New Insights into the Taxonomy of Malacopsylloidea Superfamily (Siphonaptera) Based on Morphological, Molecular and Phylogenetic Characterization of Phthiropsylla agenoris (Malacopsyllidae) and Polygenis (Polygenis) rimatus (Rhopalopsyllidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Samples
2.2. Morphological Study
2.3. Molecular and Phylogenetic Study
Species | Sample ID/ Geographical Area | Host | Number of Fleas | Base Pairs (bp) | Accession Number |
---|---|---|---|---|---|
ITS2 | |||||
P. agenoris | PA1−PA5/Santa Cruz, Argentina | Zaedyus pichiy | 5 | 482 | OU706236 |
P. (P.) rimatus | P1−P3/Buenos Aires, Argentina | Akodon dolores | 3 | 453 | OU706235 |
Cox1 | |||||
P. agenoris | PA1−PA5/Santa Cruz, Argentina | Zaedyus pichiy | 5 | 658 | OU706243 |
P. (P.) rimatus | P1/Buenos Aires, Argentina | Akodon dolores | 1 | 658 | OU706244 |
P. (P.) rimatus | P2−P3/Buenos Aires, Argentina | Akodon dolores | 2 | 658 | OU706245 |
Cox2 | |||||
P. agenoris | PA1/Santa Cruz, Argentina | Zaedyus pichiy | 1 | 729 | OU707013 |
P. agenoris | PA3/Santa Cruz, Argentina | Zaedyus pichiy | 1 | 729 | OU707015 |
P. agenoris | PA5/Santa Cruz, Argentina | Zaedyus pichiy | 1 | 729 | OU707016 |
P. agenoris | PA2, PA4/Santa Cruz, Argentina | Zaedyus pichiy | 2 | 729 | OU707014 |
P. (P.) rimatus | P1/Buenos Aires, Argentina | Akodondolores | 1 | 739 | OU707017 |
P. (P.) rimatus | P2−P3/Buenos Aires, Argentina | Akodon dolores | 2 | 739 | OU707018 |
Cytb | |||||
P. agenoris | PA1, PA3/Santa Cruz, Argentina | Zaedyus pichiy | 2 | 374 | OU706744 |
P. agenoris | PA2, PA4−PA5/Santa Cruz, Argentina | Zaedyus pichiy | 3 | 374 | OU706745 |
P. (P.) rimatus | P1/Buenos Aires, Argentina | Akodon dolores | 1 | 374 | OU706746 |
P. (P.) rimatus | P2−P3/Buenos Aires, Argentina | Akodon dolores | 2 | 374 | OU706743 |
EF1−α | |||||
P. agenoris | PA1, PA3−PA5/Santa Cruz, Argentina | Zaedyus pichiy | 4 | 975 | OU706239 |
P. agenoris | PA2/Santa Cruz, Argentina | Zaedyus pichiy | 1 | 975 | OU706240 |
P. (P.) rimatus | P1, P3/Buenos Aires, Argentina | Akodon dolores | 2 | 975 | OU706241 |
P. (P.) rimatus | P2/Buenos Aires, Argentina | Akodon dolores | 1 | 975 | OU706242 |
3. Results
3.1. Morphological Characterization of Fleas
3.1.1. Phthiropsylla agenoris
3.1.2. Polygenis (Polygenis) rimatus
3.2. Molecular Results
3.2.1. ITS2 Fragment and EF1−α Partial Gene Analysis
3.2.2. Partial cox1, cox2 and cytb mtDNA Gene Analysis
3.3. Phylogenetic Results
EF1−α | P. agenoris (This Study) OU706239−40 | P. (P.) rimatus (This Study) OU706241−42 | Polygenis rimatus EU336290 | Polygenis pradoi EU336289 | Polygenis roberti roberti KM890524 | Malacopsylla grossiventris KM890469 | Tetrapsyllus sp. KM890506 KM890507 | Ectinorus sp. KM890519 KM890515 KM890512 EU336294 | Listronius fortis KM890511 | Parapsyllus sp. AF423872 EU336266 | Tiamastus cavicola EU336279 |
---|---|---|---|---|---|---|---|---|---|---|---|
P. agenoris (this study) OU706239−40 | 99.8–100 * | ||||||||||
P. (P.) rimatus (this study) OU706241−42 | 80.4–80.7 | 99.4–100 * | |||||||||
Polygenis rimatus EU336290 | 80.7–80.9 | 98.0–98.1 | − | ||||||||
