Phylogeography of the Plateau Pika (Ochotona curzoniae) in Response to the Uplift of the Qinghai-Tibet Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Sources
2.2. Genomic DNA Extraction, Polymerase Chain Reaction Amplification, and Sequencing
2.3. Population Genetic Structure and Divergence
2.4. Phylogenetic Analysis and Haplotype Network
2.5. Nucleotide Mutation Rate and Estimation of the Divergence Time
2.6. Demographic History
3. Results
3.1. Analysis of the Gene Sequence Variation
3.2. Population Genetic Structure Analysis
3.3. Phylogenetic Tree and Haplotype Network Diagram Analysis Results
3.4. Analysis of the Historical Population Dynamics
3.4.1. Neutrality Test
3.4.2. Estimation of the Historical Divergence Time
4. Discussion
4.1. Effects of the Qinghai-Tibet Plateau Geographic Barrier on the Genetic Structure and Differentiation of the Plateau Pika Population
4.2. Phylogeny and Divergence Time of the Plateau Pika
4.3. Historical Dynamics of the Plateau Pika Population
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Zhang, Y.L.; Li, B.Y.; Zheng, D. A discussion on the boundary and area of the Tibetan Plateau in China. Geogr. Res. 2002, 21, 1–9. (In Chinese) [Google Scholar] [CrossRef]
- Shi, Y.F.; Li, J.J.; Li, B.Y. Uplift and environmental changes of Qinghai-Tibetan Plateau in the Late Cenozoic. Guangzhou Guangdong Sci. Technol. Press 1999, 54, 10–20. [Google Scholar]
- Li, J.J.; Weng, S.X.; Zhang, Q.S.; Wang, F.B.; Zheng, B.X.; Li, B.Y. Discussion on the age, amplitude and form of the uplift of Qinghai-Tibet Plateau. Sci. China 1979, 22, 1314–1328. [Google Scholar]
- Liu, Q.; Chen, P.; He, K.; Kilpatrick, C.W.; Liu, S.-Y.; Yu, F.-H.; Jiang, X.-L. Phylogeographic Study of Apodemus ilex (Rodentia: Muridae) in Southwest China. PLoS ONE 2012, 7, e31453. [Google Scholar] [CrossRef] [Green Version]
- Qu, J.; Liu, N.; Bao, X.; Wang, X. Phylogeography of the ring-necked pheasant (Phasianus colchicus) in China. Mol. Phylogenet. Evol. 2009, 52, 125–132. [Google Scholar] [CrossRef]
- Qiu, Y.X.; Fu, C.X.; Comes, H.P. Plant molecular phylogeography in china and adjacent regions:tracing the genetic imprints of Quaternary cliamte and environmental change in the world’s most diverse temperate flora. Mol. Phylogenet. Evol. 2011, 59, 225–244. [Google Scholar] [CrossRef]
- Yu, H.B.; Zhang, Y.L. Advances in Phylogeography of Alpine Plants in the Tibetan Plateau and Adjacent Regions. Acta Bot. Boreal. Occident. Sin. 2013, 33, 1268–1278. [Google Scholar]
- Wang, L.Y.; Ikeda, H.; Liu, T.L.; Wang, Y.J.; Liu, J.Q. Repeated range expansion and glacial endurance of potentilla glabra (rosaceae) in the qinghai-tibetan plateau. J. Integr. Plant Biol. 2009, 51, 698–706. [Google Scholar] [CrossRef]
- Schafer, E. Ornithologische Ergebnisse zweier Forschungsreisen nach Tibet. J. Ornithol. 1938, 86, 7–340. [Google Scholar] [CrossRef]
- Chen, F.G.; Luo, S.Y. Fauna Sinica. Aves: Passeriformes: Bombycillidae-Prunellidae; Science Press: Beijing, China, 1998; pp. 178–182. [Google Scholar]
- Zhan, X.J.; Zheng, Y.F.; Wei, F.W.; Bruford, M.W.; Jia, C.X. Molecular evidence for Pleistocene refugia at the eastern edge of the Tibetan Plateau. Mol. Ecol. 2011, 20, 3014–3026. [Google Scholar] [CrossRef]
