Not the Last Piece of the Puzzle: Niphargus Phylogeny in Hungary
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. DNA Extraction, PCR, and Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Väinölä, R.; Witt, J.D.S.; Grabowski, M.; Bradbury, J.H.; Jazdzewski, K.; Sket, B. Global diversity of amphipods (Amphipoda; Crustacea) in freshwater. Hydrobiologia 2008, 595, 241–255. [Google Scholar] [CrossRef]
- Sket, B. High biodiversity in hypogean waters and its endangerment—The situation in Slovenia, the Dinaric karst, and Europe. Crustaceana 1999, 72, 767–779. [Google Scholar] [CrossRef]
- Esmaeili-Rineh, S.; Sari, A.; Delić, T.; Moškrič, A.; Fišer, C. Molecular phylogeny of the subterranean genus Niphargus (Crustacea: Amphipoda) in the Middle East: A comparison with European niphargids. Zool. J. Linn. Soc. 2015, 175, 812–826. [Google Scholar] [CrossRef]
- McInerney, C.E.; Maurice, L.; Robertson, A.L.; Knight, L.R.F.D.; Arnscheidt, J.; Venditti, C.; Dooley, J.S.G.; Mathers, T.; Matthijs, S.; Eriksson, K.; et al. The ancient Britons: Groundwater fauna survived extreme climate change over tens of millions of years across NW Europe. Mol. Ecol. 2014, 23, 1153–1166. [Google Scholar] [CrossRef] [PubMed]
- Borko, Š.; Trontelj, P.; Seehausen, O.; Moškrič, A.; Fišer, C. A subterranean adaptive radiation of amphipods in Europe. Nat. Commun. 2021, 12, 3688. [Google Scholar] [CrossRef] [PubMed]
- Borko, Š.; Collette, M.; Brad, T.; Zakšek, V.; Flot, J.F.; Vaxevanopoulos, M.; Sarbu, S.; Fišer, C. Amphipods in a Greek cave with sulphidic and non-sulphidic water: Phylogenetically clustered and ecologically divergent. Syst. Biodivers. 2019, 17, 558–572. [Google Scholar] [CrossRef]
- Orsini, L.; Vanoverbeke, J.; Swillen, I.; Mergeay, J.; De Meester, L. Drivers of population genetic differentiation in the wild: Isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol. Ecol. 2013, 22, 5983–5999. [Google Scholar] [CrossRef]
- Lefébure, T.; Douady, C.J.; Gouy, M.; Trontelj, P.; Briolay, J.; Gibert, J. Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments. Mol. Ecol. 2006, 15, 1797–1806. [Google Scholar] [CrossRef]
- Trontelj, P.; Fišer, C. Cryptic species diversity should not be trivialised. Syst. Biodivers. 2009, 7, 1–3. [Google Scholar] [CrossRef]
- Delić, T.; Stoch, F.; Borko, Š.; Flot, J.F.; Fišer, C. How did subterranean amphipods cross the Adriatic Sea? Phylogenetic evidence for dispersal–vicariance interplay mediated by marine regression–transgression cycles. J. Biogeogr. 2020, 47, 1875–1887. [Google Scholar] [CrossRef]
- Eme, D.; Zagmajster, M.; Delić, T.; Fišer, C.; Flot, J.F.; Konecny-Dupré, L.; Pálsson, S.; Stoch, F.; Zakšek, V.; Douady, C.J.; et al. Do cryptic species matter in macroecology? Sequencing European groundwater crustaceans yields smaller ranges but does not challenge biodiversity determinants. Ecography 2018, 41, 424–436. [Google Scholar] [CrossRef]
- Borko, Š.; Altermatt, F.; Zagmajster, M.; Fišer, C. A hotspot of groundwater amphipod diversity on a crossroad of evolutionary radiations. Divers. Distrib. 2022, 28, 2765–2777. [Google Scholar] [CrossRef]
- Fišer, C.; Alther, R.; Zakšek, V.; Borko, Š.; Fuchs, A.; Altermatt, F. Translating Niphargus barcodes from Switzerland into taxonomy with a description of two new species (Amphipoda, Niphargidae). Zookeys 2018, 760, 113–141. [Google Scholar] [CrossRef]
- Copilaș-Ciocianu, D.; Petrusek, A. The southwestern Carpathians as an ancient centre of diversity of freshwater gammarid amphipods: Insights from the Gammarus fossarum species complex. Mol. Ecol. 2015, 24, 3980–3992. [Google Scholar] [CrossRef] [PubMed]