Polygenis pradoi EU336289 | 82.6–82.8 | 90.8–91.0 | 90.0 | − | |||||||
Polygenis roberti roberti KM890524 | 81.0–81.1 | 97.6–97.7 | 97.4 | 91.4 | − | ||||||
Malacopsylla_grossiventris KM890469 | 80.6–80.7 | 83.2–83.4 | 83.7 | 83.2 | 83.0 | − | |||||
Tetrapsyllus sp. KM890506 KM890507 | 81.9–82.5 | 84.0–84.4 | 84.4 | 82.3–85.9 | 84.0–84.7 | 84.2–84.8 | 96.6 | ||||
Ectinorus sp. KM890519 KM890515 KM890512 EU336294 | 80.0–81.4 | 83.0–85.9 | 83.1–85.8 | 83.2–87.4 | 82.5–85.4 | 86.6–89.7 | 84.4–88.7 | 87.1–90.4 | |||
Listronius fortis KM890511 | 81.3–81.4 | 86.5–86.6 | 86.6 | 87.3 | 87.1 | 88.0 | 87.3–88.0 | 88.2–90.9 | − | ||
Parapsyllus sp. AF423872 EU336266 | 82.0–82.6 | 84.5–85.4 | 85.2–85.4 | 85.0–86.4 | 84.9–85.4 | 86.0–88.5 | 85.5–87.1 | 86.4–89.7 | 88.7–89.4 | 90.8 | |
Tiamastus cavicola EU336279 | 83.0–83.1 | 86.3–86.5 | 86.8 | 90.0 | 87.4 | 84.4 | 85.0–85.9 | 84.5–86.7 | 87.1 | 86.186.3 | − |
Cox1 | P. agenoris (This Study) OU706243 | P. (P.) rimatus (This Study) OU706244−45 | P. agenoris KM891005, KM890899 | Polygenis roberti roberti KM890958 | Malacopsylla_grossiventris KM890898 | Ectinorus sp. KM890943, KM890949 | Rhopalopsyllus australis KM890994 | Listronius fortis KM890945 | Tetrapsyllus sp. KM890937−38 | Parapsyllus humboldti MK104348 |
---|---|---|---|---|---|---|---|---|---|---|
P. agenoris (this study) OU706243 | 100 * | |||||||||
P. (P.) rimatus (this study) OU706244−45 | 83.2–83.5 | 99.8–100 * | ||||||||
P. agenoris KM891005, KM890899 | 99.2 | 83–83.5 | 99.5 * | |||||||
Polygenis roberti roberti KM890958 | 83.5 | 93.4–93.6 | 83.7–83.9 | − | ||||||
Malacopsylla_grossiventris KM890898 | 88.0 | 86.1–86.3 | 88.4–88.6 | 84.6 | − | |||||
Ectinorus sp. KM890943, KM890949 | 85.6–85.9 | 83.7–83.9 | 85.1–86.1 | 83.0–83.5 | 84.6–86.1 | 84.0 | ||||
Rhopalopsyllus australis KM890994 | 86.1 | 83.7–83.9 | 85.9 | 83.7 | 86.5 | 80.9–83.9 | − | |||
Listronius fortis KM890945 | 86.3 | 83.0 | 86.1–86.3 | 83.0 | 84.8 | 83.9–85.6 | 83.2 | − | ||
Tetrapsyllus sp. KM890937−38 | 83.2–85.6 | 82.8–83.0 | 82.6–85.3 | 80.9–81.1 | 85.4–88.4 | 78.4–84.8 | 81.3–85.1 | 80.9–81.3 | 88.4 | |
Parapsyllus humboldti MK104348 | 84.8 | 83.7–83.9 | 85.1–85.3 | 83.7 | 88.6 | 84.6–87.7 | 84.6 | 82.6 | 81.9–86.7 | − |
Cytb | P. agenoris (This Study) OU706744−45 | P. (P.) rimatus (This Study) OU706746, OU706743 | P. agenoris KM890590, KM890742 | Polygenis roberti roberti KM890693 | Malacopsylla_grossiventris KM890589 | Ectinorus sp. KM890676, KM890682−83 | Rhopalopsyllus australis KM890729 | Listronius fortis KM890675 | Tetrapsyllus sp. KM890670−71 | Parapsyllus longicornis KM890604 |
---|---|---|---|---|---|---|---|---|---|---|
P. agenoris (this study) OU706744−45 | 99.7–100 * | |||||||||
P. (P.) rimatus (this study) OU706746, OU706743 | 84.0–84.3 | 99.4–100 * | ||||||||
P. agenoris KM890590, KM890742 | 99.4–99.7 | 84.0 | 100* | |||||||
Polygenis roberti roberti KM890693 | 82.8–83.1 | 92.3 | 82.8 | − | ||||||
Malacopsylla_grossiventris KM890589 | 85.2–85.5 | 81.9 | 85.8 | 80.7 | − | |||||
Ectinorus sp. KM890676, KM890682−83 | 83.4–85.5 | 81.0–83.4 | 84.0–85.8 | 81.6–82.8 | 84.0–86.6 | 84.3–86.1 | ||||
Rhopalopsyllus australis KM890729 | 82.8–83.1 | 82.5 | 83.4 | 82.8 | 83.7 | 83.4–84.0 | − | |||
