The Known and Unknowns of Aphid Biotypes, and Their Role in Mediating Host Plant Defenses
Abstract
:1. Background
2. Aphids
3. The Concept of Biotype
4. Importance of Studying Insect Biotypes
5. Aphid Biotypes
6. Molecular Advances in Aphid Biotype Studies
7. Ecotypes and their Differences from Biotypes
Sugarcane Aphid (Melanaphis sacchari) and Sorghum (Sorghum bicolor)
8. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Saxena, R.C.; Barrion, A.A. Biotypes of Insect Pests of Agricultural Crops. Int. J. Trop. Insect Sci. 1987, 8, 453–458. [Google Scholar] [CrossRef]
- Nosil, P. Reproductive Isolation Caused by Visual Predation on Migrants between Divergent Environments. Proc. R. Soc. Lond. B 2004, 271, 1521–1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, J.; Via, S.; Godfray, H.C.J. Population Differentiation and Genetic Variation in Performance on Eight Hosts in the Pea Aphid Complex. Evolution 2008, 62, 2508–2524. [Google Scholar] [CrossRef] [PubMed]
- Guerrieri, E.; Digilio, M.C. Aphid-Plant Interactions: A Review. J. Plant Interact. 2008, 3, 223–232. [Google Scholar] [CrossRef]
- Kaur, J.; Chavana, J.; Soti, P.; Racelis, A.; Kariyat, R. Arbuscular Mycorrhizal Fungi (AMF) Influences Growth and Insect Community Dynamics in Sorghum-Sudangrass (Sorghum x Drummondii). Arthropod-Plant Interact. 2020, 14, 301–315. [Google Scholar] [CrossRef]
- Singh, S.; Kaur, I.; Kariyat, R. The Multifunctional Roles of Polyphenols in Plant-Herbivore Interactions. Int. J. Mol. Sci. 2021, 22, 1442. [Google Scholar] [CrossRef]
- Taggar, G.K.; Arora, R. Insect Biotypes and Host Plant Resistance. In Breeding Insect Resistant Crops for Sustainable Agriculture; Arora, R., Sandhu, S., Eds.; Springer Singapore: Singapore, 2017; pp. 387–421. ISBN 978-981-10-6055-7. [Google Scholar]
- Carletto, J.; Lombaert, E.; Chavigny, P.; Brévault, T.; Lapchin, L.; Vanlerberghe-Masutti, F. Ecological Specialization of the Aphid (Aphis gossypii) Glover on Cultivated Host Plants. Mol. Ecol. 2009, 18, 2198–2212. [Google Scholar] [CrossRef] [PubMed]
- Nosil, P. Ecological Speciation. Oxford Series in Ecology and Evolution; Oxford University Press: Oxford, NY, USA.
- Blackman, R.L.; Eastop, V.F. Aphids on the World’s Crops: An Identification and Information Guide, 2nd ed.; Wiley: Chichester, UK; Weinheim, Germany, 2000; ISBN 978-0-471-85191-2. [Google Scholar]
- Smith, C.M.; Chuang, W.-P. Plant Resistance to Aphid Feeding: Behavioral, Physiological, Genetic and Molecular Cues Regulate Aphid Host Selection and Feeding: Plant Resistance to Aphid Feeding. Pest. Manag. Sci. 2014, 70, 528–540. [Google Scholar] [CrossRef]
- Tjallingii, W.F. Salivary Secretions by Aphids Interacting with Proteins of Phloem Wound Responses. J. Exp. Bot. 2006, 57, 739–745. [Google Scholar] [CrossRef]
- Pollard, D.G. Plant Penetration by Feeding Aphids (Hemiptera, Aphidoidea): A Review. Bull. Entomol. Res. 1973, 62, 631–714. [Google Scholar] [CrossRef]
- Dixon, A.F.G. Aphid Ecology: An Optimization Approach, 2nd ed.; Chapman & Hall: London, UK; Weinheim, Germany; New York, NY, USA, 1998; ISBN 978-0-412-74180-7. [Google Scholar]
- BERGER, P.H.; ZEYEN, R.J. Effects of Sustained Immobilisation on Aphids. Ann. Appl. Biol. 1987, 111, 247–256. [Google Scholar] [CrossRef]
- Gray, S.M.; Smith, D.M.; Barbierri, L.; Burd, J. Virus Transmission Phenotype Is Correlated with Host Adaptation Among Genetically Diverse Populations of the Aphid Schizaphis graminum. Phytopathology 2002, 92, 970–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogenhout, S.A.; Ammar, E.-D.; Whitfield, A.E.; Redinbaugh, M.G. Insect Vector Interactions with Persistently Transmitted Viruses. Annu. Rev. Phytopathol. 2008, 46, 327–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, I.S.; Dixon, A.F.G. Life Cycles and Polymorphism. In Aphids as crop pests; van Emden, H.F., Harrington, R., Eds.; CABI: Wallingford, UK, 2007; pp. 69–85. ISBN 978-0-85199-819-0. [Google Scholar]
- Simon, J.-C.; Rispe, C.; Sunnucks, P. Ecology and Evolution of Sex in Aphids. Trends Ecol. Evol. 2002, 17, 34–39. [Google Scholar] [CrossRef]
- Dixon, A.F.G. Structure of Aphid Populations. Annu. Rev. Entomol. 1985, 30, 155–174. [Google Scholar] [CrossRef]
- Miura, T.; Braendle, C.; Shingleton, A.; Sisk, G.; Kambhampati, S.; Stern, D.L. A Comparison of Parthenogenetic and Sexual Embryogenesis of the Pea Aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). J. Exp. Zool. 2003, 295B, 59–81. [Google Scholar] [CrossRef]
- Powell, G.; Tosh, C.R.; Hardie, J. Host Plant Selection by Aphids: Behavioral, Evolutionary, and Applied Perspectives. Annu. Rev. Entomol. 2006, 51, 309–330. [Google Scholar] [CrossRef]
- Stern, V.M.; Smith, R.F.; van den Bosch, R.; Hagen, K.S. The Integration of Chemical and Biological Control of the Spotted Alfalfa Aphid: The Integrated Control Concept. Hilg 1959, 29, 81–101. [Google Scholar] [CrossRef] [Green Version]
- Barzman, M.; Bàrberi, P.; Birch, A.N.E.; Boonekamp, P.; Dachbrodt-Saaydeh, S.; Graf, B.; Hommel, B.; Jensen, J.E.; Kiss, J.; Kudsk, P.; et al. Eight Principles of Integrated Pest Management. Agron. Sustain. Dev. 2015, 35, 1199–1215. [Google Scholar] [CrossRef] [Green Version]
- Gould, W.R.; Nichols, J.D. Estimation of Temporal Variability of Survival in Animal Populations. Ecology 1998, 79, 2531–2538. [Google Scholar] [CrossRef]
- Rausher, M.D. Co-Evolution and Plant Resistance to Natural Enemies. Nature 2001, 411, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, W.H. Biological Races in Insects and Allied Groups. Biol. Rev. 1930, 5, 177–212. [Google Scholar] [CrossRef]
- Mayr, E. Systematics and the Origin of Species, from the Viewpoint of a Zoologist; 1st Harvard University Press pbk. ed.; Harvard University Press: Cambridge, MA, USA, 1999; ISBN 978-0-674-86250-0. [Google Scholar]
