Diplosphaera elongata sp. nova: Morphology and Phenotypic Plasticity of This New Microalga Isolated from Lichen Thalli
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain Origin and Culture Conditions
2.2. Microscopic Analyses
2.3. DNA Extraction
2.4. Phylogenetic Analysis
2.5. Analysis of the ITS2 Secondary Structure
2.6. Chlorophyll-Fluorescence Measurements
2.7. Statistical Analyses
3. Results
3.1. Taxonomic Assessment
- Family: Trebouxiaceae Friedl
- Genus: Diplosphaera Bialosuknia
- Diplosphaera elongata Chiva and Barreno sp. nova.
3.2. Molecular Phylogeny
3.3. ITS2 Secondary Structure
3.4. Ultrastructure and Morphology in Different Culture Media
3.5. Evaluation of Chlorophyll-Fluorescence Measurements
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
ml | Stock Solution | g/400 mL dist. water | g/1000 mL dist. water |
---|---|---|---|
10 | NaNO3 | 10 | 25 |
10 | CaCl2·2H2O | 1 | 2.5 |
10 | MgSO4·7H2O | 3 | 7.5 |
10 | K2HPO4·3 H2O | 3 | 7.5 |
10 | KH2PO4 | 7 | 17.5 |
10 | NaCl | 1 | 2.5 |
6 | Microelement solution | ||
5 | Lichen extract (5%) |
Ingredients | Quantity |
---|---|
FeCl3·6H2O | 97 mg |
MnCl2·4H2O | 41 mg |
ZnCl2·6H2O | 5 mg |
CoCl2·6H2O | 2 mg |
Na2MoO4·2H2O | 4 mg |
Ingredients | Quantity |
---|---|
NaCl | 2.25 g (dissolve in 200 mL) |
KCl | 0.105 g (dissolve in 100 mL) |
CaCl2 | 0.06 g (dissolve in 100 mL) * |
NaHCO3 | 0.05 g (dissolve in 100 mL) |
Distilled water | Up to 1000 mL |
References
- Leliaert, F.; Smith, D.R.; Moreau, H.; Herron, M.D.; Verbruggen, H.; Delwiche, C.F.; De Clerck, O. Phylogeny and molecular evolution of the green algae. Crit. Rev. Plant Sci. 2012, 31, 1–46. [Google Scholar] [CrossRef] [Green Version]
- Heesch, S.; Pažoutová, M.; Moniz, M.B.; Rindi, F. Prasiolales (Trebouxiophyceae, Chlorophyta) of the Svalbard Archipelago: Diversity, biogeography and description of the new genera Prasionella and Prasionema. Eur. J. Phycol. 2016, 51, 171–187. [Google Scholar] [CrossRef]
- Nelson, W.A.; Sutherland, J.E. Prasionema heeschiae sp. nov. (Prasiolales, Chlorophyta) from Campbell Island, New Zealand: First record of Prasionema in the southern hemisphere. Eur. J. Phycol. 2018, 53, 198–207. [Google Scholar] [CrossRef]
- Darienko, T.; Gustavs, L.; Pröschold, T. Species concept and nomenclatural changes within the genera Elliptochloris and Pseudochlorella (Trebouxiophyceae) based on an integrative approach. J. Phycol. 2016, 52, 1125–1145. [Google Scholar] [CrossRef]
- Pröschold, T.; Darienko, T. The green puzzle Stichococcus (Trebouxiophyceae, Chlorophyta): New generic and species concept among this widely distributed genus. Phytotaxa 2020, 441, 113–142. [Google Scholar] [CrossRef]
- Karsten, U.; Friedl, T.; Schumann, R.; Hoyer, K.; Lembcke, S. Mycosporine-like amino acids and phylogenies in green algae: Prasiola and its relatives from the Trebouxiophyceae (Chlorophyta). J. Phycol. 2005, 41, 557–566. [Google Scholar] [CrossRef]
- Rindi, F.; McIvor, L.; Sherwood, A.R.; Friedl, T.; Guiry, M.D.; Sheath, R.G. Molecular phylogeny of the green algal order Prasiolales (Trebouxiophyceae, Chlorophyta). J. Phycol. 2007, 43, 811–822. [Google Scholar] [CrossRef]
- Medwed, C.; Holzinger, A.; Hofer, S.; Hartmann, A.; Michalik, D.; Glaser, K.; Karsten, U. Ecophysiological, morphological, and biochemical traits of free-living Diplosphaera chodatii (Trebouxiophyceae) reveal adaptation to harsh environmental conditions. Protoplasma 2021, 258, 1187–1199. [Google Scholar] [CrossRef]
- De Wever, A.; Leliaert, F.; Verleyen, E.; Vanormelingen, P.; Van der Gucht, K.; Hodgson, D.A.; Sabbe, K.; Vyverman, W. Hidden levels of phylodiversity in Antarctic green algae: Further evidence for the existence of glacial refugia. Proc. R. Soc. B Biol. Sci. 2009, 276, 3591–3599. [Google Scholar] [CrossRef] [Green Version]
- Vishnivetskaya, T.A. Viable cyanobacteria and green algae from the permafrost darkness. In Permafrost Soils; Soil Biology; Margesin, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 16, pp. 73–84. [Google Scholar]
- Khan, N.; Tuffin, M.; Stafford, W.; Cary, C.; Lacap, D.C.; Pointing, S.B.; Cowan, D. Hypolithic microbial communities of quartz rocks from Miers Valley, McMurdo Dry Valleys, Antarctica. Polar Biol. 2011, 34, 1657–1668. [Google Scholar] [CrossRef]
- Van, A.T.; Karsten, U.; Glaser, K. A chemosystematic investigation of selected Stichococcus-like organisms (Trebouxiophyta). Algae 2021, 36, 123–135. [Google Scholar] [CrossRef]
- Guiry, M.D.; Guiry, G.M. AlgaeBase; World-Wide Electronic Publication; National University of Ireland: Galway, Ireland, 2019; Available online: https://www.algaebase.org (accessed on 22 January 2023).