Listronius fortis KM890675 | 83.4–83.7 | 85.5 | 84.0 | 84.6 | 83.4 | 83.4–87.2 | 86.0 | − | ||
Tetrapsyllus sp. KM890670−71 | 81.9–83.7 | 81.3–82.8 | 82.5–84.0 | 80.1–81.3 | 79.2–81.6 | 81.9–84.3 | 81.9–85.5 | 84.3–85.8 | 91.7 | |
Parapsyllus longicornis KM890604 | 85.5–85.8 | 85.8 | 86.0 | 83.7 | 89.0 | 86.3–90.0 | 84.6 | 87.5 | 82.8–87.2 | − |
Cox2 | P. agenoris (This Study) OU707013−16 | P. (P.) rimatus (This Study) OU707017−18 | P. agenoris KM890763 | Polygenis pradoi AF424043 | Polygenis roberti roberti KM890830 | Malacopsylla grossiventris KM890589 | Ectinorus sp. KM890813 KM890816 EU336012 KM890820 | Rhopalopsyllus australis KM890865 | Listronius fortis KM890815 | Tetrapsyllus sp. KM890807−08 | Parapsyllus longicornis EU335985 |
---|---|---|---|---|---|---|---|---|---|---|---|
P. agenoris (this study) OU707013−16 | 99.6–100 * | ||||||||||
P. (P.) rimatus (this study) OU707017−18 | 80.0–80.8 | 99.6–100 * | |||||||||
P. agenoris KM890763 | 99.2 | 80.0–80.4 | − | ||||||||
Polygenis pradoi AF424043 | 79.8–80.2 | 91.6 | 80.2 | − | |||||||
Polygenis roberti roberti KM890830 | 78.2–78.6 | 90.1 | 78.2 | 91.4 | − | ||||||
Malacopsylla_grossiventris KM890589 | 85.9–86.3 | 81.1–81.5 | 86.1 | 82.1 | 80.8 | − | |||||
Ectinorus sp. KM890813 KM890816 EU336012 KM890820 | 82.3–85.2 | 80.2–84.6 | 83.1–84.8 | 80.6–84.6 | 78.6–83.1 | 81.7–85.5 | 85.0–89.0 | ||||
Rhopalopsyllus australis KM890865 | 82.3–82.7 | 86.5–86.9 | 82.3 | 86.3 | 85.2 | 84.4 | 80.0–86.5 | − | |||
Listronius fortis KM890815 | 82.5–82.9 | 80.6 | 82.3 | 80.6 | 78.9 | 82.3 | 83.3–85.0 | 82.9 | − | ||
Tetrapsyllus sp. KM890807−08 | 81.3–81.9 | 78.2–81.5 | 81.3–81.5 | 79.1–79.8 | 79.1–79.3 | 81.3–82.9 | 81.5–84.8 | 81.7–82.9 | 80.0–81.1 | 91.8 | |
Parapsyllus longicornis EU335985 | 84.4–84.8 | 84.4–84.8 | 84.2 | 83.5 | 84.8 | 84.8 | 89.7–91.8 | 85.5 | 84.8 | 84.0 | − |
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Linardi, P.M.; Guimarães, L.R. Sifonápteros do Brasil; Museum of Zoology, University of Sao Paulo: São Paulo, Brazil, 2000. [Google Scholar]
- Whiting, M.F.; Whiting, A.S.; Hastriter, M.W.; Dittmar, K. A molecular phylogeny of fleas (Insecta: Siphonaptera): Origins and host associations. Cladistics 2008, 24, 677–707. [Google Scholar]
- Zurita, A.; Callejón, R.; De Rojas, M.; Gómez−López, M.S.; Cutillas, C. Molecular study of Stenoponia tripectinata tripectinata (Siphonaptera: Ctenophthalmidae: Stenoponiinae) from the Canary Islands: Taxonomy and phylogeny. Bull. Entomol. Res. 2015, 104, 704–711. [Google Scholar]
- Zurita, A.; García−Sánchez, A.M.; Cutillas, C. Ctenophthalmus baeticus boisseauorum (Beaucournu, 1968) and Ctenophthalmus apertus allani (Smit, 1955) (Siphonaptera: Ctenophthalmidae) as synonymous taxa: Morphometric, phylogenetic, and molecular characterization. Bull. Entomol. Res. 2020, 110, 663–676. [Google Scholar]
- Zurita, A.; García-Sánchez, A.M.; Cutillas, C. Comparative molecular and morphological study of Stenoponia tripectinata tripectinata (Siphonaptera: Stenoponiidae) from the Canary Islands and Corsica. Bull. Entomol. Res. 2022, 112, 681–690. [Google Scholar]