- Huxley, J. Evolution: The Modern Synthesis, Definitive ed.; MIT Press: Cambridge, MA, USA, 2010; ISBN 978-0-262-51366-1. [Google Scholar]
- Walsh, B.D. On Phytophagic Varieties and Phytophagic Species; Harvard University: Cambridge, MA, USA, 1864. [Google Scholar]
- Cholodkovsky, N. Zur Frage Über Die Biologischen Arten. Biol. Zentralbl. 1908, 28, 769–782. [Google Scholar]
- Painter, R.H. Insect Resistance in Crop Plants. Soil Sci. 1951, 72, 481. [Google Scholar] [CrossRef]
- Nielson, M.W.; Lehman, W.F.; Marble, V.L. A New Severe Strain of the Spotted Alfalfa Aphid in California12. J. Econ. Entomol. 1970, 63, 1489–1491. [Google Scholar] [CrossRef]
- Eastop, V.F. Deductions from the Present Day Host Plants of Aphids and Related Insects. Roy Entomol. Soc. Lond. Symp. 1972, 6, 157–178. [Google Scholar]
- Gallun, R.L. Genetics of Biotypes B and C of the Hessian Fly1. Ann. Entomol. Soc. Am. 1978, 71, 481–486. [Google Scholar] [CrossRef]
- Gallun, R.L.; Khush, G.S. Genetic Factors Affecting Expression and Stability of Resistance; John and Wiley And Sons: Hoboken, NJ, USA, 1980. [Google Scholar]
- Diehl, S.R.; Bush, G.L. An Evolutionary and Applied Perspective of Insect Biotypes. Annu. Rev. Entomol. 1984, 29, 471–504. [Google Scholar] [CrossRef]
- Granett, J.; Walker, M.A.; Kocsis, L.; Omer, A.D. Biology and Management of Grape Phylloxera. Annu. Rev. Entomol. 2001, 46, 387–412. [Google Scholar] [CrossRef]
- Smith, C.M. Plant Resistance to Arthropods: Molecular and Conventional Approaches; Springer: Dordrecht, The Netherlands, 2005; ISBN 978-1-4020-3701-6. [Google Scholar]
- Downie, D.A. Baubles, Bangles, and Biotypes: A Critical Review of the Use and Abuse of the Biotype Concept. J. Insect Sci. 2010, 10, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Studies in the Agricultural and Food Sciences. In Plant Breeding for Pest and Disease Resistance; Russell, G.E. (Ed.) Butterworth-Heinemann: Boston, MA, USA, 1978; p. ii. ISBN 978-0-408-10613-9. [Google Scholar]
- Stark, W.S.; Chen, D.-M.; Johnson, M.A.; Frayer, K.L. The RdgB Gene in Drosophila: Retinal Degeneration in Different Mutant Alleles and Inhibition of Degeneration by NorpA. J. Insect Physiol. 1983, 29, 123–131. [Google Scholar] [CrossRef]
- Saxena, R.C.; Rueda, L.M. Morphological Variations among Three Biotypes of the Brown Planthopper Nilaparvata lugens in the Philippines. Int. J. Trop. Insect Sci. 1982, 3, 193–210. [Google Scholar] [CrossRef]
- Fargo, W.S.; Inayatullah, C.; Webster, J.A.; Holbert, D. Morphometric Variation within Apterous Females of Schizaphis graminum Biotypes. Res. Popul. Ecol. 1986, 28, 163–172. [Google Scholar] [CrossRef]
- Inayatullah, C.; Webster, J.A.; Fargo, W.S. Morphometric Variation in the Alates of Greenbug (Homoptera: Aphididae) Biotypes. Ann. Entomol. Soc. Am. 1987, 80, 306–311. [Google Scholar] [CrossRef]
- Maxwell, F.G.; Jennings, P.R. (Eds.) Breeding Plants Resistant to Insects; Environmental Science and Technology; Wiley: New York, NY, USA, 1980; ISBN 978-0-471-03268-7. [Google Scholar]
- Moran, N.A.; McCutcheon, J.P.; Nakabachi, A. Genomics and Evolution of Heritable Bacterial Symbionts. Annu. Rev. Genet. 2008, 42, 165–190. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.N. The Coevolutionary Process; University of Chicago Press: Chicago, IL, USA, 2009; ISBN 0-226-79767-8. [Google Scholar]
- Douglas, A.E. The Microbial Dimension in Insect Nutritional Ecology. Funct. Ecol. 2009, 23, 38–47. [Google Scholar] [CrossRef]
- Oliver, K.M.; Degnan, P.H.; Burke, G.R.; Moran, N.A. Facultative Symbionts in Aphids and the Horizontal Transfer of Ecologically Important Traits. Annu. Rev. Entomol. 2010, 55, 247–266. [Google Scholar] [CrossRef] [Green Version]
- Hoy, M.A.; McKelvey, J.J. Genetics in Relation to Insect Management: A Rockefeller Foundation Conference, March 31–April 5, 1978, Bellagio, Italy; Rockefeller Foundation; Rockefeller Foundation: New York, NY, USA, 1979. [Google Scholar]
- Foster, J.; Gallun, R. Control of Hessian Fly Race B on Resistant Wheat by the Release of a Dominant Avirulent Race. In Proceedings of the 4th International Wheat Genetics Symposium, Columbia, MO, USA, 6–11 August 1973. [Google Scholar]
- Hatchett, J.; Gallun, R. Genetic Control of the Hessian Fly. Hessian Fly 1967, 22, 100–101. [Google Scholar]
- Foster, J.; Lafayette, W. Current Status of Genetic Control of Hessian Fly Populations with the Dominant Great Plains Race. Proc. XV Int. Congr. Entomol 1976, 157–163. [Google Scholar]
- Boller, E.F.; Prokopy, R.J. Bionomics and Management of Rhagoletis. Annu. Rev. Entomol. 1976, 21, 223–246. [Google Scholar] [CrossRef]
- Pathak, M.; Saxena, R. Insect Resistance in Crop Plants. Comment. Plant Sci. 2013, 2, 61. [Google Scholar]
- Smith, C.F. A New Species of Hymenopterous Parasite of the Pea Aphid (Macrosiphum pisi Kaltenbach)1. Ann. Entomol. Soc. Am. 1941, 34, 537–538. [Google Scholar] [CrossRef]
- Jean, P.; Jean-Christophe, S. The Pea Aphid Complex as a Model of Ecological Speciation. Ecol. Entomol. 2010, 35, 119–130. [Google Scholar] [CrossRef]
- Via, S. Reproductive Isolation Between Sympatric Races of Pea Aphids. I. Gene Flow Restriction and Habitat Choice. Evolution 1999, 53, 1446–1457. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, J.; Godfray, H.C.J.; Faulconbridge, A.S.; Prior, K.; Via, S. Population Differentiation and Genetic Variation in Host Choice among Pea Aphids from Eight Host Plant Genera. Evolution 2006, 60, 1574–1584. [Google Scholar] [PubMed]
- Nibouche, S.; Mississipi, S.; Fartek, B.; Delatte, H.; Reynaud, B.; Costet, L. Host Plant Specialization in the Sugarcane Aphid Melanaphis sacchari. PLoS ONE 2015, 10, e0143704. [Google Scholar] [CrossRef] [Green Version]
- Agarwala, B. Phenotypic Plasticity in Aphids (Homoptera: Insecta): Components of Variation and Causative Factors. Curr. Sci. 2006, 93, 308–313. [Google Scholar]
