Analysis of Fungal Diversity before and after Discoloration of Rubberwood in Xishuangbanna
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. DNA Extraction and PCR Amplification of Samples
2.3. Data Analysis
3. Results
3.1. Data Statistics of Rubber Wood Samples before and after Discoloration
3.2. Changes in Fungal Diversity before and after Discoloration of Rubber Wood
3.3. Changes in Fungal Community Composition of Rubber Wood Samples before and after Discoloration
3.4. Analysis of Fungal Differences between Rubber Wood Samples before and after Discoloration
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Killmann, W.; Hong, L.T. Rubberwood—The successof an agricultural by-product. Unasylva 2000, 51, 66–72. [Google Scholar]
- Ping, L.J.; Sun, B.L.; Shao, L.L.; Chai, Y.B.; Liu, J.L. Effect of Melamine-Urea-Glyoxal Resin on Physical and Mechanical Properties of Rubberwood. Wood Sci. Technol. 2021, 35, 38–43. (In Chinese) [Google Scholar] [CrossRef]
- Balsiger, J.; Bahdon, J.; Whiteman, A. The Utilization, Processing and Demand for Rubberwood as a Source of Wood Supply; Forestry Policy and Planning Division: Rome, Italy, 2000. [Google Scholar] [CrossRef]
- Bruce, A.; Stewart, D.; Verrall, S.; Wheatley, R.E. Effect of volatiles from bacteria and yeast on the growth and pigmentation of sapstain fungi. Int. Biodeterior. Biodegrad. 2003, 51, 101–108. [Google Scholar] [CrossRef]
- Florence, E.J.M.; Gnanaharan, R.; Singh, P.A.; Sharma, J.K. Weight loss and cell wall degradation in rubberwood caused by sapstain fungus Botryodiplodia theobromae. Holzforschung 2002, 56, 225–228. [Google Scholar] [CrossRef]
- Kidd, G.J.D. CCA-treated lumber poses danger fromarsenic and chromium. Pestic. You 2001, 21, 13–15. [Google Scholar]
- Suprapta, D.N. Potential of microbial antagonists as biocontrol agentsagainst plant fungal pathogens. J. ISSAAS 2012, 18, 1–8. [Google Scholar]
- Sajitha, K.L.; Dev, S.A.; Maria Florence, E.J. Biocontrol potential of Bacillus subtilis B1 against sapstain fungus in rubber wood. Eur. J. Plant Pathol. 2017, 150, 237–244. [Google Scholar] [CrossRef]
- Behrendt, C.J.; Blanchette, R.A. Biological processing of Pine Logs for Pulp and Paper Production with Phlebiopsis gigantea. Appl. Environ. Microbiol. 1997, 63, 1995–2000. [Google Scholar] [CrossRef] [Green Version]
- Behrendt, C.J.; Blanchette, R.A.; Farrell, R.L. Biological control of blue-stain fungi in wood. Phytopathology 1995, 85, 92–97. [Google Scholar] [CrossRef]
- Veenin, T.; Veenin, A.; Denrungruang, P. Biological control of stain fungus in rubberwood (Hevea brasiliensis Muell Arg) by Trichoderma sp. Thail. J. For. 1999, 18, 73–86. [Google Scholar]
- Sajitha, K.L.; Florence, E.J.M. Effects of Streptomyces sp. on growth of rubberwood sapstain fungus Lasiodiplodia theobromae. J. Trop. For. Sci. 2013, 25, 393–399. [Google Scholar]
- Held, B.W.; Thwaites, J.M.; Farrell, R.L.; Blanchette, R.A. Albino Strains of Ophiostoma Species for Biological Control of Sapstaining Fungi. Holzforschung 2003, 57, 237–242. [Google Scholar] [CrossRef]
