

17.4–17.7
17.6

16.9–17.5
17.3

17.7–17.9
17.8

17.5–18.0
17.7

17.7–18.0
17.9

16.6–17.0
16.8

17.0–17.1
17.05

17.9–18.0
17.95

17.9–18.4
18.1

17.5–17.8
17.7

17.5–17.9
17.7 17.9 nc

Species names are given according to NCBI sequences’ annotations: CA—Coregonus albula; CS—C. sardinella; CF—
C. fontanae; COx—C. oxyrhynchus; CPr—C. l. pravdinellus; CBt—C. l. baunti; CAn—C. anaulorum; CFl—C. fluviatilis;
CCl—C. clupeaformis; CMg—C. migratorius; CCd—C. chadary; CUs—C. ussuriensis; CN—C. nasus; PC—Prosopium
cylindraceum; nc—not calculated.

Thus, for considered cisco species, several areas were revealed where two or more
phylogenetic lineages are mixed: lakes Pleshcheyevo and Lyokshmozero, the Rybinsk
Reservoir, the Pechora River and its basin, and the waterbodies of the Yamal Peninsula, as
well as the basins of the Taz and Gydan Bays of the Kara Sea, and the Yenisey and Pyasina
rivers and their basins (the western part of the Putorana Plateau).

3.2. Phylogenetic Lineages and Their Contact Zones in Whitefish

An analysis of the haplotype network (Figure S3; Table S5) shows that the whitefish has
two ancestral haplotypes, the dispersal of which, apparently, began at about the same time
(Table 2). The formation of star structures by these haplotypes indicates their further wide
distribution. At the same time, it should be noted that we do not exclude the possibility of
the earlier existence of other mtDNA lineages in whitefish, the carriers of which obviously
disappeared during the glaciation.

Two large mtDNA lineages, IW and IIW (Figure 2), are associated with ancestral
haplotypes. These lineages do not have clearly defined distribution regions, and their
haplotypes of each of they are found both in European and Siberian waterbodies, although
the first haplogroup (IW) noticeably dominates in waterbodies of the upper reaches of
the Lena, Yana, and Indigirka Rivers, while the second (IIW) is more common in western
waterbodies. It should be noted that haplotypes forming a separate subclade of clade IW,
namely IW1, were identified in a number of waterbodies of Denmark, Poland, the Baltic
Sea, and Lake Onega, and were not found in Siberia (Figure 2). Obviously, the haplotypes
of this subclade were formed through isolation in a separate refugium, with their offspring
subsequently spreading into certain European water bodies.

The contact zones of the two identified whitefish lineages are quite wide: the hap-
lotype carriers of the IW and IIW groups coexist in the North and Baltic Seas’ basins, in
the water bodies of the Yamal and Taymyr peninsulas, and in the lower reaches of all
of the Siberian rivers of the Arctic Ocean basin, as well as in the Anadyr River. Interest-
ingly, in the areas of Yamal and Taymyr, the contact zones of the phylogenetic lineages
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of whitefish and considered cisco species coincide. Moreover, the same region as a zone
of secondary contact was also noted for other cold-water fish (Table 1), which indicates
its importance in the distribution and formation of the intraspecific polymorphism of the
northern Eurasian ichthyofauna.

4. Discussion

We analyzed the mtDNA polymorphism in populations of C. lavaretus and ciscoes C.
albula and C. sardinella, inhabiting the waterbodies of northern Eurasia from the Anadyr
River in the east (the Pacific Ocean basin) to Loch Lomond in the west (the Atlantic Ocean
basin). Distinct phylogenetic lineages and secondary contact zones were revealed in both
species. Most of them are species-specific, however, one is common for whitefish and
considered cisco species. Here we would like to discuss several results of our investigation
in more detail.