- Wall, R.E. A Study of Color and Color-Variation in Aphis gossypii Glover: A Thesis. Ann. Entomol. Soc. Am. 1933, 26, 425–463. [Google Scholar] [CrossRef]
- Kring, J.B. The Life Cycle of the Melon Aphid, Aphis gossypii Glover, an Example of Facultative Migration. Ann. Entomol. Soc. Am. 1959, 52, 284–286. [Google Scholar] [CrossRef]
- Rosenheim, J.A.; Wilhoit, L.R.; Colfer, R.G. Seasonal Biology and Polymorphism of the Cotton Aphid, Aphis gossypii in California. In Proceedings of the Beltwide Cotton Conferences, San Diego, CA, USA, 5–8 January 1994. [Google Scholar]
- Watt, M.; Hales, D.F. Dwarf Phenotype of the Cotton Aphid, Aphis gossypii Glover (Hemiptera: Aphididae). Aust. J. Entomol. 1996, 35, 153–159. [Google Scholar] [CrossRef]
- Mondor, E.B.; Rosenheim, J.A.; Addicott, J.F. Predator-Induced Transgenerational Phenotypic Plasticity in the Cotton Aphid. Oecologia 2005, 142, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Liu, D.; Shi, X.; Yang, Y.; Zhang, N.; Shang, Z. Transcriptome Profiling Revealed Potentially Important Roles of Defensive Gene Expression in the Divergence of Insect Biotypes: A Case Study with the Cereal Aphid Sitobion avenae. BMC Genom. 2020, 21, 546. [Google Scholar] [CrossRef] [PubMed]
- Moran, N.A. The Evolution of Aphid Life Cycles. Annu. Rev. Entomol. 1992, 37, 321–348. [Google Scholar] [CrossRef]
- Huang, X.; Liu, D.; Gao, S.; Chen, H. Differential Performance of Sitobion avenae Populations From Both Sides of the Qinling Mountains Under Common Garden Conditions. env. entom. 2013, 42, 1174–1183. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, S.; Luo, J.-Y.; Wang, C.-Y.; Lv, L.-M.; Zhu, X.-Z.; Li, C.-H.; Cui, J.-J. Identification of Aphis gossypii Glover (Hemiptera: Aphididae) Biotypes from Different Host Plants in North China. PLoS ONE 2016, 11, e0146345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Liu, D.; Zhai, Y.; Zhang, R.; Shi, X. Clonal Diversity and Genetic Differentiation of Sitobion avenae (Hemiptera: Aphididae) From Wheat and Barley in China. J. Econ. Entomol. 2019, 112, 1217–1226. [Google Scholar] [CrossRef]
- Harrington, C.D. The Occurrence of Physiological Races of the Pea Aphid. J. Econ. Entomol. 1943, 36, 118–119. [Google Scholar] [CrossRef]
- Meier, W. Beiträge Zur Kenntnis Der Auf Papilionaceen Lebenden Acyrthosiphon-Arten (Hemipt. Aphid.). Mitt. Schweiz. Entomol. Ges. 1958, 31, 291–312. [Google Scholar]
- Thottappilly, G.; Bath, J.E.; French, J.V. Aphid Transmission Characteristics of Pea Enation Mosaic Virus Acquired from a Membrane-Feeding System. Virology 1972, 50, 681–689. [Google Scholar] [CrossRef]
- Frazer, B. Population Dynamics and Recognition of Biotypes in the Pea Aphid (Homoptera: Aphididae). Can. Entomol. 1972, 104, 1729–1733. [Google Scholar] [CrossRef]
- Srivastava, P.; Auclair, J. Differential Responses of Biotypes of the Pea Aphid, Acyrthosiphon pisum (Harris), to a Chemically Defined Diet. Can. J. Zool. 1978, 56, 2481–2485. [Google Scholar] [CrossRef]
- Markkula, M.; Roukka, K. Resistance of Plants to the Pea Aphid Acyrthosiphon pisum Harris (Hom., Aphididae). I. Fecundity of the Biotypes on Different Host Plants. Ann. Agricales Fenn. 1970, 9, 127–132. [Google Scholar]
- Auclair, J.L. Biotypes of the Pea Aphid, Acyrthosiphon pisum, in Relation to Host Plants and Chemically Defined Diets. Entomol. Exp. Et Appl. 1978, 24, 212–216. [Google Scholar] [CrossRef]
- Cartier, J.J. Recognition of Three Biotypes of the Pea Aphid from Southern Quebec. J. Econ. Entomol. 1959, 52, 293–294. [Google Scholar] [CrossRef]
- Cartier, J.J.; Painter, R.H. Differential Reactions of Two Biotypes of the Corn Leaf Aphid to Resistant and Susceptible Varieties, Hybrids and Selections of Sorghums1. J. Econ. Entomol. 1956, 49, 498–508. [Google Scholar] [CrossRef]
- Painter, R.; Pathak, M. The Distinguishing Features and Significance of the Four Biotypes of the Corn Leaf Aphid, Rhopalosiphum maidis (Fitch). In Proceedings of the 11th International Congress of Entomology, Vienna, Austria, 17–25 August 1960. [Google Scholar]
- Wilde, G.; Feese, H. A New Corn Leaf Aphid Biotype and Its Effect on Some Cereal and Small Grains12. J. Econ. Entomol. 1973, 66, 570–571. [Google Scholar] [CrossRef]
- Nielson, M.W.; Don, H. A New Virulent Biotype of the Spotted Alfalfa Aphid in Arizona12. J. Econ. Entomol. 1974, 67, 64–66. [Google Scholar] [CrossRef]
- Harvey, T.L.; Hackerott, H.L. Plant Resistance to a Greenbug Biotype Injurious to Sorghum12. J. Econ. Entomol. 1969, 62, 1271–1274. [Google Scholar] [CrossRef]
- Saxena, P.X.; Chada, H.L. The Greenbug, Schizaphis graminum.1 1. Mouth Parts and Feeding Habits2. Ann. Entomol. Soc. Am. 1971, 64, 897–904. [Google Scholar] [CrossRef]
- Harvey, T.; Hackerott, H. Recognition of a Greenbug Biotype Injurious to Sorghum. J. Econ. Entomol. 1969, 62, 776–779. [Google Scholar] [CrossRef]
- Campbell, B.C.; Mclean, D.L.; Kinsey, M.G.; Jones, K.C.; Dreyer, D.L. Probing Behavior of the Greenbug (Schizaphis graminum, Biotype C) on Resistant and Susceptible Varieties of Sorghum. Entomol. Exp. Et Appl. 1982, 31, 140–146. [Google Scholar] [CrossRef]
- Kennedy, G.; McLean, D.; Kinsey, M. Probing Behavior of Aphis gossypii on Resistant and Susceptible Muskmelon. J. Econ. Entomol. 1978, 71, 13–16. [Google Scholar] [CrossRef]
- Kariyat, R.R.; Gaffoor, I.; Sattar, S.; Dixon, C.W.; Frock, N.; Moen, J.; De Moraes, C.M.; Mescher, M.C.; Thompson, G.A.; Chopra, S. Sorghum 3-Deoxyanthocyanidin Flavonoids Confer Resistance against Corn Leaf Aphid. J. Chem. Ecol. 2019, 45, 502–514. [Google Scholar] [CrossRef] [PubMed]
- Montllor, C.B.; Campbell, B.C.; Mittler, T. Natural and Induced Differences in Probing Behavior of Two Biotypes of the Greenbug, Schizaphis graminum, in Relation to Resistance in Sorghum. Entomol. Exp. Et. Appl. 1983, 34, 99–106. [Google Scholar] [CrossRef]