- Zhou, W.W.; Zhang, B.L.; Chen, H.M.; Jin, J. DNA Barcodes and Species Distribution Models Evaluate Threats of Global Climate Changes to Genetic Diversity: A Case Study from Nanorana parkeri (Anura: Dicroglossidae). PLoS ONE 2014, 9, e103899. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.Z.; Wang, L.Y.; Cai, Z.Y.; Zhang, T.Z.; Ci, H.X.; Lin, G.H.; Su, J.P. Allopatric divergence and phylogeographic structure of the plateau zokor (Eospalax baileyi), a fossorial rodent endemic to the Qinghai-Tibetan Plateau. J. Biogeogr. 2010, 37, 657–668. [Google Scholar] [CrossRef]
- He, Y.J. Study on Population Genetic Structure and Demographic History of Ochotona curzoniae. Ph.D. Thesis, Northwest Institute of Plateau Biology, UCAS, Xining, China, 2018. [Google Scholar]
- Jin, Y.T.; Brown, R.P.; Liu, N.F. Cladogenesis and phylogeography of the lizard phrynocephalus vlangalii (Agamidae) on the Tibetam plateau. Mol. Ecol. 2008, 17, 1971–1982. [Google Scholar] [CrossRef]
- Cramp, S.; Perrins, C.M. Handbook of the Birds of Europe, the Middle East and North Africa: The Birds of the Western Palearctic. Vol 8: Crows to Finches; Oxford University Press: New York, NY, USA, 1994; pp. 52–66. [Google Scholar]
- Fu, T.S.; Song, Y.J.; Gao, W. Fauna Sinica: Aves; Science Press: Beijing, China, 1998; pp. 165–175. [Google Scholar]
- Gebauer, A.; Kaiser, M. Biology and behavior of general Asiatic snow finches Montifringilla and mountain-steppe sparrows Pyrgilauda. J. Ornithol. 1994, 135, 55–57. [Google Scholar] [CrossRef]
- Zhang, F.F.; Jiang, Z.G.; Xu, A.C.; Yan, Z. Recent geological events and intrinsic behavior influence the population genetic structure of the chiru and Tibetan gazelle on the Tibetan plateau. PLoS ONE 2013, 8, e60712. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.T.; Badingqiuying; Wilson, M.C.; Hogan, B.W. Functional-trait ecology of the plateau pika Ochotona curzoniae in the Qinghai-Tibetan Plateau ecosystem. Integr. Zool. 2019, 14, 87–103. [Google Scholar] [CrossRef] [Green Version]
- Huan, L.; Rui, Z.; Jianxiao, Z.; Xiaodan, H.; Jiapeng, Q. Environmental ltering increases with elevation for the assembly of gut microbiota in wild pikas. Microb. Biotechnol. 2019, 12, 976–992. [Google Scholar] [CrossRef] [Green Version]
- Rose, K.D.; DeLeon, V.B.; Missiaen, P.; Rana, R.S.; Sahni, A.; Singh, L.; Smith, T. Early Eocene lagomorph (Mammalia) from Western India and the early diversification of Lagomorpha. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2008, 275, 1203–1208. [Google Scholar] [CrossRef] [Green Version]
- Angelone, C. Family Ochotonidae (Lagomorpha) and its application in biochronology: Some case studies from the Plio-Quaternary of Eurasia. Quat. Int. 2008, 179, 5–8. [Google Scholar] [CrossRef]
- Galbreath, K.E.; Hafner, D.J.; Zamudio, K.R. When Cold Is Better: Climate-Driven Elevation Shifts Yield Complex Patterns of Diversification and Demography in an Alpine Specialist (American Pika, Ochotona princeps). Evolution 2009, 63, 2848–2863. [Google Scholar] [CrossRef]
- Galbreath, K.E.; Hoberg, E.P. Return to Beringia: Parasites reveal cryptic biogeographic history of North American pikas. Proc. R. Soc. B Biol. Sci. 2012, 279, 371–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanier, H.C.; Massatti, R.; He, Q.; Olson, L.E.; Knowles, L.L. Colonization from divergent ancestors: Glaciation signatures on contemporary patterns of genomic variation in collared pikas (ochotona collaris). Mol. Ecol. 2015, 24, 3688–3705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo, J.A.; Epps, C.W.; Davis, A.R.; Cushman, S.A. Landscape effects on gene flow for a climate-sensitive montane species, the american pika. Mol. Ecol. 2014, 23, 843–856. [Google Scholar] [CrossRef]