4.1. The Level of Population Polymorphism in the Contact Zones of Coregonids Phylogenetic Lineages

An assessment of the level of polymorphism in the whitefish, vendace, and least cisco
populations inhabiting the contact zones revealed results inconsistent with our predictions.
Contrary to our expectations, in some cases these populations do not display a high level of
genetic polymorphism (Tables S6 and S7, p-distance values). Only for the vendace popula-
tions of lakes Pleshcheyevo (the Volga River basin) and Lyokshmozero (the White Sea basin)
do the indicator intrapopulation p-distance significantly exceed those of other vendace
and least cisco populations. However, it should be noted that significantly differentiated
lineages—IIIC and IVC—are found in these waterbodies (Table S3).

The above observations are also characteristic of C. lavaretus. In fact, a sample of
whitefish from the middle reaches of one of the longest Russian rivers, the Olenek River
(the Laptev Sea basin), had one of the highest values of intrapopulation polymorphism.
The p-distance between the haplotypes found in the sample was 0.72%, and the nucleotide
diversity was 0.00748 (Table S7), although only one lineage of haplotypes, IW, was found
here. It is important to note that the size of the analyzed sample does not matter: three se-
quences from Yana River demonstrated the maximum variability indicators and the same
values of these indicators were revealed for 15 sequences from the middle reaches of the
Olenek River. From Lake Onega, where the haplotypes of different lineages were found
(Figure 2; Table S5), 19 sequences were included in the analysis and the p-distance between
the identified haplotypes was low, namely 0.31%. In the sample of the dwarf form of
whitefish (C. l. nelmuschka) from Lake Kubenskoye, the level of polymorphism (p-distance)
was equal to the polymorphism of the Lake Onega sample, although only two sequences
were analyzed from the first waterbody.

It has been proposed that the level of polymorphism in the populations of the consid-
ered species is more related to the time of the existence of the lineages and populations [95]
than to a mixture of different lineages in the same waterbody or basin. This is especially
well seen in the vendace and least cisco. Thus, the highest polymorphism level of the nd1
gene was detected in the vendace from Lake Pleshcheyevo, where carriers of the most
ancient IVC lineage (or ALBP2 haplogroup according to [26]) were revealed. The minimum
level of diversity is typical for the vendace of Fennoscandia waterbodies [96] and the
least cisco of the Putorana Plateau (Table S6). Obviously, this is due to the youth of these
populations. Glaciers covered vast areas of the basins of the Baltic, White, and Barents Seas
during the last glaciation, and the age of these populations cannot exceed a maximum of
10–15 thousand years [66,97–99]. Therefore, even the presence of two different lineages
in young whitefish populations in Danish waterbodies does not significantly increase the
indices of intrapopulation polymorphism (Table S7).

In the case of the least cisco populations of the Putorana Plateau, an effect that their
relative youth also seems to produce is seen. Here, the younger lineage IIC clearly domi-
nates, obviously spreading to the region from the west [26,100]. Perhaps the ancestor of the
modern predatory form of whitefish of Lake Sobach’ye (the Putorana Plateau) penetrated
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into this region simultaneously with ciscoes. The predatory whitefish of this lake differs
from the benthophage–mokchegor whitefish that it lives sympatrically, in both ecology
and morphological features [101,102]. The predatory whitefish is also characterized by a
significant predominance of only one haplotype lineage in the population (Table S5) and
is almost two times lower than the level of genetic diversity compared to the mokchegor
(Table S7). It should be noted that the approximate time of the beginning of the dispersal of
the predominant lineages in the predatory whitefish and least cisco from Lake Sobach’ye
coincides (Table 2).