- Weibel, D.; Starks, K.; Wood Jr, E.; Morrison, R. Sorghum Cultivars and Progenies Rated for Resistance to Greenbugs 1. Crop Sci. 1972, 12, 334–336. [Google Scholar] [CrossRef]
- Schuster, D.; Starks, K. Preference of Lysiphlebus testaceipes for Greenbug Resistant and Susceptible Small Grain Species. Environ. Entomol. 1975, 4, 887–888. [Google Scholar] [CrossRef]
- Kim, K.; Hill, C.B.; Hartman, G.L.; Mian, M.R.; Diers, B.W. Discovery of Soybean Aphid Biotypes. Crop Sci. 2008, 48, 923–928. [Google Scholar] [CrossRef]
- Zarrabi, A.; Berberet, R.; Caddel, J. New Biotype of Acyrthosiphon kondoi (Homoptera: Aphididae) on Alfalfa in Oklahoma. J. Econ. Entomol. 1995, 88, 1461–1465. [Google Scholar] [CrossRef]
- Sohi, S.S.; Swenson, K.G. Pea Aphid Biotypes Differing in Bean Yellow Mosaic Virus Transmission1. Entomol. Exp. Et. Appl. 1964, 7, 9–14. [Google Scholar] [CrossRef]
- Peccoud, J.; Mahéo, F.; De La Huerta, M.; Laurence, C.; Simon, J. Genetic Characterisation of New Host-specialised Biotypes and Novel Associations with Bacterial Symbionts in the Pea Aphid Complex. Insect Conserv. Divers. 2015, 8, 484–492. [Google Scholar] [CrossRef]
- Converse, R.; DAUBENY, H.A.; Stace-Smith, R.; Russell, L.M.; Koch, E.; Wiggans, S. Search for Biological Races in Amphorophora agathonica Hottes on Red Raspberries. Can. J. Plant Sci. 1971, 51, 81–85. [Google Scholar] [CrossRef]
- Dossett, M.; Kempler, C. Biotypic Diversity and Resistance to the Raspberry Aphid Amphorophora agathonica in Pacific Northwestern North America. J. Amer. Soc. Hort. Sci. 2012, 137, 445–451. [Google Scholar] [CrossRef] [Green Version]
- Gordon, S.; Woodford, J.; Birch, A. Arthropod Pests of Rubus in Europe: Pest Status, Current and Future Control Strategies. J. Hortic. Sci. 1997, 72, 831–862. [Google Scholar] [CrossRef]
- Birch, A.; Jones, A.; Fenton, B.; Malloch, G.; Geoghegan, I.; Gordon, S.; Hillier, J.; Begg, G. Resistance-Breaking Raspberry Aphid Biotypes: Constraints to Sustainable Control through Plant Breeding. Acta Hortic. 2002, 5851, 315–317. [Google Scholar] [CrossRef]
- Briggs, J.B. Three New Strains of Amphorophora rubi (Kalt.) on Cultivated Raspberries in England. Bull. Entomol. Res. 1959, 50, 81–87. [Google Scholar] [CrossRef]
- Briggs, J.B. The Distribution, Abundance, and Genetic Relationships of Four Strains of the Rubus Aphid (Amphorophora rubi (Kalt.)) in Relation To Raspberry Breeding. J. Hortic. Sci. 1965, 40, 109–117. [Google Scholar] [CrossRef]
- Knight, R.; Briggs, J.; Keep, E. Genetics of Resistance to Amphorophora rubi (Kalt.) in the Raspberry II. The Genes A2–A7 from the American Variety, Chief. Genet. Res. 1960, 1, 319–331. [Google Scholar] [CrossRef]
- Keep, E.; Knight, R.L. A New Gene from Rubus occidentalis L. For Resistance to Strains 1, 2, and 3 of the Rubus Aphid, Amphorophora rubi Kalt. Euphytica 1967, 16, 209–214. [Google Scholar] [CrossRef]
- Keep, E.; Knight, R.; Parker, J. Further Data on Resistance to the Rubus Aphid Amphorophora rubi Kltb. Rep. East Malling Res. Stn. 1970, 199, 129–131. [Google Scholar]
- Watson, M.A.; Okusanya, B.A.M. Studies on the Transmission of Groundnut Rosette Virus by Aphis craccivora Koch. Ann. Appl. Biol. 1967, 60, 199–208. [Google Scholar] [CrossRef]
- Ansari, A.K. Biology of Aphis craccivora (Koch.) and Varietal Resistance of Cowpeas. Ph.D. Thesis, University of Reading, Department of Agriculture and Horticulture, Iskandar Puteri, Malaysia, 1984. [Google Scholar]
- Kusi, F.; Obeng-Ofori, D.; Asante, S.; Padi, F. New Sources of Resistance in Cowpea to the Cowpea Aphid (Aphis craccivora Koch) (Homoptera: Aphididae). J. Ghana Sci. Assoc. 2010, 12, 95–104. [Google Scholar] [CrossRef]
- Aliyu, H.; Ishiyaku, M.F. Identification of Novel Resistance Gene Sources to Cowpea Aphid (Aphis craccivora Koch) in Cowpea (Vigna unguiculata L.). Pak. J. Biol. Sci. 2013, 16, 743–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pathak, R.S. Plant Genetics in Pest Management. Int. J. Trop. Insect Sci. 1991, 12, 553–564. [Google Scholar] [CrossRef]
- Gorur, G.; Lomonaco, C.; Mackenzie, A. Phenotypic Plasticity in Host-Plant Specialisation in Aphis fabae. Ecol. Entomol. 2005, 30, 657–664. [Google Scholar] [CrossRef]
- Hill, C.B.; Crull, L.; Herman, T.K.; Voegtlin, D.J.; Hartman, G.L. A New Soybean Aphid (Hemiptera: Aphididae) Biotype Identified. J. Econ. Entomol. 2010, 103, 509–515. [Google Scholar] [CrossRef]
- Alt, J.; Ryan-Mahmutagic, M. Soybean Aphid Biotype 4 Identified. Crop Sci. 2013, 53, 1491–1495. [Google Scholar] [CrossRef] [Green Version]
- Michel, A.P.; Mittapalli, O.; Mian, M.R.; Sudaric, A. Evolution of Soybean Aphid Biotypes: Understanding and Managing Virulence to Host-Plant Resistance. Soybean-Mol. Asp. Breed. InTech N. Y. 2011, 355–372. [Google Scholar]
- Vanlerberghe-Masutti, F.; Chavigny, P. Host-based Genetic Differentiation in the Aphid Aphis Gossypii Glover, Evidenced from RAPD Fingerprints. Mol. Ecol. 1998, 7, 905–914. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, P.; Chen, J. Host--preference biotypes of the cotton aphid, {\sl Aphis gossypii} Glover and the behavioral mechanism in their formatio. Kun Chong Xue Bao 2004, 47, 760–767. [Google Scholar]
- Xu, T.-T.; Ma, T.-T.; Liu, X.-D. How Does the Host-Specialized Aphid Deal with Food Deficiency?: Host Use of Host-Specialized Aphid. Insect Sci. 2014, 21, 334–341. [Google Scholar] [CrossRef]
- Miller, G.L.; Favret, C.; Carmichael, A.; Voegtlin, D.J. Is There a Cryptic Species Within Aulacorthum solani (Hemiptera: Aphididae)? J. Econ. Entomol. 2009, 102, 398–400. [Google Scholar] [CrossRef] [PubMed]
- Lammerink, J. A New Biotype of Cabbage Aphid ( Brevicoryne Brassicae (L.)) on Aphid Resistant Rape ( Brassica Napus L.). N. Z. J. Agric. Res. 1968, 11, 341–344. [Google Scholar] [CrossRef]
- Dunn, J.A.; Kempton, D.P.H. Resistance to Attack by Brevicoryne brassicae among Plants of Brussels Sprouts. Ann Appl. Biol. 1972, 72, 1–11. [Google Scholar] [CrossRef]
