Morphological and Behavioral Adaptations of Silk-Lovers (Plokiophilidae: Embiophila) for Their Lifestyle in the Silk Domiciles of Webspinners (Embioptera)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects and Laboratory Cultures
2.2. Choice Tests
2.3. Testing Attachment Performance
2.4. Scanning Electron Microscopy (SEM)
2.5. Confocal Laser Scanning Microscopy (CLSM)
3. Results
3.1. Tarsal Morphology
3.2. Attachment Performance of Adult Bugs
3.3. Choice Tests: Trials with Fibers Offered
3.4. Choice Tests: Wandering
4. Discussion
4.1. Behavioral Choice for Silk
4.2. Morphological Attachment Constraints
4.3. Attachment Performance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morris, D.C.; Mound, L.A. Thrips as architects: Modes of domicile construction on Acacia trees in arid Australia. Thrips Tospoviruses 2002, 1, 279–282. [Google Scholar]
- Fitzgerald, T.D.; Clark, K.L.; Vanderpool, R.; Phillips, C. Leaf shelter-building caterpillars harness forces generated by axial retraction of stretched and wetted silk. J. Insect Behav. 1991, 4, 21–32. [Google Scholar] [CrossRef]
- Fitzgerald, T.D.; Costa, J.T. Collective behavior in social caterpillars. In Information Processing in Social Insects; Detrain, C., Deneubourg, J.L., Pasteels, J.M., Eds.; Springer Basel AG: Basel, Switzerland, 1999; pp. 379–400. ISBN 978-3-0348-8739-7. [Google Scholar]
- Lind, E.M.; Jones, M.T.; Long, J.D.; Weiss, M.R. Ontogenetic changes in leaf shelter construction by larvae of Epargyreus clarus (Hesperiidae), the silver-spotted skipper. J. Lepid. Soc. 2001, 54, 77–82. [Google Scholar]
- Walker, A.A.; Weisman, S.; Church, J.S.; Merritt, D.J.; Mudie, S.T.; Sutherland, T.D. Silk from crickets: A new twist on spinning. PLoS ONE 2012, 7, e30408. [Google Scholar] [CrossRef] [PubMed]
- Perna, A.; Theraulaz, G. When social behaviour is moulded in clay: On growth and form of social insect nests. J. Exp. Biol. 2017, 220, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Robinson, M.H.; Robinson, B. Evolution beyond the orb web: The web of the araneid spider Pasilobus sp., its structure, operation and construction. Zool. J. Linn. Soc. 1975, 56, 301–313. [Google Scholar] [CrossRef]
- Ross, E.S. Embia Contributions to the Biosystematics of the Insect Order Embiidina. Occas. Pap. Calif. Acad. Sci. 2000, 149, 1–98. [Google Scholar]
- Edgerly, J.S. Is group living an antipredator defense in a facultatively communal webspinner? J. Insect Behav. 1994, 7, 135–147. [Google Scholar] [CrossRef]
- Edgerly, J.S.; Davilla, J.A.; Schoenfeld, N. Silk spinning behavior and domicile construction in webspinners. J. Insect Behav. 2002, 15, 219–242. [Google Scholar] [CrossRef]
- Rimsky-Korsakov, M. Über den Bau und die Entwicklung des Spinnapparates bei Embien. Z. Wiss. Zool. Abt. A 1914, 108, 499–519. [Google Scholar]
- Barth, R. Untersuchungen an den Tarsaldrüsen von Embolyntha batesi McLachlan, 1877 (Embiodea). Zool. Jahrb. 1954, 74, 172–188. [Google Scholar]
- Büsse, S.; Hörnschemeyer, T.; Hohu, K.; McMillan, D.; Edgerly, J.S. The spinning apparatus of webspinners--functional-morphology, morphometrics and spinning behaviour. Sci. Rep. 2015, 4, 9986. [Google Scholar] [CrossRef] [Green Version]
- Büsse, S.; Büscher, T.H.; Kelly, E.T.; Heepe, L.; Edgerly, J.S.; Gorb, S.N. Pressure-induced silk spinning mechanism in webspinners (Insecta: Embioptera). Soft Matter 2019, 15, 9742–9750. [Google Scholar] [CrossRef] [PubMed]
