Fungal Diversity in Korean Caves and Cave-Inhabiting Bats with Attention to Pseudogymnoascus Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Laboratory Processing
2.2. Culture and Isolation of Fungi
2.3. Genomic DNA Extraction, PCR Amplification, and Sequencing
2.4. Strain Identification and Phylogenetic Analysis
3. Results
3.1. Fungus Isolation
3.2. Identification of Isolated Fungi
3.3. Pd-Specific Diagnosis
3.4. Phylogenetic Analysis of Pseudogymnoascus
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, B.; Hussain, M.; Zhang, W.; Stadler, M.; Liu, X.; Xiang, M. Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 2019, 10, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Bass, D.; Howe, A.; Brown, N.; Barton, H.; Demidova, M.; Michelle, H.; Li, L.; Sanders, H.; Watkinson, S.C.; Willcock, S.; et al. Yeast forms dominate fungal diversity in the deep oceans. Proc. R. Soc. B Biol. Sci. 2007, 274, 3069–3077. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.-L.; Mortimer, P.E.; Ferry Slik, J.W.; Zou, X.-M.; Xu, J.; Feng, W.-T.; Qiao, L. Variation in forest soil fungal diversity along a latitudinal gradient. Fungal Divers. 2014, 64, 305–315. [Google Scholar] [CrossRef]
- Santos, J.A.d.; Meyer, E.; Sette, L.D. Fungal Community in Antarctic Soil Along the Retreating Collins Glacier (Fildes Peninsula, King George Island). Microorganisms 2020, 8, 1145. [Google Scholar] [CrossRef] [PubMed]
- Seyedmousavi, S.; Bosco, S.d.M.G.; de Hoog, S.; Ebel, F.; Elad, D.; Gomes, R.R.; Jacobsen, I.D.; Jensen, H.E.; Martel, A.; Mignon, B.; et al. Fungal infections in animals: A patchwork of different situations. Med. Mycol. 2018, 56, S165–S187. [Google Scholar] [CrossRef]
- Powell, J.R.; Rillig, M.C. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytol. 2018, 220, 1059–1075. [Google Scholar] [CrossRef]
- Barton, H. Introduction to cave microbiology: A review for the non-specialist. J. Cave Karst Stud. 2006, 68, 43–54. [Google Scholar]
- Barton, H.A.; Northup, D.E. Geomicrobiology in cave environments: Past, current and future perspectives. J. Cave Karst Stud. 2007, 69, 163–178. [Google Scholar]
- Tomczyk-Żak, K.; Zielenkiewicz, U. Microbial Diversity in Caves. Geomicrobiol. J. 2016, 33, 20–38. [Google Scholar] [CrossRef]
- Hershey, O.S.; Barton, H.A. The Microbial Diversity of Caves. In Cave Ecology; Moldovan, O.T., Kováč, Ľ., Halse, S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 69–90. [Google Scholar]
- Kokurewicz, T.; Ogórek, R.; Pusz, W.; Matkowski, K. Bats Increase the Number of Cultivable Airborne Fungi in the “Nietoperek” Bat Reserve in Western Poland. Microb. Ecol. 2016, 72, 36–48. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Liu, F.; Zhou, X.; Liu, X.Z.; Liu, S.J.; Cai, L. Culturable mycobiota from Karst caves in China, with descriptions of 20 new species. Pers.-Mol. Phylogeny Evol. Fungi 2017, 39, 1–31. [Google Scholar] [CrossRef]
- Nováková, A.; Kolařík, M. Chrysosporium speluncarum, a new species resembling Ajellomyces capsulatus, obtained from bat guano in caves of temperate Europe. Mycol. Prog. 2010, 9, 253–260. [Google Scholar] [CrossRef]