- Hawksworth, D.L. The fungal dimension of biodiversity: Magnitude, significance, and conservation. Mycol. Res. 1991, 95, 641–655. [Google Scholar] [CrossRef]
- Kaeberlein, T.; Lewis, K.; Epstein, S.S. Isolating “Uncultivable” Microorganisms in Pure Culture in a Simulated Natural Environment. Science 2002, 296, 1127–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Xu, X.X. Research progress of high-throughput sequencing technology. China Med. Eng. 2019, 27, 32–37. [Google Scholar] [CrossRef]
- Kistler, L. Ancient DNA Extraction from Plants. In Ancient DNA: Methods and Protocols; Shapiro, B., Hofreiter, M., Eds.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2012; Volume 840, pp. 71–79. [Google Scholar] [CrossRef]
- Siregar, I.Z.; Ramdhani, M.J.; Karlinasari, L.; Adzkia, U.; Arifin, M.Z.; Dwiyanti, F.G. DNA isolation success rates from dried and fresh wood samples of selected 20 tropical wood tree species for possible consideration in forensic forestry. Sci. Justice 2021, 61, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Mundy, D.C.; Vanga, B.R.; Thompson, S.; Bulman, S. Assessment of Sampling and DNA Extraction Methods for Identification of Grapevine Trunk Microorganisms Using Metabarcoding. N. Z. Plant Prot. 2018, 71, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.Q.; Wang, B.; Lu, J.Z.; Li, C.Y.; Kuang, L.D.; Tang, X.X.; Mei, X.L.; Xie, X.H. Analysis of the relationship between caecal flora difference and production performance of two rabbit species by high-throughput sequencing. Czech J. Anim. Sci. 2021, 66, 271–280. [Google Scholar] [CrossRef]
- Magoc, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldrian, P.; Větrovský, T.; Lepinay, C.; Kohout, P. High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Divers. 2021, 114, 539–547. [Google Scholar] [CrossRef]
- Shang, Z.D.; Tan, Z.K.; Kong, Q.H.; Shang, P.; Wang, H.H.; Zhaxi, W.J.; Zhaxi, C.; Liu, S.Z. Characterization of fungal microbial diversity in Tibetan sheep, Tibetan gazelle and Tibetan antelope in the Qiangtang region of Tibet. Mycoscience 2022, 63, 156–164. [Google Scholar] [CrossRef]
- Avolio, M.L.; Carroll, I.T.; Collins, S.L.; Houseman, G.R.; Hallett, L.M.; Isbell, F.; Koerner, S.E.; Komatsu, K.J.; Smith, M.D.; Wilcox, K.R. A comprehensive approach to analyzing community dynamics using rankabundance curves. Ecosphere 2019, 10, e02881. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.V.; Cho, W.S.; Kim, H.; Jung, H.; Kim, Y.K.; Chon, T. Inferring community properties of benthic macroinvertebrates in streams using Shannon index and exergy. Front. Earth Sci. 2014, 8, 44–57. [Google Scholar] [CrossRef]
- Nagendra, H. Opposite trends in response for the Shannon and Simpson indices of landscape diversity. Appl. Geogr. 2022, 22, 175–186. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, M.; Shi, Z.; Gao, J.; Wang, X. Biodiversityand Variations of ArbuscularMycorrhizal Fungi Associated withRoots along Elevations in Mt. Taibaiof China. Diversity 2022, 14, 626. [Google Scholar] [CrossRef]
- Faith, D.P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 1992, 61, 1–10. [Google Scholar] [CrossRef]