- Edgerly, J.S. Biodiversity of Embiodea. In Insect Biodiversity; Foottit, R.G., Adler, P.H., Eds.; John Wiley & Sons: Chichester, UK, 2018; pp. 219–244. [Google Scholar] [CrossRef]
- Edgerly, J.S. Dispersal Risks and Decisions Shape How Non-kin Groups Form in a Tropical Silk-Sharing Webspinner (Insecta: Embioptera). Front. Ecol. Evol. 2022, 10, 476. [Google Scholar] [CrossRef]
- Badano, D.; Lenzi, A.; O’Hara, J.E.; Miller, K.B.; Di Giulio, A.; Di Giovanni, F.; Cerretti, P. A world review of the bristle fly parasitoids of webspinners. BMC Zool. 2022, 7, 37. [Google Scholar] [CrossRef]
- Shaw, S.R.; Edgerly, J.S. A New Braconid Genus (Hymenoptera) Parasitizing Webspinners (Embiidina) in Trinidad. Psyche J. Entomol. 1985, 92, 505–511. [Google Scholar] [CrossRef]
- Argaman, Q. Generic synopsis of Sclerogibbidae (Hymenoptera). Ann. Hist. Nat. Musei Natl. Hung. 1988, 80, 177–187. [Google Scholar]
- Olmi, M. A revision of the world Sclerogibbidae (Hymenoptera Chrysidoidea). Frustula Entomol. 2005, 26, 46–193. [Google Scholar]
- Krenn, H.W. Insect Mouthparts: Form, Function, Development and Performance; Springer Nature Switzerland AG: Bern, Switzerland, 2019; ISBN 978-3-030-29653-7. [Google Scholar]
- Ford, L.J. The Phylogeny and Biogeography of the Cimicoidea (Insecta: Hemiptera). Master’s Thesis, University of Connecticut, Storrs, CT, USA, 1976. [Google Scholar]
- Schuh, R.T.; Štys, P. Phylogenetic analysis of cimicomorphan family relationships (Heteroptera). J. N. Y. Entomol. Soc. 1991, 99, 298–350. [Google Scholar]
- Schuh, R.T.; Weirauch, C.; Wheeler, W.C. Phylogenetic relationships within the Cimicomorpha (Hemiptera: Heteroptera): A total-evidence analysis. Syst. Entomol. 2009, 34, 15–48. [Google Scholar] [CrossRef]
- Schuh, R.T.; Weirauch, C. True Bugs of the World (Hemiptera: Heteroptera): Classification and Natural History, 2nd ed.; Siri Scientific Press: Manchester, UK, 2020; ISBN 0995749698. [Google Scholar]
- Johnson, K.P.; Dietrich, C.H.; Friedrich, F.; Beutel, R.G.; Wipfler, B.; Peters, R.S.; Allen, J.M.; Petersen, M.; Donath, A.; Walden, K.K.O.; et al. Phylogenomics and the evolution of hemipteroid insects. Proc. Natl. Acad. Sci. USA 2018, 115, 12775–12780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, S.; Kim, H.; Yamada, K.; LEE, S. Molecular phylogeny and evolutionary habitat transition of the flower bugs (Heteroptera: Anthocoridae). Mol. Phylogenetics Evol. 2010, 57, 1173–1183. [Google Scholar] [CrossRef]
- Jung, S.; Lee, S. Correlated evolution and Bayesian divergence time estimates of the Cimicoidea (Heteroptera: Cimicomorpha) reveal the evolutionary history. Syst. Entomol. 2012, 37, 22–31. [Google Scholar] [CrossRef]
- Reinhardt, K.; Siva-Jothy, M.T. Biology of the bed bugs (Cimicidae). Annu. Rev. Entomol. 2007, 52, 351–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Štys, P.; Baňař, P. A new Afrotropical genus of Plokiophilidae with a new free-living species from Madagascar (Hemiptera: Heteroptera). Entomol. Am. 2016, 122, 220–229. [Google Scholar] [CrossRef]
- Luo, J.; Peng, Y.; Xie, Q. First record of the cimicomorphan family Plokiophilidae (Hemiptera, Heteroptera) from China, with description of a new species of Plokiophiloides. ZooKeys 2021, 1021, 145–157. [Google Scholar] [CrossRef]
- Schuh, R.; Štys, P.; Cassis, G.; Lehnert, M.; Swanson, D.; Bruce, T. New Genera and Species of Plokiophilidae from Australia, Fiji, and Southeast Asia, with a Revised Classification of the Family (Insecta: Heteroptera: Cimicoidea). Am. Mus. Novit. 2015, 3825, 1–24. [Google Scholar] [CrossRef] [Green Version]