- Hayley, C.L.; Link, E.O. Deep barriers, shallow divergences: Reduced phylogeographical structure in the collared pika (Mammalia: Lagomorpha: Ochotona collaris). J. Biogeogr. 2013, 40, 466–478. [Google Scholar] [CrossRef]
- Yu, N.; Zheng, C.; Zhang, Y.-P.; Li, W.-H. Molecular systematics of pikas (Genus Ochotona) inferred from mitochondrial DNA sequences. Mol. Phylogenet. Evol. 2000, 16, 85–95. [Google Scholar] [CrossRef]
- Niu, Y.; Wei, F.; Li, M.; Liu, X.; Feng, Z. Phylogeny of pikas (Lagomorpha, Ochotona) inferred from mitochondrial cytochrome b sequences. Folia Zool.-Praha 2004, 53, 141–156. [Google Scholar]
- Melo-Ferreira, J.; Matos, A.L.; Areal, H.; Lissovsky, A.A.; Carneiro, M.; Es-teves, P.J. The phylogeny of pikas (Ochotona) inferred from a multilocus coalescent approach. Mol. Phylogenet. Evol. 2015, 84, 240–244. [Google Scholar] [CrossRef] [Green Version]
- Koju, N.P.; He, K.; Chalise, M.K.; Ray, C.; Chen, Z.; Zhang, B.; Wan, T.; Chen, S.; Jiang, X. Multilocus approaches reveal underestimated species diversity and inter-specific gene flow in pikas (Ochotona) from southwestern China. Mol. Phylogenet. Evol. 2017, 107, 239–245. [Google Scholar] [CrossRef]
- Liu, S.; Jin, W.; Liao, R.; Sun, Z.; Zeng, T.; Fu, J.; Liu, Y.; Wang, X.; Li, P.; Tang, M.; et al. Phylogenetic study of Ochotona based on mitochondrial Cytb and morphology with a description of one new subgenus and five new species. Acta Theriol. Sin. 2017, 37, 1–43. [Google Scholar] [CrossRef]
- Lissovsky, A.A.; Yatsentyuk, S.P.; Obolenskaya, E.V.; Koju, N.P.; Ge, D. Diversification in highlands: Phylogeny and taxonomy of pikas of the subgenus Conothoa (Lagomorpha, Ochotonidae). Zool. Scr. 2022, 51, 267–287. [Google Scholar] [CrossRef]
- Ci, H.X.; Lin, G.H.; Cai, Z.Y.; Tang, L.Z.; Su, J.P.; Liu, J.Q. Population history of the plateau pika endemic to the Qinghai-Tibetan Plateau based on mtDNA sequence data. J. Zool. 2009, 279, 396–403. [Google Scholar] [CrossRef]
- Avise, J.C. Phylogeography: Retrospect and prospect. J. Biogeogr. 2009, 36, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Niu, L.K.; Duanmu, H.N.; Wang, Z.Q.; Che, Y.L. Natural barriers and climatic oscillation in the Quaternary Pleistocene influence the phylogeography of Sigmella biguttata (Blattodea: Ectobiidae) revealed by mitochondrial and nuclear genes. Acta Entomol. Sin. 2022, 65, 235–245. [Google Scholar] [CrossRef]
- Jeremy, B.S.; Paul, M.J.; Islam, G.; Mark, I.S.; Eleanor, P.J.; Chrissen, E.C.G.; Carolyn, M.K. The diverse origins of New Zealand house mice. Mice Proc. R. Soc. B 2009, 276, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Liao, J. Phylogeography of the Tibetan hamster Cricetulus kamensis in response to uplift and environmental change in the Qinghai-Tibet Plateau. Ecol. Evol. 2019, 9, 7291–7306. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Librado, P.; Rozas, J. DnaSPv5: A software for comprehensive analysisi of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [Green Version]
- Dupanloup, I.; Schneider, S.; Excoffier, L. A simulated annealing approach to define the genetic structure of populations. Mol. Ecol. 2002, 11, 2571–2581. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Eol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Wright, S. The genetical structure of populations. Ann. Eugen 1949, 15, 323–354. [Google Scholar] [CrossRef]