- Shanks, C.H.; Chase, D. Electrical Measurement of Feeding by the Strawberry Aphid on Susceptible and Resistant Strawberries and Nonhost Plants. Ann Entomol Soc Am 1976, 69, 784–786. [Google Scholar] [CrossRef]
- Kiriac, I.; Gruber, F.; Poprawski, T.; Halbert, S.; Elberson, L. Occurrence of Sexual Morphs of Russian Wheat Aphid, Diuraphis noxia (Homoptera: Aphididae), in Several Locations in the Soviet Union and the Northwestern United States. Proc. Entomol. Soc. Wash. 1990, 92, 544–547. [Google Scholar]
- Basky, Z. Biotypic and Pest Status Differences between Hungarian and South African Populations of Russian Wheat Aphid, Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae). Pest Manag. Sci. 2003, 59, 1152–1158. [Google Scholar] [CrossRef] [PubMed]
- Haley, S.D.; Peairs, F.B.; Walker, C.B.; Rudolph, J.B.; Randolph, T.L. Occurrence of a New Russian Wheat Aphid Biotype in Colorado. Crop Sci. 2004, 44, 1589–1592. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.M.; Belay, T.; Stauffer, C.; Stary, P.; Kubeckova, I.; Starkey, S. Identification of Russian Wheat Aphid (Homoptera: Aphididae) Populations Virulent to the Dn4 Resistance Gene. J. Econ. Entomol. 2004, 97, 1112–1117. [Google Scholar] [CrossRef]
- Tolmay, V.; Lindeque, R.; Prinsloo, G. Preliminary Evidence of a Resistance-Breaking Biotype of the Russian Wheat Aphid, Diuraphis noxia (Kurdjumov)(Homoptera: Aphididae), in South Africa s. Afr. Entomol. 2007, 15, 228–230. [Google Scholar] [CrossRef]
- Jankielsohn, A. Distribution and Diversity of Russian Wheat Aphid (Hemiptera: Aphididae) Biotypes in South Africa and Lesotho. J. Econ. Entomol. 2011, 104, 1736–1741. [Google Scholar] [CrossRef]
- Merrill, S.C.; Peairs, F.B.; Miller, H.R.; Randolph, T.L.; Rudolph, J.B.; Talmich, E.E. Reproduction and Development of Russian Wheat Aphid Biotype 2 on Crested Wheatgrass, Intermediate Wheatgrass, and Susceptible and Resistant Wheat. J. Econ. Entomol. 2014, 101, 541–545. [Google Scholar] [CrossRef]
- Alston, F.H.; Briggs, J.B. Resistance Genes in Apple and Biotypes of Dysaphis devecta. Ann. Appl. Biol. 1977, 87, 75–81. [Google Scholar] [CrossRef]
- Rat Morris, E.; Crowther, S.; Guessoum, M. Resistance-Breaking Biotypes of Rosy Apple Aphid, Dysaphis plantaginea, on the Resistant Cultivar “Florina”. IOBC WPRS Bull. 1999, 22, 71–75. [Google Scholar]
- Sen Gupta, G.C. The Recognition of Biotypes of the Woolly Aphid, Erisoma lanigerum (Hausmann), in South Australia by Their Differential Ability to Colonise Varieties of Apple Rootstock, and an Investigation of Some Possible Factors in the Susceptibility of Varieties to These Insects. Ph.D. Thesis, University of Adelaide, Adelaide, Australia, 1969. [Google Scholar]
- Gupta, G.S.; Miles, P. Studies on the Susceptibility of Varieties of Apple to the Feeding of Two Strains of Woolly Aphis (Homoptera) and Relation to the Chemical Content of the Tissues of the Host. Aust. J. Agric. Res. 1975, 26, 157–168. [Google Scholar] [CrossRef]
- Young, E.; Rock, G.; Zeiger, D.; Cummins, J. Infestation of Some Malus Cultivars by the North-Carolina Woolly Apple Aphid Biotype. HortScience 1982, 17, 787–788. [Google Scholar] [CrossRef]
- Costa, A.; Williams, D.G.; Powell, K.S. Discovery of Three Woolly Apple Aphid Eriosoma lanigerum (Hemiptera: Aphididae) Biotypes in Australia: The Role of Antixenosis and Antibiosis in Apple Tree Resistance. Austral Entomol. 2014, 53, 280–287. [Google Scholar] [CrossRef]
- Goggin, F.L.; Williamson, V.M.; Ullman, D.E. Variability in the Response of Macrosiphum euphorbiae and Myzus persicae (Hemiptera: Aphididae) to the Tomato Resistance Gene Mi. Environ. Entomol. 2001, 30, 101–106. [Google Scholar] [CrossRef]
- Srinivasan, R.; Alvarez, J.M. Specialized Host Utilization of Macrosiphum euphorbiae on a Nonnative Weed Host, Solanum sarrachoides, and Competition With Myzus persicae. Environ. Entomol. 2011, 40, 350–356. [Google Scholar] [CrossRef] [Green Version]
- Nibouche, S.; Costet, L.; Holt, J.R.; Jacobson, A.; Pekarcik, A.; Sadeyen, J.; Armstrong, J.S.; Peterson, G.C.; McLaren, N.; Medina, R.F. Invasion of Sorghum in the Americas by a New Sugarcane Aphid (Melanaphis sacchari) Superclone. PLoS ONE 2018, 13, e0196124. [Google Scholar] [CrossRef]
- Paudyal, S.; Armstrong, J.S.; Harris-Shultz, K.R.; Wang, H.; Giles, K.L.; Rott, P.C.; Payton, M.E. Evidence of Host Plant Specialization among the U.S. Sugarcane Aphid (Hemiptera: Aphididae) Genotypes. Trends Entomol. 2019, 15, 47–58. [Google Scholar]
- van Emden, H.F.; Eastop, V.F.; Hughes, R.D.; Way, M.J. The Ecology of Myzus Persicae. Annu. Rev. Entomol. 1969, 14, 197–270. [Google Scholar] [CrossRef]
- van der Arendt, A.J.M.; Ester, A.; Schijndel, J.T. van Developing an Aphid Resistant Butterhead Lettuce “Dynamite”; Palacky University: Olomouc, Czech, 1999. [Google Scholar]
- van der Arend, A.J. The Possibility of Nasonovia ribisnigri Resistance Breaking Biotype Development Due to Plant Host Resistance: A Literature Study. Eucarpia Leafy Veg. 2003, 75–81. [Google Scholar]
- Cid, M.; Ávila, A.; García, A.; Abad, J.; Fereres, A. New Sources of Resistance to Lettuce Aphids in Lactuca Spp. Arthropod-Plant Interact. 2012, 6, 655–669. [Google Scholar] [CrossRef]
- Singh, S.R.; Painter, R.H. Effect of Temperature and Host Plants on Progeny Production of Four Biotypes of Corn Leaf Aphid, Rhopalosiphum maidis1. J. Econ. Entomol. 1964, 57, 348–350. [Google Scholar] [CrossRef]
- Wood Jr, E. Biological Studies of a New Greenbug Biotype. J. Econ. Entomol. 1961, 54, 1171–1173. [Google Scholar] [CrossRef]
- Teetes, G.; Schaefer, C.; Gipson, J.; McIntyre, R.; Latham, E. Greenbug Resistance to Organophosphorous Insecticides on the Texas High Plains. J. Econ. Entomol. 1975, 68, 214–216. [Google Scholar] [CrossRef]