- China, W.E.; Myers, J.G. XIII.—A reconsideration of the classification of the Cimicoid families (Heteroptera), with the description of two new spider-web bugs. Ann. Mag. Nat. Hist. 2009, 3, 97–125. [Google Scholar] [CrossRef]
- Schuh, R.T. Heissophila macrotheleae, a new genus and new species of Plokiophilidae from Thailand (Hemiptera, Heteroptera), with comments on the family diagnosis. Denisia 2006, 19, 637–645. [Google Scholar]
- Carayon, J. Etude sur les Hémiptères Plokiophilidae. Ann. Soc. Entomol. Fr. 1974, 10, 499–525. [Google Scholar]
- Eberhard, W.G.; Platnick, N.I.; Schuh, R.T. The natural history and behavior of web parasites of the spider Tengella radiata: The spider Mysmenopsis tengellacompa sp. n. (Mysmenidae) and the bug Lipokophila eberhardi sp. n. (Plokiophilidae). Am. Mus. Novit. 1993, 3065, 1–17. [Google Scholar]
- Büscher, T.H.; Gorb, S.N. Physical constraints lead to parallel evolution of micro- and nanostructures of animal adhesive pads: A review. Beilstein J. Nanotechnol. 2021, 12, 725–743. [Google Scholar] [CrossRef]
- Gorb, S. Attachment Devices of Insect Cuticle; Springer Science & Business Media: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Higham, T.E.; Russell, A.P.; Niewiarowski, P.H.; Wright, A.; Speck, T. The ecomechanics of gecko adhesion: Natural surface topography, evolution, and biomimetics. Integr. Comp. Biol. 2019, 59, 148–167. [Google Scholar] [CrossRef] [PubMed]
- Collin, M.A.; Garb, J.E.; Edgerly, J.S.; Hayashi, C.Y. Characterization of silk spun by the embiopteran, Antipaluria urichi. Insect Biochem. Mol. Biol. 2009, 39, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Addison, J.B.; Popp, T.M.O.; Weber, W.S.; Edgerly, J.S.; Holland, G.P.; Yarger, J.L. Structural characterization of nanofiber silk produced by embiopterans (webspinners). RSC Adv. 2014, 4, 41301–41313. [Google Scholar] [CrossRef] [Green Version]
- Harper, J.R.; Sripada, N.; Kher, P.; Whittall, J.B.; Edgerly, J.S. Interpreting nature’s finest insect silks (Order Embioptera): Hydropathy, interrupted repetitive motifs, and fiber-to-film transformation for two neotropical species. Zoology 2021, 146, 125923. [Google Scholar] [CrossRef]
- Beutel, R.G.; Gorb, S.N. Ultrastructure of attachment specializations of hexapods (Arthropoda): Evolutionary patterns inferred from a revised ordinal phylogeny. J. Zool. Syst. Evol. Res. 2001, 39, 177–207. [Google Scholar] [CrossRef]
- Beutel, R.G.; Gorb, S.N. A revised interpretation of the evolution of attachment structures in Hexapoda with special emphasis on Mantophasmatodea. Arthropod Syst. Phylogeny 2006, 64, 3–25. [Google Scholar]
- Beutel, R.G.; Gorb, S.N. Evolutionary scenarios for unusual attachment devices of Phasmatodea and Mantophasmatodea (Insecta). Syst. Entomol. 2008, 33, 501–510. [Google Scholar] [CrossRef]
- Winand, J.; Büscher, T.H.; Gorb, S.N. Learning from Nature: A Review on Biological Gripping Principles and Their Application to Robotics. In Soft Robotics; Monkman, G.J., Ed.; Bentham Books: Sharjah, United Arab Emirates, 2022; pp. 21–59. ISBN 9789815051728. [Google Scholar]
- Grohmann, C.; Cohrs, A.-L.; Gorb, S.N. Underwater Attachment of the Water-Lily Leaf Beetle Galerucella nymphaeae (Coleoptera, Chrysomelidae). Biomimetics 2022, 7, 26. [Google Scholar] [CrossRef]
- Federle, W.; Rohrseitz, K.; Hölldobler, B. Attachment forces of ants measured with a centrifuge: Better "wax-runners" hU2e a poorer attachment to a smooth surface. J. Exp. Biol. 2000, 203, 505–512. [Google Scholar] [CrossRef]