- Govindara, J.; Diddahally, R. Estimates of gene flow in forest trees. Biol. J. Linn. Soc. 1989, 37, 345–357. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Posada, D.; Crandall, K.A. MODELTEST: Testing the model of DNA substitution. Bioinformatics 1998, 14, 817–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leaché, A.D.; Reeder, T.W. Molecular systematics of the Eastern Fence lizard (Sceloporus undulatus): A comparison of parsimony, likelihood, and Bayesian approaches. Syst. Biol. 2002, 51, 44–68. [Google Scholar] [CrossRef]
- Leigh, J.W.; Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Nei, M. Age of the common ancestor of human mitochondrial DNA. Mol. Biol. Evol. 1992, 9, 1176–1178. [Google Scholar] [CrossRef] [Green Version]
- Rooney, A.P.; Honeycutt, R.L.; Derr, J.N. Historical population size change of bowhead whales inferred from DNA sequence polymorphism data. Evolution 2001, 55, 1678–1685. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.D. The Reproductive Characteristics of Plateau Pika. J. Northeast For. Univ. 2001, 29, 90–92. [Google Scholar] [CrossRef]
- Jiapeng, Q.; Ming, L.; Min, Y.; Yanming, Z.; Weihong, J. Reproduction of plateau pika (Ochotona curzoniae) in Guoluo, Qinghai-Tibetan Plateau. Eur. J. Wildl. Res. 2012, 58, 269–277. [Google Scholar] [CrossRef]
- Rui, X.T.; Jiao, W.; Yi, F.L.; Cheng, R.Z.; Guan, L.M.; Feng, J.L.; Yue, L.; Megan, P.; Podsiadlowski, L.; Yan, Y.; et al. Genomics and morphometrics reveal the adaptive evolution of pikas. Zool. Res. 2022, 43, 813–826. [Google Scholar] [CrossRef]
- Drummond, A.J.; Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 2007, 7, 214. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef] [Green Version]
- Hudson, R.R.; Slatkin, M.; Maddison, W.P. Estimation of levels of gene flow from DNA Sequence data. Geneties 1992, 132, 583–589. [Google Scholar] [CrossRef]
- Reed, D.; Frankham, R. The correlation between population fitness and genetic diversity. Conserv. Biol. 2003, 17, 230–237. [Google Scholar] [CrossRef]
- Vrijenhoek, R.C. Genetic Diversity and Fitness in Small Populations. Conserv. Genet. 1994, 68, 37–53. [Google Scholar] [CrossRef]
- Durand, J.D.; Tsigenopoulos, C.S.; Unlu, E.; Berrebi, P. Phylogeny and biogeography of the family cyprinidae in the middle east inferred from cytochrome b DNA—Evolutionary significance of this region. Mol. Phylogenet. Evol. 2002, 22, 91–100. [Google Scholar] [CrossRef]
- Pearson, R.G.; Dawson, T.P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 2003, 12, 361–371. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.H.; Fan, N.C.; Zhou, W.Y.; Yang, S.M.; Cao, Y.F. Aggressive behavior of Plateau pika during breeding period. Curr. Zool. 2000, 46, 278–286. [Google Scholar]
- Qu, J.P.; Chen, Q.Q.; Zhang, Y.M. Behaviour and reproductive fitness of postdispersal in plateau pikas (Ochotona curzoniae) on the Tibetan Plateau. Mammal Res. 2018, 63, 151–159. [Google Scholar] [CrossRef]
- Qu, J.P.; Li, K.; Yang, M.; Li, W.; Zhang, Y.M.; Smith, A.T. Seasonal dynamic pattern of spacial territory in social groups of plateau pikas (Ochotona curzoniae). Acta Theriol. Sin. 2007, 27, 215–220. [Google Scholar]
- Balloux, F.; Lugon, M.N. The estimation of population differentiation with microsatellite markers. Mol. Ecol. 2002, 11, 155–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Z.; Wan, S.; Colin, C.; Yu, Z.; Li, A. Paleoenvironmental evolution of south asia and its link to himalayan uplift and climatic change since the late eocene. Glob. Planet. Chang. 2021, 200, 103459. [Google Scholar] [CrossRef]