- Weyenbergh, H. The Argentine fauna—Description d’une puce gigantesque, Pulex grossiventris, m. Boletín Acad. Nac. Cienc. 1879, 3, 188–193. [Google Scholar]
- Rothschild, N.C. Further contributions to the knowledge of the Siphonaptera. Novit. Zool. 1904, 11, 602–653. [Google Scholar]
- Smit, F.G.A.M. An Illustrated Catalogue of the Rothschild fleas (Siphonaptera) in the British Museum (Natural History) 7: Malacopsylloidea (Malacopsyllidae and Rhopalopsyllidae); Oxford University Press: Oxford, UK, 1987; 380p. [Google Scholar]
- Lareschi, M.; Autino, A.; Sanchez, J. A review of the fleas (Insecta− Siphonaptera) from Argentina. Zootaxa 2016, 3, 239–258. [Google Scholar]
- Smit, F.G.A.M. On some adaptative structures in Siphonaptera. Folia Parasitol. 1972, 19, 5–17. [Google Scholar]
- Ezquiaga, M.C.; Lareschi, M. Surface Ultrastructure of the Eggs of Malacopsylla grossiventris and Phthiropsylla agenoris (Siphonaptera: Malacopsyllidae). J. Parasitol. 2012, 98, 1029–1031. [Google Scholar]
- Medvedev, S.G. Morphological basis of the classification of fleas (Siphonaptera). Entomol. Rev. 1994, 73, 30–51. [Google Scholar]
- Lewis, R.E. Notes on the geographical distribution and host preferences in the order Siphonaptera. Part 8. New taxa described between 1984 and 1990, with a current classification of the order. Entomol. Soc. Am. 1993, 30, 239–256. [Google Scholar]
- Horta, M.C.; Labruna, M.B.; Pinter, A.; Linardi, P.M.; Schumaker, T.T. Rickettsia infection in five areas of the state of São Paulo, Brazil. Memórias Inst. Oswaldo Cruz 2007, 102, 793–801. [Google Scholar]
- Peniche−Lara, G.; Dzul−Rosado, K.; Perez−Osorio, C.; Zavala−Castro, J. Rickettsia typhi in rodents and R. felis in fleas in Yucatán as a possible causal agent of undefined febrile cases. Rev. Inst. Med. Trop. São Paulo 2015, 57, 129–132. [Google Scholar]
- Melis, M.; Espinoza−Carniglia, M.; Savchenko, E.; Nava, S.; Lareschi, M. Molecular detection and identification of Rickettsia felis in Polygenis (Siphonaptera, Rhopalopsyllidae, Rhopalopsyllinae) associated with cricetid rodents in a rural area from central Argentina. Vet. Parasitol. Reg. Stud. Rep. 2020, 21, 100445. [Google Scholar]
- Jordan, K. Notes on Siphonaptera. Novit. Zool. 1932, 38, 291–294. [Google Scholar]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar]
- Guindon, S.; Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 2003, 52, 696–704. [Google Scholar]
- Ronquist, F.; Huelsenbeck, J.P. MrBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar]
- Posada, D. Jmodeltest: Phylogenetic model averaging. Mol. Biol. Evol. 2008, 25, 1253–1256. [Google Scholar]
- Huelsenbeck, J.P.; Rannala, B. Phylogenetic methods come of age: Testing hypotheses in an evolutionary context. Science 1997, 276, 227–232. [Google Scholar]
- Posada, D.; Buckley, T.R. Model selection and model averaging in phylogenetics: Advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 2004, 53, 793–808. [Google Scholar]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar]
- Rambaut, A.; Drummond, A. Tracer v1.6. 2007. Available online: http://beast.bio.ed.ac.uk (accessed on 4 December 2021).