- Copilaș-Ciocianu, D.; Fišer, C.; Borza, P.; Balázs, G.; Angyal, D.; Petrusek, A. Low intraspecific genetic divergence and weak niche differentiation despite wide ranges and extensive sympatry in two epigean Niphargus species (Crustacea: Amphipoda). Zool. J. Linn. Soc. 2017, 181, 485–499. [Google Scholar] [CrossRef]
- Mamos, T.; Wattier, R.; Burzyński, A.; Grabowski, M. The legacy of a vanished sea: A high level of diversification within a European freshwater amphipod species complex driven by 15 My of Paratethys regression. Mol. Ecol. 2016, 25, 795–810. [Google Scholar] [CrossRef]
- Kázmér, M. Birth, life and death of the Pannonian Lake. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1990, 79, 171–188. [Google Scholar] [CrossRef]
- Rendoš, M.; Delić, T.; Copilaș-Ciocianu, D.; Fišer, C. First insight into cryptic diversity of a Caucasian subterranean amphipod of the genus Niphargus (Crustacea: Amphipoda: Niphargidae). Zool. Anz. 2021, 290, 1–11. [Google Scholar] [CrossRef]
- Dudich, E. Új rákfajok Magyarország faunájában. Neue Krebstiere in der Fauna Ungarns. Arch. Balaton. 1927, 1, 343–387. [Google Scholar]
- Dudich, E. Biologie der Aggteleker Tropfsteinhöhle ”Baradla“ in Ungarn. Spaläolog. Monogr. 1932, 13, 1–246. [Google Scholar]
- Méhelÿ, L. Új férgek és rákok a Magyar faunában. Neue Würmer und Krebse aus Ungarn; Held: Budapest, Hungary, 1927; p. 19. [Google Scholar]
- Méhelÿ, L. A Niphargus kutatás új útjai. Neue Wege der Niphargus-Forschung; Stephaneum: Budapest, Hungary, 1941; p. 36. [Google Scholar]
- Karaman, G.S. One new species of family Niphargidae (Gammaridea), Niphargus forroi sp. n., from Hungary. Acta Zool. Acad. Sci. Hung. 1986, 32, 61–72. [Google Scholar]
- Fišer, C.; Trontelj, P.; Luštrik, R.; Sket, B. Towards a unified taxonomy of Niphargus (Crustacea: Amphipoda): A review of morphological variability. Zootaxa 2009, 2061, 1–22. [Google Scholar] [CrossRef]
- Balázs, G.; Angyal, D.; Kondorosy, E. Niphargus (Crustacea: Amphipoda) species in Hungary: Literature review, current taxonomy and the updated distribution of valid taxa. Zootaxa 2015, 3974, 361–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muskó, I. Occurrence of Amphipoda in Hungary since 1853. Crustaceana 1994, 66, 144–152. [Google Scholar] [CrossRef]
- Angyal, D.; Balázs, G.; Zakšek, V.; Krízsik, V.; Fišer, C. Redescription of two subterranean amphipods Niphargus molnari Méhelÿ, 1927 and Niphargus gebhardti Schellenberg, 1934 (Amphipoda, Niphargidae) and their phylogenetic position. ZooKeys 2015, 509, 53–85. [Google Scholar] [CrossRef] [PubMed]
- Copilaș-Ciocianu, D.; Fišer, C.; Borza, P.; Petrusek, A. Is subterranean lifestyle reversible? Independent and recent large-scale dispersal into surface waters by two species of the groundwater amphipod genus Niphargus. Mol. Phylogenet. Evol. 2018, 119, 37–49. [Google Scholar] [CrossRef]
- Méhelÿ, L. Niphargus hungaricus, ein neuer Amphipode aus Ungarn. Zool. Anz. 1937, 120, 117–119. [Google Scholar]
- Angyal, D.; Balázs, G. Distinguishing characters of Niphargus gebhardti Schellenberg, 1934 and Niphargus molnari Méhelÿ, 1927 (Crustacea: Amphipoda): A clarification. Opus. Zool. 2013, 44, 3–8. [Google Scholar]
- Karaman, S. Beitrag zur Kenntnis der Süsswasser-Amphipoden (Amphipoden unterirdischer Gewässer). Prirodoslovne razprave. 1932, 2, 179–232. [Google Scholar]
- Dobreanu, E.; Manolache, C. Beitrag zur Kenntnis der Amphipodenfauna Rumäniens. Notat. Biol. 1933, 1, 103–108. [Google Scholar]
- Pérez-Moreno, J.L.; Balázs, G.; Wilkins, B.; Herczeg, G.; Bracken-Grissom, H.D. The role of isolation on contrasting phylogeographic patterns in two cave crustaceans. BMC Evol. Biol. 2017, 17, 247. [Google Scholar] [CrossRef] [PubMed]