- Büscher, T.H.; Petersen, D.S.; Bijma, N.N.; Bäumler, F.; Pirk, C.W.W.; Büsse, S.; Heepe, L.; Gorb, S.N. The exceptional attachment ability of the ectoparasitic bee louse Braula coeca (Diptera, Braulidae) on the honeybee. Physiol. Entomol. 2021, 19, 170. [Google Scholar] [CrossRef]
- Petersen, D.S.; Kreuter, N.; Heepe, L.; Büsse, S.; Wellbrock, A.H.J.; Witte, K.; Gorb, S.N. Holding tight to feathers - structural specializations and attachment properties of the U2ian ectoparasite Crataerina pallida (Diptera, Hippoboscidae). J. Exp. Biol. 2018, 221, 1–9. [Google Scholar]
- Hayer, S.; Sturm, B.P.; Büsse, S.; Büscher, T.H.; Gorb, S.N. Louse flies holding on mammals’ hair: Comparative functional morphology of specialized attachment devices of ectoparasites (Diptera: Hippoboscoidea). J. Morphol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Gorb, S.N.; Wildermuth, H.; Kohl, S.; Büsse, S. Tarsal attachment structures of the biting midge Forcipomyia paludis (Diptera: Ceratopogonidae), a specialized ectoparasite of Odonata imagines. Zoomorphology 2022, 141, 297–306. [Google Scholar] [CrossRef]
- Edgerly, J.S. Maternal behaviour of a webspinner (Order Embiidina). Ecol. Entomol. 1987, 12, 1–11. [Google Scholar] [CrossRef]
- Callan, E.M. Embioptera of Trinidad with notes on their parasites. Trans. 9th Int. Congr. Entomol. 1952, 1, 483–489. [Google Scholar]
- Pohl, H. A scanning electron microscopy specimen holder for viewing different angles of a single specimen. Microsc. Res. Tech. 2010, 73, 1073–1076. [Google Scholar] [CrossRef]
- Büsse, S.; Gorb, S.N. Material composition of the mouthpart cuticle ina a damselfly larva (Insecta: Odonata) and its biomechanical significance. R. Soc. Open Sci. 2018, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Michels, J.; Gorb, S.N. Detailed three-dimensional visualization of resilin in the exoskeleton of arthropods using confocal laser scanning microscopy. J. Microsc. 2012, 245, 1–16. [Google Scholar] [CrossRef]
- Andersen, S.O. Biochemistry of insect cuticle. Ann. Rev. Entomol. 1979, 24, 29–61. [Google Scholar] [CrossRef]
- Vincent, J.F.V. Arthropod cuticle: A natural composite shell system. Compos. Part A Appl. Sci. Manuf. 2002, 33, 1311–1315. [Google Scholar] [CrossRef]
- Rebora, M.; Salerno, G.; Piersanti, S.; Michels, J.; Gorb, S.N. Structure and biomechanics of the antennal grooming mechanism in the southern green stink bug Nezara viridula. J. Insect Physiol. 2019, 112, 57–67. [Google Scholar] [CrossRef]
- Friedemann, K.; Spangenberg, R.; Yoshizawa, K.; Beutel, R.G. Evolution of attachment structures in the highly diverse Acercaria (Hexapoda). Cladistics 2014, 30, 170–201. [Google Scholar] [CrossRef]
- Wheeler, W.C.; Bang, R.; Schuh, R.T. Cladistic relationships among higher groups of Heteroptera: Congruence between morphological and molecular data sets. Insect. Syst. Evol. 1993, 24, 121–137. [Google Scholar] [CrossRef]
- Weirauch, C. Pretarsal structures in Reduviidae (Heteroptera, Insecta). Acta Zool. 2005, 86, 91–110. [Google Scholar] [CrossRef]
- Salerno, G.; Rebora, M.; Kovalev, A.; Gorb, E.; Gorb, S. Contribution of different tarsal attachment devices to the overall attachment ability of the stink bug Nezara viridula. J. Comp. Physiol. A 2018, 204, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Rebora, M.; Michels, J.; Salerno, G.; Heepe, L.; Gorb, E.; Gorb, S. Tarsal attachment devices of the southern green stink bug Nezara viridula (Heteroptera: Pentatomidae). J. Morphol. 2018, 279, 660–672. [Google Scholar] [CrossRef]