- Porter, K.; Peterson, G.; Vise, O. A New Greenbug Biotype 1. Crop Sci. 1982, 22, 847–850. [Google Scholar] [CrossRef]
- Porter, D.R.; Burd, J.D.; Shufran, K.A.; Webster, J.A.; Teetes, G.L. Greenbug (Homoptera: Aphididae) Biotypes: Selected by Resistant Cultivars or Preadapted Opportunists? J. Econ. Entomol. 1997, 90, 1055–1065. [Google Scholar] [CrossRef]
- Kindler, S.; Spomer, S. Biotypic Status of Six Greenbug (Homoptera: Aphididae) Isolates. Environ. Entomol. 1986, 15, 567–572. [Google Scholar] [CrossRef]
- Curvetto, R.O.; Webster, J. Resistance Mechanisms of PI 240675 Rye to Biotype F Greenbug. Southwest. Entomol. (USA) 1998, 23, 97–103. [Google Scholar]
- Kindler, S.; Hays, D. Susceptibility of Cool-Season Grasses to Greenbug Biotypes. J. Agric. Urban Entomol. 1999, 16, 235–243. [Google Scholar]
- Kindler, S.D.; Harvey, T.L.; Wilde, G.E.; Shufran, R.A.; Brooks, H.L.; Sloderbeck, P.E. Occurrence of Greenbug Biotype K in the Field. J. Agric. Urban Entomol. 2001, 18, 23–34. [Google Scholar]
- Lowe, H. Resistance and Susceptibility to Colour Forms of the Aphid Sitobion avenae in Spring and Winter Wheats (Triticum Aestivum). Ann. Appl. Biol. 1981, 99, 87–98. [Google Scholar] [CrossRef]
- Lehman, W.F.; Stanford, E.H.; Nielson, M.W.; Lieberman, F.V.; Schonhorst, M.H.; Hunt, O.J.; Peaden, R.N.; Carnahan, H.L. Registration of C937 Parental Clone of ALfalfa (Registration No. PL 3)1. Crop Sci. 1971, 11, 142. [Google Scholar] [CrossRef]
- Panda, N.; Khush, G.S. Host Plant Resistance to Insects; CAB international: Wallingford, Oxon, UK, 1995; ISBN 0-85198-963-2. [Google Scholar]
- Nielson, M.W.; Schonhorst, M.H.; Don, H.; Lfhman, W.F.; Marble, V.L. Resistance in Alfalfa to Four Biotypes of the Spotted Alfalfa Aphid1. J. Econ. Entomol. 1971, 64, 506–510. [Google Scholar] [CrossRef]
- Sunnucks, P.; Driver, F.; Brown, W.V.; Carver, M.; Hales, D.F.; Milne, W.M. Biological and Genetic Characterization of Morphologically Similar Therioaphis trifolii (Hemiptera: Aphididae) with Different Host Utilization. Bull. Entomol. Res. 1997, 87, 425–436. [Google Scholar] [CrossRef]
- Milne, W.M. Suitability of Clovers (Trifolium Species and Cultivars) as Hosts of Spotted Clover Aphid, a Biotype of Therioaphis trifolii (Monell) (Hemiptera: Aphididae). Aust. J. Exp. Agric. 1998, 38, 241–245. [Google Scholar] [CrossRef]
- Milne, W.M. Comparative Performance of Two Biotypes of Therioaphis trifolii (Monell) (Hemiptera: Aphididae) on Clovers (Trifolium) and Medics (Medicago). Aust. J. Entomol. 1998, 37, 350–355. [Google Scholar] [CrossRef]
- Anstead, J.A.; Burd, J.D.; Shufran, K.A. Mitochondrial DNA Sequence Divergence among Schizaphis graminum (Hemiptera: Aphididae) Clones from Cultivated and Non-Cultivated Hosts: Haplotype and Host Associations. Bull. Entomol. Res. 2002, 92, 17–24. [Google Scholar] [CrossRef]
- Brévault, T.; Carletto, J.; Linderme, D.; Vanlerberghe-Masutti, F. Genetic Diversity of the Cotton Aphid Aphis gossypii in the Unstable Environment of a Cotton Growing Area. Agric. For. Entomol. 2008, 10, 215–223. [Google Scholar] [CrossRef]
- Simon, J.-C.; Carré, S.; Boutin, M.; Prunier–Leterme, N.; Sabater–Muñoz, B.; Latorre, A.; Bournoville, R. Host–Based Divergence in Populations of the Pea Aphid: Insights from Nuclear Markers and the Prevalence of Facultative Symbionts. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003, 270, 1703–1712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frantz, A.; Plantegenest, M.; Mieuzet, L.; Simon, J.-C. Ecological Specialization Correlates with Genotypic Differentiation in Sympatric Host-Populations of the Pea Aphid. J. Evol. Biol. 2006, 19, 392–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Kéler, S. Entomologisches Wörterbuch: Mit Besonderer Berücksichtigung der Morphologischen Terminologie; De Gruyter: Berlin, Germany, 2022. [Google Scholar]
- Taylor, J.R.; Schober, T.J.; Bean, S.R. Novel Food and Non-Food Uses for Sorghum and Millets. J. Cereal Sci. 2006, 44, 252–271. [Google Scholar] [CrossRef]
- de Morais Cardoso, L.; Pinheiro, S.S.; Martino, H.S.D.; Pinheiro-Sant’Ana, H.M. Sorghum (Sorghum bicolor L.): Nutrients, Bioactive Compounds, and Potential Impact on Human Health. Crit. Rev. Food Sci. Nutr. 2017, 57, 372–390. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.S. Assessment of On-Farm Yield Losses in Sorghum Due to Insect Pests. Int. J. Trop. Insect Sci. 1988, 9, 679–685. [Google Scholar] [CrossRef]
- Reddy, P.S. Sorghum, Sorghum Bicolor (L.) Moench. Millets and Sorghum: Biology and Genetic Improvement; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; pp. 1–32. [Google Scholar]
- Sharma, H. Host-Plant Resistance to Insects in Sorghum and Its Role in Integrated Pest Management. Crop Prot. 1993, 12, 11–34. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Rajan, N.; Cui, S.; Casey, K.; Ale, S.; Jessup, R.; Maas, S. Seasonal Variability of Evapotranspiration and Carbon Exchanges over a Biomass Sorghum Field in the Southern US Great Plains. Biomass Bioenergy 2017, 105, 392–401. [Google Scholar] [CrossRef]
- Singh, B.; Padmaja, P.; Seetharama, N. Biology and Management of the Sugarcane Aphid, Melanaphis sacchari (Zehntner) (Homoptera: Aphididae), in Sorghum: A Review. Crop Prot. 2004, 23, 739–755. [Google Scholar] [CrossRef]
- Bowling, R.D.; Brewer, M.J.; Kerns, D.L.; Gordy, J.; Seiter, N.; Elliott, N.E.; Buntin, G.D.; Way, M.O.; Royer, T.A.; Biles, S.; et al. Sugarcane Aphid (Hemiptera: Aphididae): A New Pest on Sorghum in North America. J. Integr. Pest Manag. 2016, 7, 12. [Google Scholar] [CrossRef]
- Mead, F. Sugarcane Aphid, Melanaphis sacchari (Zehntner)-Florida-New Continental United States Record. Coop. Plant Pest Rep. 1978, 3, 475. [Google Scholar]
- Hall, R. The Potential of the Fungus, Verticillium lecanii as a Control Agent of Glasshouse Aphid Pests. Ph.D. Thesis, University of Southampton, Southampton, UK, 1977. [Google Scholar]