- Frivaldszky, J. Adatok a magyarhoni barlangok faunájához. Math.Természettud. Közl. 1865, 3, 17–53. [Google Scholar]
- Verovnik, R.; Sket, B.; Trontelj, P. The colonization of Europe by the freshwater crustacean Asellus aquaticus (Crustacea: Isopoda) proceeded from ancient refugia and was directed by habitat connectivity. Mol. Ecol. 2005, 14, 4355–4369. [Google Scholar] [CrossRef] [PubMed]
- Fišer, C.; Zagmajster, M.; Zakšek, V. Coevolution of life history traits and morphology in female subterranean amphipods. Oikos 2013, 122, 770–778. [Google Scholar] [CrossRef]
- Colgan, D.; McLauchlan, A.; Wilson, G.; Livingston, S.P.; Edgecombe, G.D.; Macaranas, J.; Cassis, G.; Gray, M. Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Aust. J. Zool. 1998, 46, 419–437. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Jurado-Rivera, J.A.; Álvarez, G.; Caro, J.A.; Juan, C.; Pons, J.; Jaume, D. Molecular systematics of Haploginglymus, a genus of subterranean amphipods endemic to the Iberian Peninsula (Amphipoda: Niphargidae). Contrib. Zool. 2017, 86, 239–260. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Lanfear, R.; Frandsen, P.B.; Wright, A.M.; Senfeld, T.; Calcott, B. PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. Mol. Biol. Evol. 2016, 34, 772–773. [Google Scholar] [CrossRef] [Green Version]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Nguyen, M.A.T.; von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 2013, 30, 1188–1195. [Google Scholar] [CrossRef] [PubMed]
- Anisimova, M.; Gil, M.; Ois Dufayard, J.F.; Dessimoz, C.; Gascuel, O. Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst. Biol. 2011, 60, 685–699. [Google Scholar] [CrossRef]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; pp. 1–8. [Google Scholar] [CrossRef]
- Som, A. Causes, consequences and solutions of phylogenetic incongruence. Brief. Bioinform. 2014, 16, 536–548. [Google Scholar] [CrossRef]
- Stoch, F.; Christian, E.; Flot, J.-F. Molecular taxonomy, phylogeny and biogeography of the Niphargus tatrensis species complex (Amphipoda, Niphargidae) in Austria. Org. Divers. Evol. 2020, 20, 701–722. [Google Scholar] [CrossRef]
- Felsenstein, J. Cases in which parsimony or compatibility methods will be positively misleading. Syst. Biol. 1978, 27, 401–410. [Google Scholar] [CrossRef] [Green Version]
- Philippe, H.; Derelle, R.; Lopez, P.; Pick, K.; Borchiellini, C.; Boury-Esnault, N.; Vacelet, J.; Renard, E.; Houliston, E.; Quéinnec, E.; et al. Phylogenomics revives traditional views on deep animal relationships. Curr. Biol. 2009, 19, 706–712. [Google Scholar] [CrossRef]
- Philippe, H.; Brinkmann, H.; Lavrov, D.V.; Littlewood, D.T.J.; Manuel, M.; Wörheide, G.; Baurain, D. Resolving difficult phylogenetic questions: Why more sequences are not enough. PLoS Biol. 2011, 9, e1000602. [Google Scholar] [CrossRef]
- Phillips, M.J.; Delsuc, F.; Penny, D. Genome-scale phylogeny and the detection of systematic biases. Mol. Biol. Evol. 2004, 21, 1455–1458. [Google Scholar] [CrossRef]
- Heath, T.; Hedtke, S.; Hillis, D. Taxon sampling and the accuracy of phylogenetic analyses. J. Syst. Evol. 2008, 46, 239–257. [Google Scholar] [CrossRef]
- Nabhan, A.R.; Sarkar, I.N. The impact of taxon sampling on phylogenetic inference: A review of two decades of controversy. Brief. Bioinform. 2011, 13, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Hudec, I.; Mock, A. Niphargus plurispinosus sp. n. (Crustacea, Amphipoda), a stygophile and hypotelminorheic representative from Central Europe. Subterr. Biol. 2014, 13, 65–87. [Google Scholar] [CrossRef]