- Coppins, B.J. A taxonomic study of the lichen genus Micarea in Europe. Bull. Br. Mus. Nat. 1983, 11, 17–214. [Google Scholar]
- Fontaine, K.M.; Beck, A.; Stocker-Wörgötter, E.; Piercey-Normore, M.D. Photobiont relationships and phylogenetic history of Dermatocarpon luridum var. luridum and related Dermatocarpon species. Plants 2012, 1, 39–60. [Google Scholar] [CrossRef] [Green Version]
- Stocker-Wörgötter, E.; Türk, R. The resynthesis of thalli of Dermatocarpon miniatum under laboratory conditions. Symbiosis 1989, 7, 37–50. [Google Scholar]
- Orekhova, A.; Barták, M.; Özkar, A.; Elster, J. The effect of shock freezing on physiological properties and consequent growth of Antarctic filamentous (Stigeoclonium sp.) and coccal alga (Diplosphaera chodatii) on agar plates. Czech Polar Rep. 2019, 9, 37–48. [Google Scholar] [CrossRef]
- Bialosuknia, M.W. Sur un nouveau genre de Pleurococcacées. Bull. Soc. Bot. Genève 1909, 1, 101–104. [Google Scholar]
- Ettl, H.; Gärtner, G. Syllabus der Boden-, Luft- und Flechtenalgen.; Springer: Berlin/Heidelberg, Germany, 2014; p. 773. [Google Scholar]
- Sanders, W.B.; Masumoto, H. Lichen algae: The photosynthetic partners in lichen symbioses. Lichenologist 2021, 53, 347–393. [Google Scholar] [CrossRef]
- Fontaine, K.M.; Stocker-Wörgötter, E.; Booth, T.; Piercey-Normore, M.D. Genetic diversity of the lichen-forming alga, Diplosphaera chodatii, in North America and Europe. Lichenologist 2013, 45, 799–813. [Google Scholar] [CrossRef]
- Thüs, H.; Muggia, L.; Pérez-Ortega, S.; Favero-Longo, S.E.; Joneson, S.; O’Brien, H.; Nelsen, M.P.; Duque-Thüs, R.; Grube, M.; Friedl, T.; et al. Revisiting photobiont diversity in the lichen family Verrucariaceae (Ascomycota). Eur. J. Phycol. 2011, 46, 399–415. [Google Scholar] [CrossRef] [Green Version]
- Chiva, S.; Moya, P.; Barreno, E. Lichen phycobiomes as source of biodiversity for microalgae of the Stichococcus-like genera. Biologia 2022, 78, 389–397. [Google Scholar] [CrossRef]
- Pérez-Ortega, S.; Ríos, A.D.L.; Crespo, A.; Sancho, L.G. Symbiotic lifestyle and phylogenetic relationships of the bionts of Mastodia tessellata (Ascomycota, incertae sedis). Am. J. Bot. 2010, 97, 738–752. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Benavent, I.; Pérez-Ortega, S.; de Los Ríos, A. From Alaska to Antarctica: Species boundaries and genetic diversity of Prasiola (Trebouxiophyceae), a foliose chlorophyte associated with the bipolar lichen-forming fungus Mastodia tessellate. Mol. Phylogenet. Evol. 2017, 107, 117–131. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.; Bechteler, J.; Casanova-Katny, A.; Dzhilyanova, I. The pioneer lichen Placopsis in maritime Antarctica: Genetic diversity of their mycobionts and green algal symbionts, and their correlation with deglaciation time. Symbiosis 2019, 79, 1–24. [Google Scholar] [CrossRef]
- Chiva, S.; Dumitru, C.; Bordenave, C.D.; Barreno, E. Watanabea green microalgae (Trebouxiophyceae) inhabiting lichen holobiomes: Watanabea lichenicola sp. nova. Phycol. Res. 2021, 69, 226–236. [Google Scholar] [CrossRef]
- Bischoff, H.W.; Bold, H.C. Physiological Studies: IV. Some Soil Algae from Enchanted Rock and Related Algal Species; Publications No. 6318; University of Texas: Austin, TX, USA, 1963. [Google Scholar]
- Schlösser, U.C. Additions to the culture collection of algae since 1994. Bot. Acta 1997, 110, 424–429. [Google Scholar] [CrossRef]