- White, W.; Reagan, T.; Hall, D. Melanaphis sacchari (Homoptera: Aphididae), a Sugarcane Pest New to Louisiana. Fla. Entomol. 2001, 435. [Google Scholar] [CrossRef]
- Hall, D. The Sugarcane Aphid, Melanaphis sacchari. Florida sugarcane. J. Am. Soc. Sugar Cane Technol. 1987, 7, 26–29. [Google Scholar]
- Scott Armstrong, J.; Rooney, W.L.; Peterson, G.C.; Villenueva, R.T.; Brewer, M.J.; Sekula-Ortiz, D. Sugarcane Aphid (Hemiptera: Aphididae): Host Range and Sorghum Resistance Including Cross-Resistance From Greenbug Sources. J. Econ. Entomol. 2015, 108, 576–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brewer, M.J.; Gordy, J.W.; Kerns, D.L.; Woolley, J.B.; Rooney, W.L.; Bowling, R.D. Sugarcane Aphid Population Growth, Plant Injury, and Natural Enemies on Selected Grain Sorghum Hybrids in Texas and Louisiana. J. Econ. Entomol. 2017, 110, 2109–2118. [Google Scholar] [CrossRef]
- Zapata, S.D.; Dudensing, R.; Sekula, D.; Esparza-Díaz, G.; Villanueva, R. Economic Impact of the Sugarcane Aphid Outbreak in South Texas. J. Agric. Appl. Econ. 2018, 50, 104–128. [Google Scholar] [CrossRef] [Green Version]
- van den Berg, J.; Pretorius, A.J.; van Loggerenberg, M. Effect of Leaf Feeding by Melanaphis sacchari (Zehntner) (Homoptera: Aphididae), on Sorghum Grain Quality. South Afr. J. Plant Soil 2003, 20, 41–43. [Google Scholar] [CrossRef]
- Villanueva, R.T.; Sekula, D. A New Pest of Sorghum: The Sugarcane Aphid. In Proceedings of the 20th Annual Rio Grande Valley Cotton & Grain Pre-Plant Conference, Edcouch, TX, USA, 17 January 2014. [Google Scholar]
- Rott, P.; Mirkov, T.E.; Schenck, S.; Girard, J.C. Recent Advances in Research on Sugarcane Yellow Leaf Virus, the Causal Agent of Sugarcane Yellow Leaf. Sugar Cane Int. 2008, 26, 18–27. [Google Scholar]
- Gordy, J.W.; Brewer, M.J.; Bowling, R.D.; Buntin, G.D.; Seiter, N.J.; Kerns, D.L.; Reay-Jones, F.P.F.; Way, M.O. Development of Economic Thresholds for Sugarcane Aphid (Hemiptera: Aphididae) in Susceptible Grain Sorghum Hybrids. J. Econ. Entomol. 2019, 112, 1251–1259. [Google Scholar] [CrossRef]
- van Rensburg Notes on the Occurrence and Biology of the Sorghum Aphid in South Africa. Available online: https://journals.co.za/doi/epdf/10.10520/AJA00128789_3446 (accessed on 21 October 2022).
- Harris-Shultz, K.; Armstrong, J.; Jacobson, A. Invasive Cereal Aphids of North America: Biotypes, Genetic Variation, Management, and Lessons Learned. Trends Entomol. 2020, 15, 99–122. [Google Scholar]
- Harris-Shultz, K.; Ni, X.; Wadl, P.A.; Wang, X.; Wang, H.; Huang, F.; Flanders, K.; Seiter, N.; Kerns, D.; Meagher, R.; et al. Microsatellite Markers Reveal a Predominant Sugarcane Aphid (Homoptera: Aphididae) Clone Is Found on Sorghum in Seven States and One Territory of the USA. Crop Sci. 2017, 57, 2064–2072. [Google Scholar] [CrossRef] [Green Version]
- Lopes-da-Silva, M.; Rocha, D.A. Potential Population Growth of Melanaphis sacchari (Zethner) Reared on Sugarcane and Sweet Sorghum. Curr. Agric. Sci. Technol. 2014, 20, 21–25. [Google Scholar]
- Paudel, S.; Lin, P.-A.; Foolad, M.R.; Ali, J.G.; Rajotte, E.G.; Felton, G.W. Induced Plant Defenses Against Herbivory in Cultivated and Wild Tomato. J. Chem. Ecol. 2019, 45, 693–707. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhai, Y.; Liu, D.; Zhang, N.; Li, C.; Shi, X. Identification and Genetic Differentiation of Sitobion avenae (Hemiptera: Aphididae) Biotypes in China. J. Econ. Entomol. 2020, 113, 407–417. [Google Scholar] [CrossRef]
S.N. | Biotype Concept | Reference |
---|---|---|
1. | Biotypes are the populations that can reproduce and survive on cultivars developed for resistance to a particular insect or can resist insecticides. | [33] |
2. | Biotype is a taxonomic concept mostly used by non-taxonomists and has been defined as consisting of all individuals of equal genotype. Biotypes are recognized by a biological function rather than by morphological characters. In practice, a biotype contains those individuals performing whatever biological feat interests the observer and thus may contain one or more races or strains. | [34] |
3. | Biotype is an individual or a population whose phenotype is determined by the interaction between plants having different genes for resistance and the larvae’s ability or inability to survive on and stunt the plant. | [35] |
4. | Biotype of insects are individuals or populations that are distinguished from the rest of its species by criteria other than morphology, for example, a difference in parasite ability. | [36] |
5. | Diverse biological differences have been used to designate populations as biotypes. They are (a) nongenetic polyphenisms, (b) polymorphic or polygenic variation within populations, (c) geographic races, (d) host races, and (e) species. | [37] |
6. | Biotype is an intraspecific category referring to insect populations of similar genetic composition for a biological attribute. The biotype populations may be partially and temporarily sympatric, allopatric, or parapatric with other compatible populations, but differ in one or more biological attributes. | [1] |
7. | The concept of biotypes, strain, and host race: “strain designates a population arising from a single collection or clonal individual; biotype is a category designating shared phenotypic traits; host race is a biotype that is better adapted to a specific host than are other biotypes.” | [38] |
8. | Biotypes are populations within an arthropod species that differ in their ability to utilize a particular trait in a particular plant genotype. | [39] |
S.N. | Aphid Species | Common Name | Crop | # of Biotypes | Biotypes Based on | References |
---|---|---|---|---|---|---|
1 | Acyrthosiphon kondoi (Shinji) | Blue alfalfa aphid | Lucerne (Medicago sativa) | 2 | Virulence | [7,95] |