- Nie, J.S.; Ruetenik, G.; Gallagher, K.; Hoke, G.; Garzione, C.N.; Wang, W.T.; Stockli, D.; Hu, X.F.; Wang, Z.; Wang, Y.; et al. Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation. Nat. Geosci. 2018, 11, 944–948. [Google Scholar] [CrossRef]
- Li, H.G.; Zhang, P.Q.; Guan, Z. Analysis of runoff evolution characteristics in the upper watershed of Lancang River in recent 30 years. J. Yangtze River Sci. Res. Inst. 2022, 12, 1–7. [Google Scholar] [CrossRef]
- Bai, Z.Z.; Wuren, T.; Liu, S.; Han, S.R.; Chen, L.; Mc, C.D.; Ge, R.L. Intermittent cold exposure results in visceral adipose tissue “browning” in the plateau pika (Ochotona curzoniae). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2015, 184, 171–178. [Google Scholar] [CrossRef]
- Bao, W.Y.; Zhang, Y.; Lin, P.C.; Nan, P.; Huang, Y.Y.; Jin, H.F.; Zhong, Y. Phylogeography of Gymnadenia conopsea from the Qinghai-Tibet Plateau. Biotechnol. Bull. 2016, 32, 96–102. [Google Scholar] [CrossRef]
- Zhang, R.Z.; Zheng, C.L. The geographical distribution of mammals and the evolution of mammals fauna in Qinghai-Xizang Plateau. Acta Geogr. Sin. 1985, 40, 225–231. [Google Scholar]
- Clark, M.K.; Schoenbohm, L.M.; Royden, L.H.; Whipple, K.X.; Burchfiel, B.C.; Zhang, X.; Tang, W.; Wang, E.; Chen, L. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics 2004, 23, 6.1–6.20. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Long, D.; Lall, U.; Bridget, R.S.; Fu, Q.T.; Xu, D.F.; Jian, S.Z.; Jian, Y.Z.; Hao, W.; Chun, H.H. Reconstructed eight-century streamflow in the Tibetan Plateau reveals contrasting regional variability and strong nonstationarity. Nat. Commun. 2022, 13, 6416. [Google Scholar] [CrossRef]
- Tajima, F. The effect of change in population size on DNA polymorphism. Genetics 1989, 123, 597–601. [Google Scholar] [CrossRef]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef]
- Fu, Y.X.; Li, W. Statistical tests of neutrality of mutations. Genetics 1993, 133, 693–709. [Google Scholar] [CrossRef]
- Fu, Y.X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 1997, 147, 915–925. [Google Scholar] [CrossRef]
- Rogers, A.R.; Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 1992, 9, 552–569. [Google Scholar] [CrossRef]
- Schafer, J.M.; Tschudi, S.; Zhao, Z.; Wu, X.; Ivy, O.S.; Wieler, R.; Baur, H.; Kubik, P.W.; Schluchter, C. The limited influence of glaciations in Tibet on global climate over the past 170,000 yr. Earth Planet Sci. Lett. 2002, 194, 287–297. [Google Scholar] [CrossRef]
- Shi, Y.F.; Kong, Z.C.; Wang, S.M.; Tang, L.Y.; Wang, R.B.; Yao, T.D.; Zhao, X.T.; Zhang, P.Y.; Shi, S.H. Climate and environment at the peak of the Holocene Megathermic Period in China. Sci. Sin. Chim. 1993, 8, 865–873. (In Chinese) [Google Scholar]
- Qi, Y.; Pu, X.; Li, Y.; Li, D.; Huang, M.; Zheng, X.; Guo, J. Prediction of Suitable Distribution Area of Plateau pika (Ochotona curzoniae) in the Qinghai-Tibet Plateau under Shared Socioeconomic Pathways (SSPs). Sustainability 2022, 14, 12114. [Google Scholar] [CrossRef]
- Smith, A.T. Distribution and dispersal of pikas: Influences of behavior and climate. Ecology 1974, 55, 1368–1376. [Google Scholar] [CrossRef]
- Smith, A.T.; Weston, M.L. Ochotona princeps. Mamm. Species 1990, 352, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Yujiao, H.; Gonghua, L.; Haixin, C.; Cuixia, L.; Jianping, S. The past population dynamics of ochotona curzoniae and the response to the climate change. North-West. J. Zool. 2018, 14, 220–225. Available online: http://biozoojournals.ro/nwjz/content/v14n2/nwjz_e171704_Yujiao.pdf (accessed on 22 October 2022).