- Ogórek, R.; Višňovská, Z.; Tančinová, D. Mycobiota of Underground Habitats: Case Study of Harmanecká Cave in Slovakia. Microb. Ecol. 2016, 71, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-F.; Zhao, P.; Cai, L. Origin of Cave Fungi. Front. Microbiol. 2018, 9, 1407. [Google Scholar] [CrossRef] [PubMed]
- Taylor, E.L.S.; Resende Stoianoff, M.A.d.; Lopes Ferreira, R. Mycological study for a management plan of a neotropical show cave (Brazil). Int. J. Speleol. 2013, 42, 10. [Google Scholar] [CrossRef]
- Holz, P.H.; Lumsden, L.F.; Marenda, M.S.; Browning, G.F.; Hufschmid, J. Two subspecies of bent-winged bats (Miniopterus orianae bassanii and oceanensis) in southern Australia have diverse fungal skin flora but not Pseudogymnoascus destructans. PLoS ONE 2018, 13, e0204282. [Google Scholar] [CrossRef]
- Lorch, J.M.; Palmer, J.M.; Vanderwolf, K.J.; Schmidt, K.Z.; Verant, M.L.; Weller, T.J.; Blehert, D.S. Malassezia vespertilionis sp. nov.: A new cold-tolerant species of yeast isolated from bats. Pers.-Mol. Phylogeny Evol. Fungi 2018, 41, 56–70. [Google Scholar] [CrossRef]
- Blehert, D.S.; Hicks, A.C.; Behr, M.; Meteyer, C.U.; Berlowski-Zier, B.M.; Buckles, E.L.; Coleman, J.T.H.; Darling, S.R.; Gargas, A.; Niver, R.; et al. Bat White-Nose Syndrome: An Emerging Fungal Pathogen? Science 2009, 323, 227. [Google Scholar] [CrossRef]
- Gargas, A.; Trest, M.T.; Christensen, M.; Volk, T.J.; Blehert, D.S. Geomyces destructans sp. nov. associated with bat white-nose syndrome. Mycotaxon 2009, 108, 147–154. [Google Scholar] [CrossRef]
- Rice, A.V.; Currah, R.S. Two New Species of Pseudogymnoascus with Geomyces Anamorphs and Their Phylogenetic Relationship with Gymnostellatospora. Mycologia 2006, 98, 307–318. [Google Scholar] [CrossRef]
- Villanueva, P.; Vásquez, G.; Gil-Durán, C.; Oliva, V.; Díaz, A.; Henríquez, M.; Álvarez, E.; Laich, F.; Chávez, R.; Vaca, I. Description of the First Four Species of the Genus Pseudogymnoascus From Antarctica. Front. Microbiol. 2021, 12, 713189. [Google Scholar] [CrossRef]
- Ogórek, R.; Suchodolski, J.; Piecuch, A.; Przywara, K.; Višňovská, Z. Keratinophilic and Keratinolytic Fungi in Cave Ecosystems: A Culture-Based Study of Brestovská Cave and Demänovská Ľadová and Slobody Caves (Slovakia). Appl. Sci. 2022, 12, 1455. [Google Scholar] [CrossRef]
- Raillo, A. Beitrage zur kenntnis der Boden-Pilze. Zbl. Bakt. II Abt. 1929, 78, 515–524. [Google Scholar]
- Samson, R.A. Notes on Pseudogymnoascus, Gymnoascus and related genera. Acta Bot. Neerl. 1972, 21, 517–527. [Google Scholar] [CrossRef]
- Minnis, A.M.; Lindner, D.L. Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. nov., in bat hibernacula of eastern North America. Fungal Biol. 2013, 117, 638–649. [Google Scholar] [CrossRef]
- Zhang, Z.-Y.; Shao, Q.-Y.; Li, X.; Chen, W.-H.; Liang, J.-D.; Han, Y.-F.; Huang, J.-Z.; Liang, Z.-Q. Culturable Fungi from Urban Soils in China I: Description of 10 New Taxa. Microbiol. Spectr. 2021, 9, e00867-21. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, C.; Chen, W.; Mou, Q.; Lu, X.; Han, Y.; Huang, J.; Liang, Z. The Enigmatic Thelebolaceae (Thelebolales, Leotiomycetes): One New Genus Solomyces and Five New Species. Front. Microbiol. 2020, 11, 572596. [Google Scholar] [CrossRef]
- Hyde, K.D.; Abd-Elsalam, K.; Cai, L. Morphology: Still essential in a molecular world. Mycotaxon 2010, 114, 439–451. [Google Scholar] [CrossRef]