- Rambaut, A.; Drummond, A. FigTree Version 1.4.4. 2018. Available online: https://github.com/rambaut/figtree/releases (accessed on 5 December 2021).
- Whiting, M.F. Mecoptera is paraphyletic: Multiple genes and phylogeny of Mecoptera and Siphonaptera. Zool. Scr. 2002, 31, 93–104. [Google Scholar]
- Wagner, J. Bermerkungen über die Fam. Malacopsyllidae und Beschreibung der neuen Arten. Z. Parasitenk. 1939, 11, 58–67. [Google Scholar]
- Wagner, J. Aphanipterologische Studien. IV. Beschreibung neuer Arten der Gattungen Ceratophyllus, Pulex und Typhlopsylla. Trudy Russk. Ent. Obshch. 1901, 35, 17–29. [Google Scholar]
- Jordan, K.; Rothschild, N.C. Revision of the non−combed eyed Siphonaptera. Parasitology 1908, 1, 1–100. [Google Scholar]
- Guimarães, L.R. Sôbre algumas espécies de pulgas brasileiras. Papéis Avulsos Zool. 1942, 2, 197–203. [Google Scholar]
- Costa Lima, D.A.; Hathaway, C.R. Pulgas. Bibliografía, catálogo e animais por elas sugados. Monogr. Inst. Oswaldo Cruz 1964, 4, 522. [Google Scholar]
- Guimarães, L.R. Sôbre algumas espécies do gènero Polygenis Jordan, 1939 (Pulicidae−Suctoria). Arq. Zool. 1948, 5, 539–552. [Google Scholar]
- Capri, J.J.; Capri, N.A.R. Suctoria. Prim. J. Entom. Argent. 1960, 2, 581–586. [Google Scholar]
- Del Ponte, E. Notas sobre Suctoria argentinos V. Nuevos datos sobre Rhopalopsyllidae, Rhopalopsyllinae. Rev. Soc. Entomol. Argent. 1963, 26, 75–87. [Google Scholar]
- Gomes, A.C. Pulgas colhidas em residências e sobre pequenos animais de algumas áreas do Brasil. Rev. Bras. Malariol. Doenças Trop. 1969, 21, 775–779. [Google Scholar]
- Linardi, P.M.; Guimarães, L.R. Systematic review of genera and subgeneraof Rhopalopsyllinae (Siphonaptera: Rhopalopsyllidae) by phonetic and cladistics methods. J. Med. Entomol. 1993, 30, 161–170. [Google Scholar]
- Linardi, P.M. Utilização de algumas estruturas na caracterização de espécies da ordem Siphonaptera. I. A fratura da mesocoxa na separação de espécies de Polygenis Jordan 1939. Rev. Bras. Entomol. 1981, 25, 27–29. [Google Scholar]
- Linardi, P.M. Utilização de algumas estruturas na caracterização de espécies da ordem Siphonaptera. III. A variabilidade do braço ventral do esternito IX em Polygenis rimatus e suas implicaçoes taxonômicas. Rev. Bras. Entomol. 1984, 28, 261–262. [Google Scholar]
- Hastriter, M.W.; Peterson, N.E. Notes on some fleas (Siphonaptera) from Amazonas and Bahia States, Brazil. Entomol. News 1997, 108, 290–296. [Google Scholar]
- Lareschi, M.; Linardi, P.M. New data on the morphology of Polygenis (Polygenis) rimatus (Jordan) (Siphonaptera: Rhopalopsyllidae). Neotrop. Entomol. 2005, 34, 121−125. [Google Scholar]
- Jordan, K.; Rothschild, N.C. On the genera Rhopalopsyllus and Parapsyllus. Ectoparasites 1923, 1, 320–370. [Google Scholar]
- Baker, C.F. The classification of the Southamerican siphonaptera. Proc. U. S. Natl. Mus. 1905, 29, 121–170. [Google Scholar]
- Medvedev, S.G. Classification of fleas (Order Siphonaptera) and its theoretical foundations. Entomol. Rev. 1998, 78, 1080–1093. [Google Scholar]