2 | Acyrthosiphon pisum (Harris) | Pea aphid | Lucerne (Medicago sativa), dyer’s whin (Genista inctoria), winged broom (G. sagittalis), common sainfoin (Onobrychis viciifolia), white clover (Trifolium repens), broad beans (Vicia faba) and horseshoe vetch (Hippocrepis comosa) | 15 | Genetic divergence and differential association with endosymbionts, virulence, body size, body color, differential survival rate, reproduction, mortality, virus transmission | [7,73,76,79,80,96,97] |
3 | Amphorophora agathonica (Hottes) | Large raspberry Aphid | Red raspberry (Rubus idaeus) | 6 | Colonizing ability on host plant and virulence | [98,99] |
4 | Amphorophora idaei (Born) | Large raspberry aphid | Red raspberry (Rubus idaeus) | 5 | Genetic variation and virulence | [100,101] |
5 | Amphorophora rubi (Kalt.) | Raspberry aphid | Red raspberry (Rubus idaeus) | 4 | Virulence and difference in reproductive rate | [1,102,103,104,105,106] |
6 | Aphis craccivora (Koch) | Cowpea aphid | Cowpea (Vigna unguiculata) | 2 | Host plant preference, virulence | [1,7,107,108,109,110] |
Groundnut (Arachis hypogaea) | 2 | Differential ability to transmit viral strain | ||||
Bush sitao (Vigna unguiculata sesquipedalis) | 5 | Host preference, virulence | ||||
7 | Aphis fabae (Scopoli) | Bean aphid | Broad bean (Vicia faba) | 2 | Host preference, phenotypic plasticity | [7,111,112] |
8 | Aphis glycine (Matsumura) | Soybean aphid | Soybean (Glycine max) | 4 | Virulence (ability to colonize on resistant plants) | [94,113,114,115] |
9 | Aphis gossypii (Glover) | Cotton or melon aphid | Cotton (Gossypium spp.)cucumber (Cucumis sativus) and melon (Cucumis melo) | 2 | Host plant based genetic differentiation, host preference | [71,116,117,118] |
10 | Aphis nasturtii (Kaltenbach) | Buckthorn aphid | Potato (Solanum tuberosum) | 2 | [1,7] | |
11 | Aulacorthum solani (Kaltenbach) | Foxglove aphid | Potato (Solanum tuberosum) | 2 | Difference in host use | [1,7,119] |
12 | Brevicoryne brassicae (Linnaeus) | Cabbage aphid | Vegetables | 2 | Virulence | [120,121] |
13 | Chaetosiphon fragaefolii (Cockerell) | Strawberry aphid | Strawberry (Fragaria ananassa) | 2 | Host plant preference and aphid probing behavior | [1,7,122] |
14 | Diuraphis noxia (Kurdjumov) | Russian wheat aphid | Wheat (Triticum spp.) | 10 | Virulence | [123,124,125,126,127,128,129] |
15 | Dysaphis devecta | Rosy leaf-curling apple aphid | Apple (Malus spp.) | 3 | Virulence | [130] |
16 | Dysaphis plantaginea (Passerini) | Rosy apple aphid | Apple (Malus spp.) | 3 | Virulence | [131] |
17 | Eriosoma lanigerum (Hausmann) | Wooly apple aphid | Apple (Malus spp.) | 3 | Virulence and Life history traits | [132,133,134,135] |
18 | Macrosiphum euphorbiae (Thomas) | Potato aphid | Tomato (Solanum lycopersicum ) and Hairy nightshade (Solanum sarrachoides) | 2 | Virulence and host preference | [136,137] |
19 | Melanaphis sacchari | Sugarcane Aphid | Sugarcane (Saccharum officinarum), sorghum (Sorghum bicolor), Johnsongrass (Sorghum halepense), Columbus grass (Sorghum almum) | 6 | Micro-locus lineages and host preference | [61,138,139] |
20 | Myzus persicae (Sulzer) | Green peach aphid | Tobacco (Nicotiana tabacum), cabbage (Brassica oleracea var. capitata), peach (Prunus persica), potato (Solanum tuberosum) and sugar beet (Beta vulgaris) | 3 | Body color, life history traits, host plant preference and insecticide resistance, | [1,140] |
21 | Nasonovia ribisnigri (Mosley) | Lettuce leaf aphid | Lettuce (Lactuca sativa) | 2 | Virulence | [7,141,142,143] |
22 | Rhopalosiphum maidis (Fitch) | Corn leaf aphid | Barley (Hordeum vulgare ), corn (Zea mays), sorghum (Sorghum bicolor) | 5 | Differential reproduction, host plant response and virulence | [81,82,83,144] |
23 | Schizaphis graminum (Rondani) | Greenbug or wheat aphid | Barley (Hordeum vulgare), wheat (Triticum spp.), oats (Avena sativa), sorghum (Sorghum bicolor) | 11 | Virulence, a few morphological differences | [7,85,87,145,146,147,148,149,150,151,152] |
24 | Sitobion avenae (Fabricius) | English grain aphid | Wheat (Triticum spp.) | 6 | Virulence, life history traits, body color | [72,153] |
25 | Therioaphis maculata (Buckton) | Spotted alfalfa aphid | Lucerne (Medicago sativa) | 6 | Biological activity and response to organophosphate insecticides. | [33,154,155] |
26 | Therioaphis trifolii F. maculata (Buckton) | Spotted alfalfa aphid | Alfalfa (Medicago sativa), clover (Trifolium spp.) | 2 | Host plant based genetic differentiation, host preference | [1,7,156,157,158,159] |
Parameters | Biotypes | Ecotypes |
---|---|---|
Found in | Same or different geographical locations | Different geographical locations |
Breeding | Cannot breed among themselves | Can breed among themselves |
Genetic variation | High (except for insects who reproduce mainly by parthenogenesis like aphids) | Low |
Morphological variation | May or may not be present | Present |
Variations due to | Mostly plant factors and to some extent environmental factors | Exclusively by environmental factors |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khanal, N.; Vitek, C.; Kariyat, R. The Known and Unknowns of Aphid Biotypes, and Their Role in Mediating Host Plant Defenses. Diversity 2023, 15, 186. https://doi.org/10.3390/d15020186
Khanal N, Vitek C, Kariyat R. The Known and Unknowns of Aphid Biotypes, and Their Role in Mediating Host Plant Defenses. Diversity. 2023; 15(2):186. https://doi.org/10.3390/d15020186
Chicago/Turabian StyleKhanal, Neetu, Christopher Vitek, and Rupesh Kariyat. 2023. "The Known and Unknowns of Aphid Biotypes, and Their Role in Mediating Host Plant Defenses" Diversity 15, no. 2: 186. https://doi.org/10.3390/d15020186
APA StyleKhanal, N., Vitek, C., & Kariyat, R. (2023). The Known and Unknowns of Aphid Biotypes, and Their Role in Mediating Host Plant Defenses. Diversity, 15(2), 186. https://doi.org/10.3390/d15020186