- Sun, Y.; Ikeda, H.; Wang, Y.; Liu, J. Phylogeography of potentilla fruticosa (rosaceae) in the qinghai-tibetan plateau revisited: A reappraisal and new insights. Trans. Bot. Soc. Edinb. 2010, 3, 249–257. [Google Scholar] [CrossRef]
- Li, Z.H.; Chen, J.; Zhao, G.F.; Guo, Y.P.; Kou, Y.X.; Zheng, M.Y. Response of a desert shrub to past geological and climatic change: A phylogeographic study of reaumuria soongarica (tamaricaceae) in western china. J. Syst. Evol. 2012, 50, 11. [Google Scholar] [CrossRef]
- Kropf, M.; Kadereit, J.W.; Comes, H.P. Differential cycles of range contraction and expansion in Europe an high mountain plants during the Late Quaternary: In sights from Pritzelago alpina (L.) O. Kuntze (Brassicaceae). Mol. Ecol. 2003, 12, 931–949. [Google Scholar] [CrossRef] [PubMed]
- Comes, H.P.; Kadereit, J.W. The effect of quaternary climatic changes on plant distribution and evolution. Trends Plant Sci. 1998, 3, 432–438. [Google Scholar] [CrossRef]
- Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 2000, 405, 907–913. [Google Scholar] [CrossRef]
- Chen, S.L.; Qing, B.G.; De, J.Z.; Sheng, Y.C.; Yi, Z.D.; Fa, Q.Z.; Ying, H.L. Chloroplast DNA Phylogeography of Rhodiola alsia (Crassulaceae) in the Qinghai—Tibet Plateau. Botany 2009, 87, B09–B059. [Google Scholar]
- Hao, W.; Laqiong, K.S.; Fan, L.; Yuguo, W.; Zhiping, S.; Qianhong, W.; Jiakuan, C.; Wenju, Z. Phylogeographic structure of Hippophae tibetana (Elaeagnaceae) highlights the highest microrefugia and the rapid uplift of the Qinghai-Tibetan Plateau. Mol. Ecol. 2010, 19, 2964–2979. [Google Scholar] [CrossRef]
- Li, Z.H.; Zhang, Q.; Liu, J.Q.; Tomas, K.; Martin, L. The pleistocene demography of an alpine juniper of the Qinghai-Tibetan Plateau:tabula rasa, cryptic refugia or something else? J. Biogeogr. 2011, 38, 31–43. [Google Scholar] [CrossRef]
- Qing, B.G.; De, J.Z.; Yi, Z.D.; Fa, Q.Z.; Yi, H.L.; Peng, C.F.; Shi, L.C. Intraspecific divergences of Rhodiola alsia (Crassulaceae) based on plastid DNA and internal transcribed spacer fragments. Bot. J. Linn. Soc. 2012, 168, 204–215. [Google Scholar] [CrossRef] [Green Version]
Groups | Sample Point Code | Population | Longitude | Latitude | Altitude (m) | Sample Size | Number of Haplotypes Nh | Haplotype Diversity Hd | Nucleotide Diversity |
---|---|---|---|---|---|---|---|---|---|
Group 1 | LKZ | Langkazi | 90.417 | 29.109 | 4425 | 3 | 3 | 1.000 | 0.00518 |
JZ | Jiangzi | 90.101 | 28.901 | 4660 | 7 | 5 | 0.905 | 0.00077 | |
Group 2 | BDQ | Budongquan | 39.897 | 35.522 | 4610 | 6 | 6 | 1.000 | 0.00491 |
TTH | Tuotuohe | 92.44 | 34.216 | 4540 | 7 | 7 | 1.000 | 0.00407 | |
NQU | Naqu | 91.797 | 31.28 | 4600 | 5 | 5 | 1.000 | 0.0028 | |
AD | Anduo | 91.718 | 32.157 | 4799 | 7 | 7 | 1.000 | 0.00876 | |
MZGK | Mozhugongka | 92.296 | 29.693 | 4434 | 12 | 12 | 1.000 | 0.00181 | |
BLH | Beiluhe | 92.942 | 34.862 | 4590 | 5 | 5 | 1.000 | 0.00515 | |
T1 | Tibet-1 | 87.218 | 29.237 | 4481 | 5 | 5 | 1.000 | 0.00167 | |
T3 | Tibet-3 | 82.563 | 30.578 | 4944 | 3 | 2 | 0.667 | 0.00048 | |
T4 | Tibet-4 | 85.089 | 29.493 | 4607 | 5 | 4 | 0.900 | 0.00055 | |