- Ahmadjian, V. A guide to the algae occurring as lichen symbionts: Isolation, culture, cultural physiology, and identification. Phycologia 1967, 6, 127–160. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Bordenave, C.D.; Muggia, L.; Chiva, S.; Leavitt, S.D.; Carrasco, P.; Barreno, E. Chloroplast morphology and pyrenoid ultrastructural analyses reappraise the diversity of the lichen phycobiont genus Trebouxia (Chlorophyta). Algal Res. 2022, 61, 102561. [Google Scholar] [CrossRef]
- Medlin, L.; Elwood, H.J.; Stickel, S.; Sogin, M.L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA coding regions. Gene 1988, 71, 491–499. [Google Scholar] [CrossRef] [Green Version]
- Piercey-Normore, M.D.; DePriest, P.T. Algal switching among lichen symbioses. Am. J. Bot. 2001, 88, 1490–1498. [Google Scholar] [CrossRef]
- Kroken, S.; Taylor, J.W. Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia. Bryologist 2000, 103, 645–660. [Google Scholar] [CrossRef]
- Nelsen, M.P.; Plata, E.R.; Andrew, C.J.; Lücking, R.; Lumbsch, H.T. Phylogenetic diversity of Trentepohlialean algae associated with lichen-forming fungi 1. J. Phycol. 2011, 47, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamatakis, A.; Hoover, P.; Rougemont, J. A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 2008, 57, 758–771. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A. FigTree-Version 1.4.3, a Graphical Viewer of Phylogenetic Trees. 2017. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 22 January 2023).
- Miller, M.A. The CIPRES Science Gateway V. 3.3. 2012. Available online: http://www.phylo.org/index.php/portal (accessed on 22 January 2023).
- Koetschan, C.; Hackl, T.; Müller, T.; Wolf, M.; Förster, F.; Schultz, J. ITS2 database IV: Interactive taxon sampling for internal transcribed spacer 2 based phylogenies. Mol. Phylogenet. Evol. 2012, 63, 585–588. [Google Scholar] [CrossRef]
- Reuter, J.S.; Mathews, D.H. RNAstructure: Software for RNA secondary structure prediction and analysis. BMC Bioinform. 2010, 11, 129. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, U. Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: An overview. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Papageorgiou, G.C., Ed.; Springer: Dordrecht, The Netherlands, 2004; pp. 279–319. [Google Scholar]
- Lazár, D. Parameters of photosynthetic energy partitioning. J. Plant Physiol. 2015, 175, 131–147. [Google Scholar] [CrossRef]
- Kasajima, I.; Takahara, K.; Kawai-Yamada, M.; Uchimiya, H. Estimation of the relative sizes of rate constants for Chlorophyll de-excitation processes through comparison of inverse fluorescence intensities. Plant Cell Physiol. 2009, 50, 1600–1616. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 22 January 2023).
- Addison, S.L.; Walbert, K.; Smaill, S.J.; Menkis, A. Edaphic properties related with changes in diversity and composition of fungal communities associated with Pinus radiata. Pedobiologia 2018, 66, 43–51. [Google Scholar] [CrossRef]
- Coleman, A.W. ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends Genet. 2003, 19, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Kramer, D.M.; Johnson, G.; Kiirats, O.; Edwards, G.E. New fluorescence parameters for the determination of Q A redox state and excitation energy fluxes. Photosynth. Res. 2004, 79, 209–218. [Google Scholar] [CrossRef]
- Doering, J.A. An Investigation of the Spatial Distribution and Inference of Dispersal Method in the Semi-Aquatic Lichenised Green Alga Diplosphaera chodatii around Payuk Lake, Manitoba. Master’s Thesis, Faculty of Graduate Studies of the University of Manitoba, Winnipeg, MB, Canada, 2017. Available online: https://mspace.lib.umanitoba.ca/xmlui/handle/1993/32334 (accessed on 22 January 2023).