- Patrick, D.S.; Sarah, L.W.; Thomas, R.; Justine, R.H.; Martin, H.; Emily, B.H.; Ryan, A.L.; Brian, B.O.; Donovan, H.P.; Courtney, J.R.; et al. Introducing mothur: Open Source, Platform Independent, Community Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [Green Version]
- Sakinah, A.I.; Musa, Y.; Farid, M.; Anshori, M.F.; Arifuddin, M.; Laraswati, A.A. Cluster heatmap for screening the drought tolerant rice through hydroponic culture. IOP Conf. Ser. Earth Environ. Sci. 2021, 807, 042045. [Google Scholar] [CrossRef]
- Seifert, K.A.; Breuil, C.; Rossignol, L.; Best, M.; Saddler, J.N. Screening for microorganisms with the potential forbiological control of sapstain on unseasoned lumber. Mater. Org. 1988, 23, 81–95. [Google Scholar]
- Lu, H.; Zou, W.X.; Meng, J.C. New bioactive metabolites produced by Colletorichum sp. an endophytic fungus in Artemisia annua. Plant Sci. 2000, 151, 67–73. [Google Scholar] [CrossRef]
- Arnold, A.E.; Mejia, L.C.; Kyllo, D. Fungal endophytes limit pathogen damage in a tropical tree. Proc. Nat. Acad. Sci. USA 2003, 100, 15649–15654. [Google Scholar] [CrossRef] [Green Version]
- Wiyakrutta, S.; Sriubolmas, N.; Panphut, W. Endophytic fungi with anti-microbial, anti-cancer andanti-malarial activities isolated from Thai medicinal plants. World J. Microbiol. Biotechnol. 2004, 20, 265–272. [Google Scholar] [CrossRef]
- Bamisile, B.S.; Dash, C.K.; Akutse, K.S.; Keppanan, R.; Afolabi, O.G.; Hussain, M.; Qasim, M.; Wang, L. Prospects of endophytic fungal entomopathogens as biocontrol and plant growth promoting agents: An insight on how artificial inoculation methods affect endophytic colonization of host plants. Microbiol. Res. 2018, 217, 34–50. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.C.; Wang, L.; Pan, Y.P.; Zheng, X.X.; Liang, X.N.; Sheng, L.L.; Zhang, D.; Sun, Q.; Wang, Q. Research advances on endophytic fungi and their bioactive metabolites. Bioprocess Biosyst. Eng. 2023, 46, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Liu, W.; Zhao, F.; Zhong, Z.; Deng, J.; Han, X.; Yang, G.; Feng, Y.; Ren, G. Soil bacterial and fungal diversity and compositions respond differently to forest development. Catena 2019, 181, 104071. [Google Scholar] [CrossRef]
- Payne, C.J.; Woodward, S.; Petty, J.A. Fungal spore of softwood timber drying kilns in Scotland. Mater. Org. 1998, 32, 109–125. [Google Scholar]
- Hiratsuka, Y.; Chakravarty, P. Role of Phialemoniumcurvatumas a potential biological control agent against a blue stain fungus on aspen. Eur. J. For. Pathol. 1999, 29, 305–310. [Google Scholar] [CrossRef]
- Fojutowski, A. The Selected Properties of Scots Pine Wood Blue-Stained by Fungus Cladosporium herbarum; Document No. IRG/WP/10484; International Research Group on Wood Preservation: Stockholm, Sweden, 2003. [Google Scholar]
- Liu, F.F.; Chen, S.F. A repertory of new species of Ceratocystis and Huntiella fungi from China:2014–2020. Eucalyptus Technol. 2021, 38, 62–72. [Google Scholar] [CrossRef]
- Liu, F.; Marincowitz, S.; Chen, S.; Mbenoun, M.; Tsopelas, P.; Soulioti, N.; Wingfield, M.J. Novel species of Huntiella from naturally-occurring forest trees in Greece and South Africa. MycoKeys 2020, 69, 33–52. [Google Scholar] [CrossRef]