4.2. Possible Reasons for the Formation of the Observed Patterns of Contact Zones in Considered
Cisco Species and Whitefish

The patterns of the contact zones of phylogenetic lineages in the considered ciscoes
and whitefish of Eurasia differ significantly, as mentioned earlier. Only one similar feature
can be identified, namely the mixing of different lineages in both species in the area from the
Yamal Peninsula to the western part of the Putorana Plateau, including the lower reaches
of the Yenisey River (Figures 1 and 2). Our results suggest that the main reasons for the
formation of these specific patterns of the distribution of the lineages of two species are
as follows: 1. their different ability for long-term migrations, including under conditions
of high salinity, which manifests itself in the features of the body shape, ecology, and
physiology of fish [103,104], and 2. the location and size of the refugia from where the
resettlement began [105,106]. Migrants from large refugia are more successful, as a rule. The
success of migrants from large refugia is not only caused by the fact that individuals in large
waterbodies are already more adapted to long-term movement, but also by the fact that the
number of migrants from a population with larger numbers will be greater than from a
population of a smaller size. Additionally, adaptation to specific habitat conditions in small
waterbodies, expressed in specific genetic polymorphism [107,108], can play a certain role
in reducing the ability to disperse the carriers of a particular lineage. Such specialization
can reduce the ability to adapt to slightly different conditions in newly developed water
bodies, affecting competitiveness, and thereby limiting resettlement. Apparently, the time
spent by the group in isolation is also of significance.

For example, for the whitefish, which are larger in size than the vendace and least
cisco, long-term migrations along the mainland lineage of Eurasia were obviously not
difficult, which led to a wide distribution of the haplotypes of both mtDNA lineages.
However, it should be noted that carriers of IIW apparently still had an advantage, since
the frequency of this lineage is higher in the lower reaches of all large rivers, not only in
the Arctic Ocean basin but also in the Bering Sea (the Anadyr River). The same lineage
is mostly represented in the populations of western Europe. The haplotypes of the IW
lineage are more associated with the upper reaches of Siberian rivers, and in Europe, they
are represented by a separate IW1 subclade, which has a rather limited distribution, as
discussed above. At the same time, the time of the beginning of the propagation of the IW
and IIW lineages is comparable (Table 2). All these factors led to the presence of a significant
number of whitefish populations where the carriers of IW and IIW lineages coexist.

We have already discussed the features of vendace and least cisco phylogeography
earlier [26,94,96]. It should be noted that representatives of these species seem to be less
capable of long-term migrations, and this has led to a limited distribution of a number of
haplotypes. In particular, haplotypes belonging to the IC lineage, which is dominant in
eastern Siberia, are almost never found outside the basin of the Pechora River. The same is
true for the haplotypes of the younger lineage, IIC, their distribution in the east is limited
to waterbodies of the Putorana Plateau. These factors determined the position of the vast
contact zone of two of the main ciscoes lineages, IC and IIC, from the basin of the Pechora
River to the western part of the Putorana Plateau.
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4.3. Comparison of Our Own Results with other Studies of the Phylogeography of the Whitefish
and Considered Ciscoes Species of Eurasia

This work is not devoted to a detailed discussion of the paths of cisco and white-
fish dispersal in periglacial waterbodies. However, we note that our results are in good
agreement with numerous paleogeographic reconstructions [97–99,109–112] and the data
of other authors (see Table 1).

At the same time, the analysis of the new information presented here allows us
to accurately supplement and refine the results of both our own earlier works on the
phylogeography of coregonids [113] and the studies of other researchers. Thus, in the
publication [66] where the phylogeography of the western European whitefish is considered
in detail, three large mtDNA clades have been mentioned, which can be considered to
correspond to the IW2, IW1, and IIW haplotype groups discussed by us. In addition,
according to K. Østbye and coauthors [66], the carriers of the clade 3–1, which correspond
to the IIW lineage in our work, dominate in European whitefish populations. From the
data given in [66], the significant differentiation in the composition of the haplotypes of
the European whitefish populations and the populations of the Pyasina and Khatanga
Rivers can be seen. Indeed, according to our results, these Siberian rivers are inhabited by
the carriers of the IW2 subclade haplotypes, which are not represented in western Europe
(Table S5).