- Slepecky, R.A.; Starmer, W.T. Phenotypic plasticity in fungi: A review with observations on Aureobasidium pullulans. Mycologia 2009, 101, 823–832. [Google Scholar] [CrossRef]
- White, T.; Bruns, T.; Lee, S.; Taylor, J.; Innis, M.; Gelfand, D.; Sninsky, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press, Inc.: New York, NY, USA, 1990; Volume 31, pp. 315–322. [Google Scholar]
- Bridge, P.D.; Spooner, B.M.; Roberts, P.J. The Impact of Molecular Data in Fungal Systematics. In Advances in Botanical Research; Callow, J.A., Ed.; Academic Press: Cambridge, MA, USA, 2005; Volume 42, pp. 33–67. [Google Scholar]
- Hibbett, D.S.; Ohman, A.; Glotzer, D.; Nuhn, M.; Kirk, P.; Nilsson, R.H. Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fungal Biol. Rev. 2011, 25, 38–47. [Google Scholar] [CrossRef]
- Roger, A.J.; Sandblom, O.; Doolittle, W.F.; Philippe, H. An evaluation of elongation factor 1 alpha as a phylogenetic marker for eukaryotes. Mol. Biol. Evol. 1999, 16, 218–233. [Google Scholar] [CrossRef]
- Landvik, S.; Eriksson, O.E.; Berbee, M.L. Neolecta—A fungal dinosaur? Evidence from β-tubulin amino acid sequences. Mycologia 2001, 93, 1151–1163. [Google Scholar] [CrossRef]
- Frøslev, T.G.; Matheny, P.B.; Hibbett, D.S. Lower level relationships in the mushroom genus Cortinarius (Basidiomycota, Agaricales): A comparison of RPB1, RPB2, and ITS phylogenies. Mol. Phylogenetics Evol. 2005, 37, 602–618. [Google Scholar] [CrossRef]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Bolchacova, E.; Voigt, K.; Crous, P.W.; et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef]
- Lutzoni, F.; Kauff, F.; Cox, C.J.; McLaughlin, D.; Celio, G.; Dentinger, B.; Padamsee, M.; Hibbett, D.; James, T.Y.; Baloch, E.; et al. Assembling the fungal tree of life: Progress, classification, and evolution of subcellular traits. Am. J. Bot. 2004, 91, 1446–1480. [Google Scholar] [CrossRef]
- Hibbett, D.S.; Binder, M.; Bischoff, J.F.; Blackwell, M.; Cannon, P.F.; Eriksson, O.E.; Huhndorf, S.; James, T.; Kirk, P.M.; Lücking, R.; et al. A higher-level phylogenetic classification of the Fungi. Mycol. Res. 2007, 111, 509–547. [Google Scholar] [CrossRef]
- Hoyt, J.; Sun, K.; Parise, K.; Lu, G.; Langwig, K.; Jiang, T.; Yang, S.; Frick, W.; Kilpatrick, A.M.; Foster, J.; et al. Widespread Bat White-Nose Syndrome Fungus, Northeastern China. Emerg. Infect. Dis. J. 2016, 22, 140. [Google Scholar] [CrossRef]
- Hoyt, J.R.; Kilpatrick, A.M.; Langwig, K.E. Ecology and impacts of white-nose syndrome on bats. Nat. Rev. Microbiol. 2021, 19, 196–210. [Google Scholar] [CrossRef]
- Turner, G.G.; Meteyer, C.U.; Barton, H.; Gumbs, J.F.; Reeder, D.M.; Overton, B.; Bandouchova, H.; Bartonička, T.; Martínková, N.; Pikula, J.; et al. Nonlethal Screening of Bat-Wing Skin with the Use of Ultraviolet Fluorescence to Detect Lesions Indicative of White-Nose Syndrome. J. Wildl. Dis. 2014, 50, 566–573. [Google Scholar] [CrossRef]
- Palmer, J.M.; Drees, K.P.; Foster, J.T.; Lindner, D.L. Extreme sensitivity to ultraviolet light in the fungal pathogen causing white-nose syndrome of bats. Nat. Commun. 2018, 9, 35. [Google Scholar] [CrossRef]
- Noman, E.; Al-Gheethi, A.A.; Rahman, N.K.; Talip, B.; Mohamed, R.; Kadir, O.A. Single Spore Isolation as a Simple and Efficient Technique to obtain fungal pure culture. IOP Conf. Ser. Earth Environ. Sci. 2018, 140, 012055. [Google Scholar] [CrossRef]