- Voigt, D.; Perez Goodwyn, P.; Sudo, M.; Fujisaki, K.; Varenberg, M. Gripping ease in southern green stink bugs Nezara viridula L. (Heteroptera: Pentatomidae): Coping with geometry, orientation and surface wettability of substrate. Entomol. Sci. 2019, 22, 105–118. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Billen, J.; Doggett, S.L.; Lee, C.-Y. Differences in climbing ability of Climex lectularis and Cimex hemipterus (Hemiptera: Cimicidae). J. Econ. Entomol. 2017, 110, 1179–1186. [Google Scholar] [CrossRef] [Green Version]
- Reinhardt, K.; Voigt, D.; Gorb, S.N. Evidence for a sexually selected function of the attachment system in bedbugs Cimex lectularius (Heteroptera, Cimicidae). J. Exp. Biol. 2019, 222, jeb206136. [Google Scholar] [CrossRef] [Green Version]
- Miller, N.C.E. On the structure of the legs in Reduviidae (Rhynchota). Proc. R. Entomol. Soc. Lond. Ser. A Gen. Entomol. 1942, 17, 49–58. [Google Scholar] [CrossRef]
- Hoogstraal, H.; Usinger, R.L. Monograph of Cimicidae (Hemiptera-Heteroptera). J. Parasitol. 1967, 53, 222. [Google Scholar] [CrossRef]
- Baker, G.T.; Goddard, J. Structure and Number of Tibial Brush Setae Making up the Fossula Spongiosa in Bed Bugs, Cimex lectularius L. (Hemiptera: Cimicidae). Proc. Entomol. Soc. Wash. 2018, 120, 251–254. [Google Scholar] [CrossRef]
- Haridass, E.T.; Ananthakrishnan, T.N. Functional morphology of the fossula spongiosa in some reduviids (Insecta—Heteroptera—Reduviidae). Proc. Anim. Sci. 1980, 89, 457–466. [Google Scholar] [CrossRef]
- Wang, J.; Liang, A.-P. Ultrastructure of the fossula spongiosa and pretarsus in Haematoloecha nigrorufa (Stål) (Hemiptera: Heteroptera: Reduviidae: Ectrichodinae). Zootaxa 2015, 3963, 230–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weirauch, C. Hairy attachment structures in Reduviidae (Cimicomorpha, Heteroptera), with observations on the fossula spongiosa in some other Cimicomorpha. Zool. Anz. 2007, 246, 155–175. [Google Scholar] [CrossRef]
- Zhang, J.; Gordon, E.R.L.; Forthman, M.; Hwang, W.S.; Walden, K.; Swanson, D.R.; Johnson, K.P.; Meier, R.; Weirauch, C. Evolution of the assassin’s arms: Insights from a phylogeny of combined transcriptomic and ribosomal DNA data (Heteroptera: Reduvioidea). Sci. Rep. 2016, 6, 22177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Weirauch, C.; Zhang, G.; Forero, D. Molecular phylogeny of Harpactorinae and Bactrodinae uncovers complex evolution of sticky trap predation in assassin bugs (Heteroptera: Reduviidae). Cladistics 2016, 32, 538–554. [Google Scholar] [CrossRef]
- Weirauch, C.; Schuh, R.T.; Cassis, G.; Wheeler, W.C. Revisiting habitat and lifestyle transitions in Heteroptera (Insecta: Hemiptera): Insights from a combined morphological and molecular phylogeny. Cladistics 2019, 35, 67–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peisker, H.; Michels, J.; Gorb, S.N. Evidence for a material gradient in the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata. Nat. Commun. 2013, 4, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorb, S.N.; Filippov, A.E. Fibrillar adhesion with no clusterisation: Functional significance of material gradient along adhesive setae of insects. Beilstein J. Nanotechnol. 2014, 5, 837–846. [Google Scholar] [CrossRef] [Green Version]
- Gorb, S.N. The design of the fly adhesive pad: Distal tenent setae are adapted to the delivery of an adhesive secretion. Proc. R. Soc. Lond. B 1998, 265, 747–752. [Google Scholar] [CrossRef] [Green Version]