- Stloukal, E.; Kuzl, D. First record of niphargid amphipods in region of Bratislava (western Slovakia). Folia faun. Slov. 2015, 20, 157–162. [Google Scholar]
- Fišer, C.; Coleman, C.O.; Zagmajster, M.; Zwittnig, B.; Gerecke, R.; Sket, B. Old museum samples and recent taxonomy: A taxonomic, biogeographic and conservation perspective of the Niphargus tatrensis species complex (Crustacea: Amphipoda). Org. Divers. Evol. 2010, 10, 5–22. [Google Scholar] [CrossRef]
- Trontelj, P.; Blejec, A.; Fišer, C. Ecomorphological convergence of cave communities. Evolution 2012, 66, 3852–3865. [Google Scholar] [CrossRef] [Green Version]
- Korpás, L. (Ed.) Explanations to the Geological Map of the Börzsöny and Visegrád Mountains; Hungarian Geological Institute: Budapest, Hungary, 1998; p. 216. [Google Scholar]
- Veress, M. A general description of karsts in Hungary. In Cave and Karst Systems of Hungary; Veress, M., Leél-Őssy, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–21. [Google Scholar]
Sample Name | Sampling Location | Region, Settlement | Latitude (N) | Longitude (E) |
---|---|---|---|---|
Niphargus aggtelekiensis A Baradla cave | Baradla-Domica Cave System * | Aggtelek Karst, Aggtelek | 48.4831 | 20.5440 |
Niphargus aggtelekiensis B Rákóczi cave | Rákóczi No. 1 Cave | Aggtelek Karst, Bódvarákó | 48.5208 | 20.7489 |
Niphargus forroi | Diabáz Cave * | Bükk Mts, Bánkút | 48.0955 | 20.4822 |
Niphargus gebhardti | Abaligeti Cave * | Mecsek Mts, Abaliget | 46.1374 | 18.1158 |
Niphargus hrabei | Göd | Pest Plain, Göd | 47.7159 | 19.1409 |
Niphargus hungaricus | Borha Valley, mine tunnel | Kőszegi Mts, Kőszeg | 47.351 | 16.4843 |
Niphargus molnari | Abaligeti Cave | Mecsek Mts, Abaliget | 46.1374 | 18.1158 |
Niphargus tatrensis Kecske-lyuk cave | Kecske-Iyuk Cave | Bükk Mts, Alsóhámor | 48.1175 | 20.6316 |
Niphargus valachicus | Farmos | Pest Plain, Farmos | 47.3608 | 19.8269 |
Niphargus 1 loc. Molnár János cave | Molnár János Cave | Buda Thermal Karst, Budapest | 47.5181 | 19.0358 |
Niphargus 2 loc. Molnár János cave | Molnár János Cave | Buda Thermal Karst, Budapest | 47.5181 | 19.0358 |
Niphargus loc. Vasbánya spring | Vasbánya Spring | Börzsöny Mts, Szokolya | 47.8850 | 19.0368 |
Niphargus loc. Dömös | Dömös, mine tunnel | Visegrád Mts, Dömös | 47.7548 | 18.9087 |
Niphargus loc. Kánya spring | Kánya Spring | Mátra Mts, Galyatető | 47.9268 | 19.9131 |
Niphargus loc. Werbőczy spring | Werbőczy Spring | Mátra Mts, Galyatető | 47.9207 | 19.9167 |
Niphargus 1 loc. Gejzír spring | Gejzír Spring | Zemplén Mts, Telkibánya | 48.4820 | 21.3584 |
Niphargus 2 loc. Gejzír spring | Gejzír Spring | Zemplén Mts, Telkibánya | 48.4820 | 21.3584 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balázs, G.; Borko, Š.; Angyal, D.; Zakšek, V.; Biró, A.; Fišer, C.; Herczeg, G. Not the Last Piece of the Puzzle: Niphargus Phylogeny in Hungary. Diversity 2023, 15, 223. https://doi.org/10.3390/d15020223
Balázs G, Borko Š, Angyal D, Zakšek V, Biró A, Fišer C, Herczeg G. Not the Last Piece of the Puzzle: Niphargus Phylogeny in Hungary. Diversity. 2023; 15(2):223. https://doi.org/10.3390/d15020223
Chicago/Turabian StyleBalázs, Gergely, Špela Borko, Dorottya Angyal, Valerija Zakšek, Anna Biró, Cene Fišer, and Gábor Herczeg. 2023. "Not the Last Piece of the Puzzle: Niphargus Phylogeny in Hungary" Diversity 15, no. 2: 223. https://doi.org/10.3390/d15020223
APA StyleBalázs, G., Borko, Š., Angyal, D., Zakšek, V., Biró, A., Fišer, C., & Herczeg, G. (2023). Not the Last Piece of the Puzzle: Niphargus Phylogeny in Hungary. Diversity, 15(2), 223. https://doi.org/10.3390/d15020223