- Lorch, J.M.; Gargas, A.; Meteyer, C.U.; Berlowski-Zier, B.M.; Green, D.E.; Shearn-Bochsler, V.; Thomas, N.J.; Blehert, D.S. Rapid Polymerase Chain Reaction Diagnosis of White-Nose Syndrome in Bats. J. Vet. Diagn. Investig. 2010, 22, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2014, 32, 268–274. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Nguyen, M.A.T.; von Haeseler, A. Ultrafast Approximation for Phylogenetic Bootstrap. Mol. Biol. Evol. 2013, 30, 1188–1195. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Vanderwolf, K.J.; Malloch, D.; McAlpine, D.F.; Graham, J.F. A world review of fungi, yeasts, and slime moldes in caves. Int. J. Speleol. 2013, 42, 77–96. [Google Scholar] [CrossRef]
- Brilhante, R.S.N.; Maia-Júnior, J.E.; Oliveira, J.S.; Guedes, G.M.M.; Silva, A.L.; Moura, F.B.P.; Sales, J.A.; Castelo-Branco, D.S.C.M.; Sidrim, J.J.C.; Cordeiro, R.A.; et al. Yeasts from the microbiota of bats: A focus on the identification and antimicrobial susceptibility of cryptic species of Candida. J. Med. Microbiol. 2016, 65, 1225–1228. [Google Scholar] [CrossRef]
- Sugita, T.; Kikuchi, K.; Makimura, K.; Urata, K.; Someya, T.; Kamei, K.; Niimi, M.; Uehara, Y. Trichosporon Species Isolated from Guano Samples Obtained from Bat-Inhabited Caves in Japan. Appl. Environ. Microbiol. 2005, 71, 7626–7629. [Google Scholar] [CrossRef]
- Vanderwolf, K.J.; Campbell, L.J.; Goldberg, T.L.; Blehert, D.S.; Lorch, J.M. Skin fungal assemblages of bats vary based on susceptibility to white-nose syndrome. ISME J. 2021, 15, 909–920. [Google Scholar] [CrossRef] [PubMed]
- Vanderwolf, K.J.; Campbell, L.J.; Taylor, D.R.; Goldberg, T.L.; Blehert, D.S.; Lorch, J.M. Mycobiome Traits Associated with Disease Tolerance Predict Many Western North American Bat Species Will Be Susceptible to White-Nose Syndrome. Microbiol. Spectr. 2021, 9, e00254-21. [Google Scholar] [CrossRef] [PubMed]
- Lindner, D.L.; Carlsen, T.; Henrik Nilsson, R.; Davey, M.; Schumacher, T.; Kauserud, H. Employing 454 amplicon pyrosequencing to reveal intragenomic divergence in the internal transcribed spacer rDNA region in fungi. Ecol. Evol. 2013, 3, 1751–1764. [Google Scholar] [CrossRef]
- Al-Shuhaib, M.B.S.; Al-Kaaby, H.N.; Alwan, S.L. A highly efficient electrophoretic method for discrimination between two Neoscytalidium species using a specific fungal internal transcribed spacer (ITS) fragment. Folia Microbiol. 2019, 64, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Moncalvo, J.M.; Lutzoni, F.M.; Rehner, S.A.; Johnson, J.; Vilgalys, R. Phylogenetic Relationships of Agaric Fungi Based on Nuclear Large Subunit Ribosomal DNA Sequences. Syst. Biol. 2000, 49, 278–305. [Google Scholar] [CrossRef]
- Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4238–4246. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Li, L.; Sun, M.; Hu, C.; Zhang, Z.; Liu, Z.; Shao, H.; Xi, G.; Pan, J. Fungal Community Analyses of a Pirogue from the Tang Dynasty in the National Maritime Museum of China. Appl. Sci. 2019, 9, 4129. [Google Scholar] [CrossRef]