- Hottel, B.A.; Pereira, R.M.; Gezan, S.A.; Qing, R.; Sigmund, W.M.; Koehler, P.G. Climbing ability of the common bed bug (Hemiptera: Cimicidae). J. Med. Entomol. 2015, 52, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Wigglesworth, V.B. ‘Climbing Organs’ in Insects. Nature 1938, 141, 974–975. [Google Scholar] [CrossRef]
- Büscher, T.H.; Becker, M.; Gorb, S.N. Attachment performance of stick insects (Phasmatodea) on convex substrates. J. Exp. Biol. 2020, 223, 1–30. [Google Scholar] [CrossRef]
- Matsumura, Y.; Lima, S.P.; Rafael, J.A.; Câmara, J.T.; Beutel, R.G.; Gorb, S.N. Distal leg structures of Zoraptera - did the loss of adhesive devices curb the chance of diversification? Arthropod Struct. Dev. 2022, 68, 101164. [Google Scholar] [CrossRef]
- Voigt, D.; Schuppert, J.M.; Dattinger, S.; Gorb, S.N. Sexual dimorphism in the attachment ability of the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) to rough substrates. J. Insect Physiol. 2008, 54, 765–776. [Google Scholar] [CrossRef]
- Bullock, J.M.R.; Federle, W. Beetle adhesive hairs differ in stiffness and stickiness: In vivo adhesion measurements on individual setae. Naturwissenschaften 2011, 98, 381–387. [Google Scholar] [CrossRef]
- Wang, L.; Johannesson, C.M.; Zhou, Q. Effect of surface roughness on attachment ability of locust Locusta migratoria manilensis. Wear 2015, 332–333, 694–701. [Google Scholar] [CrossRef]
- Büscher, T.H.; Gorb, S.N. Complementary effect of attachment devices in stick insects (Phasmatodea). J. Exp. Biol. 2019, 222. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Dai, Z.; Ji, A.; Gorb, S.N. The synergy between the insect-inspired claws and adhesive pads increases the attachment ability on various rough surfaces. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Dai, Z.; Gorb, S.N.; Schwarz, U. Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). J. Exp. Biol. 2002, 205, 2479–2488. [Google Scholar] [CrossRef] [PubMed]
- Bullock, J.M.R.; Federle, W. Division of labour and sex differences between fibrillar, tarsal adhesive pads in beetles: Effective elastic modulus and attachment performance. J. Exp. Biol. 2009, 212, 1876–1888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Büscher, T.H.; Harper, J.R.; Sripada, N.; Gorb, S.N.; Edgerly, J.S.; Büsse, S. Morphological and Behavioral Adaptations of Silk-Lovers (Plokiophilidae: Embiophila) for Their Lifestyle in the Silk Domiciles of Webspinners (Embioptera). Diversity 2023, 15, 415. https://doi.org/10.3390/d15030415
Büscher TH, Harper JR, Sripada N, Gorb SN, Edgerly JS, Büsse S. Morphological and Behavioral Adaptations of Silk-Lovers (Plokiophilidae: Embiophila) for Their Lifestyle in the Silk Domiciles of Webspinners (Embioptera). Diversity. 2023; 15(3):415. https://doi.org/10.3390/d15030415
Chicago/Turabian StyleBüscher, Thies H., J. René Harper, Neeraja Sripada, Stanislav N. Gorb, Janice S. Edgerly, and Sebastian Büsse. 2023. "Morphological and Behavioral Adaptations of Silk-Lovers (Plokiophilidae: Embiophila) for Their Lifestyle in the Silk Domiciles of Webspinners (Embioptera)" Diversity 15, no. 3: 415. https://doi.org/10.3390/d15030415
APA StyleBüscher, T. H., Harper, J. R., Sripada, N., Gorb, S. N., Edgerly, J. S., & Büsse, S. (2023). Morphological and Behavioral Adaptations of Silk-Lovers (Plokiophilidae: Embiophila) for Their Lifestyle in the Silk Domiciles of Webspinners (Embioptera). Diversity, 15(3), 415. https://doi.org/10.3390/d15030415