NM | Nimo | 90.27 | 29.502 | 3908 | 6 | 6 | 1.000 | 0.00205 | |
GLDD | Geladandong | 91.652 | 33.589 | 4873 | 4 | 4 | 1.000 | 0.0023 | |
KEQK | Kaerqiuka | 90.755 | 37.043 | 4184 | 5 | 5 | 1.000 | 0.00477 | |
AJKH | Ajikehu | 88.61 | 37.003 | 4250 | 5 | 5 | 1.000 | 0.01159 | |
TZH | Tuzihu | 87.308 | 36.8 | 4750 | 5 | 5 | 1.000 | 0.00466 | |
Group 3 | MY | Menyuan | 101.275 | 37.69 | 3260 | 15 | 15 | 1.000 | 0.0062 |
ML | Mole | 100.299 | 37.963 | 3790 | 15 | 14 | 0.990 | 0.00235 | |
TJ | Tianjun | 99.106 | 37.245 | 3370 | 11 | 11 | 1.000 | 0.00496 | |
QLEB | Qilianebao | 100.934 | 37.968 | 3429 | 7 | 7 | 1.000 | 0.00223 | |
QLAR | Qilianarou | 100.525 | 38.048 | 3031 | 2 | 2 | 1.000 | 0.00129 | |
RS | Reshui | 100.434 | 37.548 | 3520 | 5 | 5 | 1.000 | 0.00276 | |
GC | Gangcha | 100.134 | 37.325 | 3370 | 5 | 4 | 0.900 | 0.00216 | |
ND | Niaodao | 99.758 | 37.171 | 3158 | 3 | 3 | 1.000 | 0.00556 | |
JXG | Jiangxigou | 100.211 | 36.621 | 3157 | 5 | 5 | 1.000 | 0.02028 | |
GD1 | Guide-1 | 102.067 | 37.2 | 3725 | 2 | 2 | 1.000 | 0.00575 | |
GD2 | Guide-2 | 101.205 | 36.254 | 3650 | 6 | 6 | 1.000 | 0.00854 | |
Group 4 | NQ | Nangqian | 96.508 | 32.19 | 3620 | 12 | 12 | 1.000 | 0.00452 |
BS | Basu | 97.206 | 30.674 | 4490 | 5 | 5 | 1.000 | 0.00109 | |
YLS | Yelashan | 97.295 | 30.187 | 4338 | 5 | 5 | 1.000 | 0.00104 | |
BD | Bangda | 97.129 | 30.529 | 4348 | 4 | 4 | 1.000 | 0.00065 | |
Group 5 | TR | Tongren | 101.716 | 35.586 | 3813 | 5 | 5 | 1.000 | 0.00247 |
ZK | Zeku | 101.47 | 35.056 | 3690 | 12 | 12 | 1.000 | 0.0028 | |
KA | Heka | 99.908 | 35.821 | 3890 | 5 | 5 | 1.000 | 0.00818 | |
MQ | Maqin | 100.212 | 34.505 | 3720 | 12 | 12 | 1.000 | 0.00446 | |
GanD | Gande | 100.218 | 34.203 | 4210 | 11 | 11 | 1.000 | 0.00295 | |
AB | Aba | 101.581 | 33.009 | 3440 | 13 | 12 | 0.987 | 0.00113 | |
SQ | Shiqu | 98.047 | 32.984 | 4400 | 10 | 10 | 1.000 | 0.00421 | |
YS | Yushu | 96.886 | 33.057 | 3840 | 15 | 15 | 1.000 | 0.01348 | |
ZD | Zhiduo | 95.696 | 33.939 | 4170 | 9 | 9 | 1.000 | 0.00305 | |
QML | Qumalai | 95.877 | 34.139 | 4390 | 7 | 6 | 0.952 | 0.00784 | |
MD | Maduo | 98.133 | 34.796 | 4250 | 11 | 11 | 1.000 | 0.00753 |
Genes | Primer Sequences (5′-3′) | Amplified Size (bp) | Source | Annealing Temperature (°C) |
---|---|---|---|---|
COI | H:ACTACTGGCTTCAATCTACTTCTC L:AAGACATAGAGGTTATGGAGTTGG | 1705 | Ding, 2020 [34] | 64 |
12S rRNA | F:AAAGCAAAACACTGAAAATG R:TTTCATCTTTTCCTTGCGGTA | 1149 | He, 2019 [15] | 64 |
Cytb | H:CGGAATTCCATTTTTGGTTTACAAGAC L:CGAAGCTTGATATGAAAAACCATCGTTG | 1170 | Kocher, 1989 [36] | 64 |
D-loop | F:ATGTTCCGCCCAATCAGCCAAT R:GTTGCTGGTTTCACGGAGGATGG | 655 | Ci, 2009 [31] | 59 |
GHR | F:TCAGCCACAGAGGTTAGAAGG R: CACATAGCCACACGATGAGAG | 665 | This study | 52 |
RAG1 | F:CCGACACCACCAACATTCAA R:CCTTCACATCTCCACCTTCTTC | 1069 | This study | 52 |
IRBP | H:GTCCTCTTGGATAACTACTGCTT L:CTCCACTGCCCTCCCATGTCT | 744 | Ding, 2020 [34] | 61 |
Gene | 12S rRNA | Cytb | COI | D-loop | GHR | IRBP | RAG1 | Combined Sequence |
---|---|---|---|---|---|---|---|---|
Sequence length/bp | 1093 | 1158 | 1705 | 656 | 573 | 744 | 980 | 6909 |