- Smit, F.G.A.M. Key to the genera and subgenera of Ceratophyllidae. In Key to the Genera and Subgenera of Ceratophyllidae; Traub, R., Rothschild, M., Haddow, J., Eds.; Academic Press: New York, NY, USA, 1983; pp. 1–37. [Google Scholar]
- Beaucournu, J.C.; Launay, H. Les Puces (Siphonaptera) de France et du BassinMéditerranéen Occidental, Faune de France; Fedération Française des Sociétés des Sciences Naturelles: Paris, France, 1990; Volume 76. [Google Scholar]
- Zurita, A.; Cutillas, C. Combination of nuclear and mitochondrial markers as a useful tool to identify Ctenophthalmus species and subspecies (Siphonaptera: Ctenophthalmidae). Org. Divers. Evol. 2021, 21, 547–559. [Google Scholar]
- Zurita, A.; Rivero, J.; García−Sánchez, A.M.; Callejón, R.; Cutillas, C. Morphological, molecular and phylogenetic characterization of Leptopsylla segnis and Leptopsylla taschenbergi (Siphonaptera). Zool. Scrip. 2022, 51, 741–754. [Google Scholar] [CrossRef]
- Lawrence, A.L.; Webb, C.E.; Clark, N.J.; Halajian, A.; Mihalca, A.D.; Miret, J.; D’Amico, G.; Brown, G.; Kumsa, B.; Modrý, D.; et al. Out-of-Africa, human-mediated dispersal of the common cat flea, Ctenocephalides felis: The hitchhiker’s guide to world domination. Int. J. Parasitol. 2019, 49, 321–336. [Google Scholar]
- Van der Mescht, L.; Matthee, S.; Matthee, C.A. New taxonomic and evolutionary insights relevant to the cat flea, Ctenocephalides felis: A geographic perspective. Mol. Phylogenetics Evol. 2021, 155, 106990. [Google Scholar]
- Friedlander, T.P.; Jerome, C.R.; Mitter, C. Phylogenetic information content of five nuclear gene sequences in animals: Initial assessment of character sets from concordance and divergence studies. Syst. Biol. 1994, 43, 511–525. [Google Scholar]
- Zurita, A.; Callejón, R.; García-Sánchez, Á.M.; Urdapilleta, M.; Lareschi, M.; Cutillas, C. Origin, evolution, phylogeny and taxonomy of Pulex irritans. Med. Vet. Entomol. 2019, 33, 296–311. [Google Scholar]
- Toews, D.P.; Brelsford, A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 2012, 21, 3907–3930. [Google Scholar]
- Lawrence, A.L.; Brown, G.K.; Peters, B.; Spielman, D.S.; Morin-Adeline, M.; Slapeta, J. High phylogenetic diversity of the cat flea (Ctenocephalides felis) at two mitochondrial DNAmarkers. Med. Vet. Entomol. 2014, 28, 330–336. [Google Scholar]
- Zurita, A.; Callejón, R.; de Rojas, M.; Cutillas, C. Morphological and molecular study of the genus Nosopsyllus (Siphonaptera: Ceratophyllidae). Nosopsyllus barbarus (Jordan & Rothschild 1912) as a junior synonym of Nosopsyllus fasciatus (Bosc, d’Antic 1800). Insect Syst. Evol. 2018, 49, 81–101. [Google Scholar]
- Vobis, M.; D’Haese, J.; Mehlhorn, H.; Mencke, N.; Blagburn, B.L.; Bond, R.; Denholm, I.; Dryden, M.W.; Payne, P.; Rust, M.K.; et al. Molecular phylogeny of isolates of Ctenocephalides felis and related species based on analysis of ITS1, ITS2 and mitochondrial 16S rDNA sequences and random binding primers. Parasitol. Res. 2004, 94, 219–226. [Google Scholar]