- Rehner, S.A.; Buckley, E. A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 2005, 97, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, I.; Crespo, A.; Divakar, P.K.; Fankhauser, J.D.; Herman-Sackett, E.; Kalb, K.; Nelsen, M.P.; Nelson, N.A.; Rivas-Plata, E.; Shimp, A.D.; et al. New primers for promising single-copy genes in fungal phylogenetics and systematics. Pers.-Mol. Phylogeny Evol. Fungi 2009, 23, 35–40. [Google Scholar] [CrossRef]
- Raja, H.A.; Schoch, C.L.; Hustad, V.; Shearer, C.; Miller, A. Testing the phylogenetic utility of MCM7 in the Ascomycota. MycoKeys 2011, 1, 63–94. [Google Scholar] [CrossRef]
- Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerse II subunit. Mol. Biol. Evol. 1999, 16, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
- Reeb, V.; Lutzoni, F.; Roux, C. Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Mol. Phylogenetics Evol. 2004, 32, 1036–1060. [Google Scholar] [CrossRef] [PubMed]
Phylum | Family | No. Isolates | Isolates % |
---|---|---|---|
(a) | |||
Ascomycota | Trichocomaceae | 17 | 27.4 |
Pseudeurotiaceae | 16 | 25.8 | |
Saccharomycetaceae | 2 | 3.2 | |
Clavicipitaceae | 2 | 3.2 | |
Hypocreaceae | 1 | 1.6 | |
Nectriaceae | 1 | 1.6 | |
Cladosporiaceae | 1 | 1.6 | |
Myxotrichaceae | 1 | 1.6 | |
Plectosphaerellaceae | 1 | 1.6 | |
Sordariomycetes | 1 | 1.6 | |
Basidiomycota | Mrakiaceae | 8 | 12.9 |
Trichosporonaceae | 7 | 11.3 | |
Tremellaceae | 1 | 1.6 | |
Mucoromycota | Mucoraceae | 3 | 4.8 |
(b) | |||
Basidiomycota | Trichosporonaceae | 3 | 42.9 |
Ascomycota | Trichocomaceae | 2 | 28.6 |
Chaetomiaceae | 1 | 14.3 | |
Torulaceae | 1 | 14.3 | |
(c) | |||
Ascomycota | Trichocomaceae | 10 | 32.3 |
Saccharomycetaceae | 9 | 29.0 | |
Pseudeurotiaceae | 3 | 9.7 | |
Cladosporiaceae | 2 | 6.5 | |
Didymellaceae | 1 | 3.2 | |
Nectriaceae | 1 | 3.2 | |
Incertae sedis | 1 | 3.2 | |
Microascaceae | 1 | 3.2 | |
Basidiomycota | Mrakiaceae | 2 | 6.5 |
Trichosporonaceae | 1 | 3.2 |
Phylum | Family | No. Isolates | Isolates % |
---|---|---|---|
(a) | |||
Ascomycota | Saccharomycetaceae | 14 | 72.2 |
Cladosporiaceae | 1 | 1.9 | |
(b) | |||
Ascomycota | Saccharomycetaceae | 4 | 36.4 |
Pseudeurotiaceae | 4 | 36.4 | |
Trichocomaceae | 2 | 18.2 | |
Pleosporaceae | 1 | 9.1 | |
(c) | |||
Ascomycota | Saccharomycetaceae | 21 | 75.0 |
Dothioraceae | 3 | 10.7 | |
Trichocomaceae | 3 | 10.7 | |
Pseudeurotiaceae | 1 | 3.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-S.; Lee, S.-Y.; Chung, C.-U.; Park, J.-S.; Kim, Y.-J.; Oem, J.-K. Fungal Diversity in Korean Caves and Cave-Inhabiting Bats with Attention to Pseudogymnoascus Species. Diversity 2023, 15, 198. https://doi.org/10.3390/d15020198
Kim Y-S, Lee S-Y, Chung C-U, Park J-S, Kim Y-J, Oem J-K. Fungal Diversity in Korean Caves and Cave-Inhabiting Bats with Attention to Pseudogymnoascus Species. Diversity. 2023; 15(2):198. https://doi.org/10.3390/d15020198
Chicago/Turabian StyleKim, Young-Sik, Sook-Young Lee, Chul-Un Chung, Jun-Soo Park, Yoon-Ji Kim, and Jae-Ku Oem. 2023. "Fungal Diversity in Korean Caves and Cave-Inhabiting Bats with Attention to Pseudogymnoascus Species" Diversity 15, no. 2: 198. https://doi.org/10.3390/d15020198
APA StyleKim, Y. -S., Lee, S. -Y., Chung, C. -U., Park, J. -S., Kim, Y. -J., & Oem, J. -K. (2023). Fungal Diversity in Korean Caves and Cave-Inhabiting Bats with Attention to Pseudogymnoascus Species. Diversity, 15(2), 198. https://doi.org/10.3390/d15020198