Variable sites | 114 | 150 | 277 | 143 | 40 | 20 | 29 | 773 |
Singleton variable sites | 26 | 8 | 8 | 2 | 26 | 5 | 8 | 83 |
Parsimony informative sites | 88 | 142 | 269 | 141 | 14 | 15 | 21 | 690 |
Average conversion/transpose value | 2.6 | 10.7 | 5.5 | 6.3 | 2.6 | 9.4 | 5.4 | 6 |
Haplotype | 73 | 80 | 92 | 108 | 28 | 22 | 72 | 290 |
Haplotype/Sample number/% | 24.2 | 26.5 | 30.5 | 35.8 | 9.3 | 7.3 | 23.8 | 96 |
A/% | 35.4 | 26.5 | 26.7 | 34 | 23.2 | 19.8 | 28.7 | 28.1 |
T/% | 23 | 26.2 | 28.5 | 26 | 20.1 | 18.7 | 22.9 | 24.4 |
C/% | 24.9 | 34 | 27.8 | 29.9 | 32.4 | 30.8 | 24.2 | 28.8 |
G/% | 16.6 | 13.3 | 17 | 10.1 | 24.2 | 30.8 | 24.1 | 18.8 |
Group | Populations Included | Number of Haplotypes Nh | Haplotype Diversity Hd | Nucleotide Diversity π |
---|---|---|---|---|
Group 1 | LKZ JZ | 8 | 0.956 | 0.01027 |
Group 2 | NM TZH AJKH KEQK T1 T3 T4 BLH MZGK AD NQU TTH BDQ GLDD | 78 | 0.999 | 0.00625 |
Group 3 | MY ML GD1 TJ ND GC RS QLAR QLEB JXG GD2 | 68 | 0.999 | 0.00708 |
Group 4 | BS BD YLS NQ | 26 | 1.000 | 0.00432 |
Group 5 | MQ MD GanD TR ZK KA AB SQ YS ZD QML | 114 | 1.000 | 0.00699 |
Source of Variation | D.f | Sum of Squares | Variance Components | Variation Percentage | Fixation Indices | |
---|---|---|---|---|---|---|
One group | Among populations | 42 | 8578.158 | 26.71915 | 61.71 | Fst = 0.61714 |
Within populations | 261 | 4326.296 | 16.57585 | 38.29 | ||
Total | 303 | 12,904.454 | 43.29499 | |||
Five groups based on lineages | Among groups | 4 | 5752.325 | 24.74701va | 49.84 | Fsc = 0.33220 |
Among populations within groups | 37 | 2774.028 | 8.27352vb | 16.66 | Fst = 0.66503 | |
Within populations | 260 | 4324.296 | 16.63191vc | 33.50 | Fct = 0.49840 |
Group | Tajima’s D | Fu’s Fs | SSD | Harpending’s Raggedness Index r | T (Ma) |
---|---|---|---|---|---|
Group 1 | 0.98023 ns | 4.00851 ns | 0.89400 ns | 0.083333 ns | - |
Group 2 | −1.14529 * | −24.19805 * | 0.84891 ns | 0.00086444 ns | 0.06 |
Group 3 | −1.32911 * | −24.41101 * | 0.84603 ns | 0.00164939 ns | 0.06 |
Group 4 | −0.83933 ns | −8.9991275 ns | 0.85944 ns | 0.01231735 ns | - |
Group 5 | −1.65000 * | −24.16632 * | 0.88954 * | 0.00142879 ns | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Y.; Pu, X.; Li, Z.; Song, D.; Chen, Z. Phylogeography of the Plateau Pika (Ochotona curzoniae) in Response to the Uplift of the Qinghai-Tibet Plateau. Diversity 2023, 15, 307. https://doi.org/10.3390/d15020307
Qi Y, Pu X, Li Z, Song D, Chen Z. Phylogeography of the Plateau Pika (Ochotona curzoniae) in Response to the Uplift of the Qinghai-Tibet Plateau. Diversity. 2023; 15(2):307. https://doi.org/10.3390/d15020307
Chicago/Turabian StyleQi, Yinglian, Xiaoyan Pu, Zhilian Li, Daoguang Song, and Zhi Chen. 2023. "Phylogeography of the Plateau Pika (Ochotona curzoniae) in Response to the Uplift of the Qinghai-Tibet Plateau" Diversity 15, no. 2: 307. https://doi.org/10.3390/d15020307
APA StyleQi, Y., Pu, X., Li, Z., Song, D., & Chen, Z. (2023). Phylogeography of the Plateau Pika (Ochotona curzoniae) in Response to the Uplift of the Qinghai-Tibet Plateau. Diversity, 15(2), 307. https://doi.org/10.3390/d15020307