- Hodac, L.; Hallman, C.; Spitzer, K.; Elster, J.; Faßhauer, F.; Brinkmann, N.; Lepka, D.; Diwan, V.; Friedl, T. Widespread green algae Chlorella and Stichococcus exhibit polar-temperate and tropical-temperate biogeography. FEMS Microbiol. Ecol. 2016, 93, fiw122. [Google Scholar] [CrossRef] [Green Version]
- Baker, N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef] [Green Version]
- Masojídek, J.; Torzillo, G.; Koblížek, M. Photosynthesis in microalgae. In Handbook of Microalgal Culture: Applied Phycology and Biotechnology, 2nd ed.; Richmond, A., Hu, Q., Eds.; Blackwell Publishing: Hoboken, NJ, USA, 2013; pp. 21–36. [Google Scholar]
- White, S.; Anandraj, A.; Bux, F. PAM fluorometry as a tool to assess microalgal nutrient stress and monitor cellular neutral lipids. Bioresour. Technol. 2011, 102, 1675–1682. [Google Scholar] [CrossRef] [PubMed]
- Ruban, A.V.; Wilson, S. The mechanism of non-photochemical quenching in plants: Localization and driving forces. Plant Cell Physiol. 2021, 62, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Elshobary, M.E.; Osman, M.E.; Abushady, A.M.; Piercey-Normore, M.D. Comparison of lichen-forming cyanobacterial and green algal photobionts with free-living algae. Cryptogamie Algol. 2015, 36, 81–100. [Google Scholar] [CrossRef]
- Zhang, T.; Wei, J. Survival analyses of symbionts isolated from Endocarpon pusillum Hedwig to desiccation and starvation stress. Sci. China Life Sci. 2011, 54, 480–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starr, R.C.; Zeikus, J.A. UTEX—The culture collection of algae at the University of Texas at Austin 1993 List of cultures 1. J. Phycol. 1993, 29, 1–106. [Google Scholar] [CrossRef]
- Biosca, E.G.; Flores, R.; Santander, R.D.; Díez-Gil, J.L.; Barreno, E. Innovative approaches using lichen enriched media to improve isolation and culturability of lichen associated bacteria. PLoS ONE 2016, 11, e0160328. [Google Scholar] [CrossRef] [Green Version]
- Schaad, N.W.; Süle, S.; van Vuurde, J.W.L.; Vruggink, H.; Alvarez, A.M.; Benedict, A.A. Serology. In Methods in Phytobacteriology; Klement, Z., Rudolph, K., Sands, D.C., Eds.; Akadémiai Kiadó: Budapest, Hungary, 1990; pp. 153–190. [Google Scholar]
Treatment | Standard Condition | Poor Condition | Rich Condition | Lichen Condition |
---|---|---|---|---|
Solid 8 °C | 3N-BBM + V | BBM | 3N-BBM + GC | 3N-BBM + LE |
Solid 18 °C | 3N-BBM + V | BBM | 3N-BBM + GC | 3N-BBM + LE |
Liquid 8 °C | 3N-BBM + V | BBM | 3N-BBM + GC | 3N-BBM + LE |
Liquid 18 °C | 3N-BBM + V | BBM | 3N-BBM + GC | 3N-BBM + LE |
Trait | Diplosphaera chodatii | Diplosphaera elongata |
---|---|---|
Morphological | Individual cells are rather oval [5]. | Individual cells are rod-shaped. |
Ultrastructural | Cells show a pyrenoid, numerous electron-dense vacuoles and a chloroplast with regularly arranged thylakoid membranes [8]. | Cells without pyrenoids or electron-dense vacuoles. In addition, the thylakoids are not regularly organized. |
Phenotypical | Main factor: Temperature.
| Main factor: Medium composition.
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiva, S.; Bordenave, C.D.; Gázquez, A.; Barreno, E. Diplosphaera elongata sp. nova: Morphology and Phenotypic Plasticity of This New Microalga Isolated from Lichen Thalli. Diversity 2023, 15, 168. https://doi.org/10.3390/d15020168
Chiva S, Bordenave CD, Gázquez A, Barreno E. Diplosphaera elongata sp. nova: Morphology and Phenotypic Plasticity of This New Microalga Isolated from Lichen Thalli. Diversity. 2023; 15(2):168. https://doi.org/10.3390/d15020168
Chicago/Turabian StyleChiva, Salvador, César Daniel Bordenave, Ayelén Gázquez, and Eva Barreno. 2023. "Diplosphaera elongata sp. nova: Morphology and Phenotypic Plasticity of This New Microalga Isolated from Lichen Thalli" Diversity 15, no. 2: 168. https://doi.org/10.3390/d15020168
APA StyleChiva, S., Bordenave, C. D., Gázquez, A., & Barreno, E. (2023). Diplosphaera elongata sp. nova: Morphology and Phenotypic Plasticity of This New Microalga Isolated from Lichen Thalli. Diversity, 15(2), 168. https://doi.org/10.3390/d15020168