- Ghavami, M.B.; Mirzadeh, H.; Mohammadi, J.; Fazaeli, A. Molecular survey of ITS1 spacer and Rickettsia infection in human flea, Pulex irritans. Parasitol. Res. 2018, 117, 1433–1442. [Google Scholar]
- Calonje, M.; Martín-Bravo, S.; Dobes, C.; Gong, W.; Jordon-Thaden, I.; Kiefer, C.; Kiefer, M.; Paule, J.; Schmickl, R.; Koch, M.A. Non−coding nuclear DNA markers in phylogenetic reconstruction. Plant. Syst. Evol. 2009, 282, 257–280. [Google Scholar]
- Zhu, Q.; Hastriter, M.W.; Whiting, M.F.; Dittmar, K. Fleas (Siphonaptera) are cretaceous, and evolved with Theria. Mol. Phylogenet. Evol. 2015, 90, 129–139. [Google Scholar]
- Berrizbeitia, M.F.L.; Hastriter, M.W.; Barquez, R.M.; Díaz, M.M. Fleas of the genus Tetrapsyllus (Siphonaptera:Rhopalopsyllidae) associated with rodents from Northwestern Argentina. Int. J. Parasitol. Parasites Wildl. 2019, 9, 80–89. [Google Scholar]
- Luchetti, A.; Trentini, M.; Pampiglone, S.; Fiorawanti, M.L.; Mantovani, B. Genetic variability of Tunga penetrans (Siphonaptera, Tungidae) and fleas across South America and Africa. Parasitol. Res. 2007, 100, 593–598. [Google Scholar]
- Dittmar, K.; Whiting, M.F. Genetic and phylogeographic structure of populations of Pulex simulans (Siphonaptera) in Peru inferred from two genes (CytB and CoII). Parasitol. Res. 2003, 91, 55–59. [Google Scholar]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotech. 1994, 3, 294–299. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zurita, A.; Lareschi, M.; Cutillas, C. New Insights into the Taxonomy of Malacopsylloidea Superfamily (Siphonaptera) Based on Morphological, Molecular and Phylogenetic Characterization of Phthiropsylla agenoris (Malacopsyllidae) and Polygenis (Polygenis) rimatus (Rhopalopsyllidae). Diversity 2023, 15, 308. https://doi.org/10.3390/d15020308
Zurita A, Lareschi M, Cutillas C. New Insights into the Taxonomy of Malacopsylloidea Superfamily (Siphonaptera) Based on Morphological, Molecular and Phylogenetic Characterization of Phthiropsylla agenoris (Malacopsyllidae) and Polygenis (Polygenis) rimatus (Rhopalopsyllidae). Diversity. 2023; 15(2):308. https://doi.org/10.3390/d15020308
Chicago/Turabian StyleZurita, Antonio, Marcela Lareschi, and Cristina Cutillas. 2023. "New Insights into the Taxonomy of Malacopsylloidea Superfamily (Siphonaptera) Based on Morphological, Molecular and Phylogenetic Characterization of Phthiropsylla agenoris (Malacopsyllidae) and Polygenis (Polygenis) rimatus (Rhopalopsyllidae)" Diversity 15, no. 2: 308. https://doi.org/10.3390/d15020308
APA StyleZurita, A., Lareschi, M., & Cutillas, C. (2023). New Insights into the Taxonomy of Malacopsylloidea Superfamily (Siphonaptera) Based on Morphological, Molecular and Phylogenetic Characterization of Phthiropsylla agenoris (Malacopsyllidae) and Polygenis (Polygenis) rimatus (Rhopalopsyllidae). Diversity, 15(2), 308. https://doi.org/10.3390/d15020308