The phylogeography and phylogeny of whitefish are also discussed in the works of D.S.
Sendek and coauthors [71–73,114–116], etc. However, most of these consider the origins
of whitefish populations in rather limited areas, which leads to inconsistent conclusions.
For example, the authors opine that the whitefish of Lake Pyaozero (Karelia, the White
Sea basin), represented by different morpho-ecological forms, comes from three different
phylogenetic lineages, including one from Siberia, due to its proximity to haplotypes from
the Anabar River (the Laptev Sea basin) on the haplotype network [73]. According to our
data, there are two phylogenetic lineages of whitefish in the Anabar River, the carriers
of one (IIW) are apparently more capable of migration and have spread widely across
Europe in addition to Siberian waterbodies (Figure 2; Table S5). Therefore, according
to the illustrative material presented in the article [73], we believe that Lake Pyaozero
is inhabited by the representatives of one lineage IIW, widespread in Europe, which is
confirmed by the allozyme data of the authors themselves. Our data are also consistent
with the conclusions of D.S. Sendek on the presence of cisco groups of different origins
in the Pechora River [116,117]. However, it should be noted that differentiation does not
occur between the saurey and zeld forms of cisco, the first of which is considered closer to
the European vendace, and the second to the Siberian least cisco: each of these forms are
almost equally represented by the carriers of haplotypes of both European and Siberian
origin (Figure 1; Table S3).

Our data also do not confirm the existence of a number of whitefish species identified
by other authors. Thus, whitefish from the Vidaa River (Denmark), which is considered
to be a representative of the species C. oxyrhynchus [118,119], does not differ in the set
of haplotypes either from other Danish populations or from a number of populations of
the Baltic Sea basin (Figure 2; Table S5). In addition, according to our data, the whitefish
from Lake Teletskoye (the Ob River basin) have a common origin. The differentiation
of haplotypes revealed in this lake is low and equals 0.26% (Table S7). All haplotypes
identified in the whitefish from this lake belong to the same phylogenetic lineage, IIW
(Figure 2; Table S5). However, a number of authors [77,120] discuss the sympatric habitation
of two subspecies in the lake, C. l. pidschian and C. l. pravdinellus, and do not exclude their
allopatric origin. Some authors even believe that the separate species C. pravdinellus exists
in Lake Teletskoye [121,122]. The species status of the medium-density rakered spring-
spawning whitefish of Lake Kapylyushi (Transbaikalia), C. baunti, is also questionable since
its differentiation with the sympatrically inhabiting whitefish is low. Common haplotypes
were found for them [120]. At the same time, many of specific morpho-ecological features
of whitefish, including the number of gill rakers and spawning time, are unstable and easily
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changed [123]. This problem could be resolved by information on the karyology of all the
above-discussed coregonids forms or RAD sequencing data, however, such data are not
yet available.

The differentiation in the nd1 gene sequences is also insignificant between the sym-
patric species C. albula and C. fontanae from Lake Stechlin (Germany). According to our
data, these groups have the same haplotypes and belong to the same phylogenetic lineage
common in Europe, IIC (Figure 1; Tables 3 and S3). This issue was discussed in more detail
in our previous work [26].

5. Conclusions

The analysis of the polymorphism of the mitochondrial nd1 gene in north Eurasian
coregonid populations revealed four phylogenetic mtDNA lineages of considered cisco
species, namely vendace and least cisco, and two lineages of whitefish. All species have
zones of secondary contact. However, in some cases, the presence of representatives of
different lineages in populations does not lead to the expected increase in intrapopulation
genetic polymorphism. It should be noted that the locations and areas of the most contact
zones are species-specific and depend on the species’ morpho-ecological characteristics,
such as the ability of long-term migration. In the area from the Yamal Peninsula to the
western part of the Putorana Plateau, including the downstream of the Yenisey River,
whitefish and ciscoes share a secondary contact zone with each other and with various cold-
water hydrobionts [36,38,124], etc. Finally, one can conclude that the previously assigned
species status of least cisco and several whitefish populations, such as C. pravdinellus,
C. baunti, and C. oxyrhynchus, seems to be quite doubtful, and additional karyological and
genetics studies are in high demand.
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lineages in whitefish populations; Table S6: Values of intrapopulation polymorphism in considered
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