- Mirtalebi, M.; Banihashemi, Z.; Sabahi, F.; Mafakheri, H. Dieback of rose caused by Acremonium sclerotigenum as a new causal agent of rose dieback in Iran. Span. J. Agric. Res. 2016, 14, e10SC03. [Google Scholar] [CrossRef] [Green Version]
- Mu, D.Y.; Lv, G.Z.; Sun, X.D. Two new Chinese record species isolated from the inter-root soil of medicinal plants. Mycol. Res. 2012, 10, 1–3. [Google Scholar] [CrossRef]
Sample ID | Raw PE | Raw Tags | Clean Tags | Effective Tags | Effective Rates (%) | Average Length (nt) | Q30 (%) |
---|---|---|---|---|---|---|---|
zs-1 | 41,646 | 38,572 | 37,819 | 36,336 | 87.25% | 349 | 93.12% |
zs-2 | 39,647 | 38,170 | 37,414 | 36,441 | 91.91% | 349 | 93.90% |
zs-3 | 40,629 | 38,640 | 38,017 | 37,062 | 91.22% | 340 | 93.82% |
zs-4 | 37,990 | 35,255 | 34,549 | 33,671 | 88.63% | 342 | 93.54% |
ws-1 | 38,816 | 36,877 | 36,168 | 35,126 | 90.49% | 341 | 93.62% |
ws-2 | 41,213 | 38,680 | 38,126 | 36,692 | 89.03% | 341 | 94.88% |
ws-3 | 40,666 | 37,724 | 37,029 | 35,973 | 88.46% | 340 | 93.22% |
ws-4 | 41,369 | 38,566 | 37,987 | 36,779 | 88.90% | 341 | 94.55% |
ws-5 | 38,912 | 37,265 | 36,583 | 35,562 | 91.39% | 341 | 93.87% |
Sample ID | Observed Species | Chao1 | Shannon | Simpson | Coverage | PD |
---|---|---|---|---|---|---|
zs-1 | 243 | 286.97 | 2.689 | 0.87 | 0.99 | 32.22 |
zs-2 | 278 | 324.58 | 2.84 | 0.88 | 0.99 | 33.87 |
zs-3 | 254 | 291.13 | 2.94 | 0.90 | 0.99 | 33.07 |
zs-4 | 215 | 238.57 | 2.57 | 0.85 | 0.99 | 29.06 |
ws-1 | 192 | 212.52 | 0.99 | 0.29 | 0.99 | 27.57 |
ws-2 | 196 | 213.03 | 0.96 | 0.28 | 0.99 | 28.83 |
ws-3 | 201 | 218.33 | 0.92 | 0.27 | 0.99 | 29.24 |
ws-4 | 189 | 206.00 | 1.08 | 0.33 | 0.99 | 27.31 |
ws-5 | 190 | 205.54 | 1.00 | 0.30 | 0.99 | 28.49 |
Sample | Phylum | Class | Order | Family | Genus |
---|---|---|---|---|---|
zs | Ascomycota (93.82%) | Sordariomycetes (69.52%) | Microascales (40.3%) Hypocreales (26.23%) | Ceratocystidaceae (40.28%) Nectriaceae (9.35%) | Huntiella (21.75%) Ceratocystis (18.54%) Acremonium (13.88%) |
ws | Ascomycota (97.06%) | Sordariomycetes (89.74%) | Diaporthales (84.1%) | Valsaceae (84.05%) | Phomopsis (84.05%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Wu, X.; Liu, L.; Yan, Y.; Qiu, J.; Qin, L. Analysis of Fungal Diversity before and after Discoloration of Rubberwood in Xishuangbanna. Diversity 2023, 15, 471. https://doi.org/10.3390/d15040471
Yang S, Wu X, Liu L, Yan Y, Qiu J, Qin L. Analysis of Fungal Diversity before and after Discoloration of Rubberwood in Xishuangbanna. Diversity. 2023; 15(4):471. https://doi.org/10.3390/d15040471
Chicago/Turabian StyleYang, Susu, Xiaolong Wu, Lin Liu, Yan Yan, Jian Qiu, and Lei Qin. 2023. "Analysis of Fungal Diversity before and after Discoloration of Rubberwood in Xishuangbanna" Diversity 15, no. 4: 471. https://doi.org/10.3390/d15040471
APA StyleYang, S., Wu, X., Liu, L., Yan, Y., Qiu, J., & Qin, L. (2023). Analysis of Fungal Diversity before and after Discoloration of Rubberwood in Xishuangbanna. Diversity, 15(4), 471. https://doi.org/10.3390/d15040471