Population Characteristics of Spirlin Alburnoides bipunctatus (Bloch, 1782) in Serbia (Central Balkans): Implications for Conservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Collection
2.2. Population Dynamics Parameters
2.3. Population Parameters
2.4. Data Analysis
3. Results
3.1. Population Dynamics Parameters
3.2. Growth Pattern
3.3. Population Parameters and Environmental Parameters
3.4. UMAP with Decision Tree
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.H.; Soto, D.; Stiassny, M.L. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Dynesius, M.; Nilsson, C. Fragmentation and Flow Regulation of River Systems in the Northern Third of the World. Science 1994, 266, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, C.; Reidy, A.; Dynesius, M.; Revenga, C. Fragmentation and flow regulation of the world’s large river systems. Science 2005, 308, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Carvajal-Quintero, D.; Escobar, F.; Alvarado, F.; Villa-Navarro, A.; Jaramillo-Villa, Ú.; Maldonado-Ocampo, A. Variation in freshwater fish assemblages along a regional elevation gradient in the northern Andes, Colombia. Ecol. Evol. 2015, 5, 2608–2620. [Google Scholar] [CrossRef] [PubMed]
- Rouchin, A.B.; Shlyakhtion, G.V.; Artaev, O.N. Species Composition and Quantitative Representation of Fishes in Biotopes with the Riffle Minnow Alburnoides bipunctatus. Russ. J. Ecol. 2009, 40, 194–198. [Google Scholar] [CrossRef]
- Bates, B.C.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J.P. Climate Change and Water. In Technical Paper of the Intergovernmental Panel on Climate Change; IPCC Secretariat: Geneva, Switzerland, 2008. [Google Scholar]
- Bănăduc, D.; Sas, A.; Cianfaglione, K.; Barinova, B.; Curtean-Bănăduc, A. The Role of Aquatic Refuge Habitats for Fish, and Threats in the Context of Climate Change and Human Impact, during Seasonal Hydrological Drought in the Saxon Villages Area (Transylvania, Romania). Atmosphere 2021, 12, 1209. [Google Scholar] [CrossRef]
- Angeler, D.G.; Allen, C.R.; Birgé, H.E.; Drakare, S.; McKie, B.G.; Johnson, R.K. Assessing and managing freshwater ecosystems vulnerable to environmental change. AMBIO 2014, 43, 113–125. [Google Scholar] [CrossRef]
- Volkoff, H.; Rønnested, I. Effects of temperature on feeding and digestive processes in fish. Temperature 2020, 7, 307–320. [Google Scholar] [CrossRef]
- Copp, G.; Kováč, V.; Siryová, S. Microhabitat use by stream-dwelling spirlin Alburnoides bipunctatus and Accompanying species: Implications for conservation. J. Vertebr. Biol. 2010, 59, 240–256. [Google Scholar] [CrossRef]
- Huet, M. Apercu des relations entre la pente et les populations piscicoles des eaux courantes. Swiss J. Hydrol. 1949, 11, 332–351. [Google Scholar] [CrossRef]
- Lusk, S. Influence of valley dams on the changes in fish communities inhabiting streams in the Dyje drainage area. Folia Zool. 1995, 44, 45–56. [Google Scholar]
- Siryová, S. External morphology of spirlin Alburnoides bipunctatus (Bloch). Acta Zool. Univ. Comen 2004, 6, 113–122. [Google Scholar]
- Seifali, M. Population Biology of Alburnoides Jeitteles 1861 (Actinopterygii: Cyprinidae) in Iran. Ph.D. Thesis, Universiti Putra, Selangor, Malaysia, 2012. [Google Scholar]
- Breitenstein, M.; Kirchhofer, A. Growth, age structure, and species association of the cyprinid Alburnoides bipunctatus in the River Aare, Switzerland. Folia Zool. 2000, 49, 59–68. [Google Scholar]
- Koehnken, L.; Rintoul, M. Impacts of Sand Mining on Ecosystem Structure, Process and Biodiversity in Rivers; WWF: Gland, Switzerland, 2018; pp. 1–162. [Google Scholar]
- Radojković, N.; Marinović, Z.; Milošković, A.; Radenković, M.; Đuretanović, S.; Lujić, J.; Simić, V. Effects of Stream Damming on Morphological Variability of Fish: Case Study on Large Spot Barbell Barbus balcanicus. Turkish J. Fish. Aquat. Sci. 2019, 19, 231–239. [Google Scholar] [CrossRef]
- Simić, V.; Bănăduc, D.; Curtean- Bănăduc, A.; Petrović, A.; Veličković, T.; Stojković-Piperac, M.; Simić, S. Assessment of the Ecological sustainability of river basins based on the modified the ESHIPPOfish model on the example of the Velika Morava basin (Serbia, Central Balkans). Front. Environ. Sci. 2022, 10, 952692. [Google Scholar] [CrossRef]
- Mingist, M.; Gebremedhin, S. Could sand mining be a major threat for the declining endemic Labeobarbus species of Lake Tana, Ethiopia? Singap. J. Trop. Geogr. 2016, 37, 195–208. [Google Scholar] [CrossRef]
- Milosković, A.; Simić, V. Bioaccumulation of potentially toxic elements in fish species of Serbia: A review. Environ. Sci. Pollut. Res. 2023, 30, 32255–32277. [Google Scholar] [CrossRef]
- Berg, R.; Blank, S.; Strubelt, T. Fische in Baden-Württemberg. Ergebnisse einer Landesweiten Fischkartierung und Bestandesuntersuchung; Ministerium für Ländlichen Raum, Ernährung, Landwirtschaft und Forsten: Stuttgart, Germany, 1989; p. 158. [Google Scholar]
- Kottelat, M.; Freyhof, J. Handbook of European Freshwater Fishes; Publications Kottelat: Berlin, Germany, 2007; Volume 13, p. 646. [Google Scholar]
- Lelek, A. The Freshwater Fishes of Europe: Threatened Fishes of Europe; Balogh Scientific Books; Aula Verlag: Wiebelsheim, Germany, 1987; Volume 9, p. 343. [Google Scholar]
- Bogutskaya, N.; Coad, W. A review of vertebral and fin-ray counts in the genus Alburnoides (Teleostei: Cyprinidae) with a description of six new species. Zoosyst. Ross. 2009, 18, 126–173. [Google Scholar] [CrossRef]
- Pavlov, D.S.; Savvaitova, K.A.; Sokolov, L.I.; Alekseev, S.S. Redkie i Ischezayushchie Zhivotnye. Ryby [Rare and Endangered Species: Fishes]; Vysshaya Shkola: Moscow, Russia, 1994. [Google Scholar]
- Holčík, J. Návrh červeného zoznamu ohrozených kruhoústych a rýb Slovenska [A proposal of the Red list of threatened lampreys and fishes in Slovakia]. Ochr. Prir. 1989, 20, 26–28. (In Slovak) [Google Scholar]
- Holčík, J. Changes in the fish fauna and fisheries in the Slovak section of the Danube River: A review. Ann. Limnol. 2003, 39, 177–195. [Google Scholar] [CrossRef]
- Maitland, S. Conservation of freshwater fish in Europe. Nature and Environment Series. Counc. Eur. 1991, 46, 9–30. [Google Scholar]
- Kováč, V. Rizikové kruhoúste a ryby Slovenska—Aktualizovaný červený zoznam ‘93 [Threatened lampreys and fishes of Slovakia—Updated red list ‘93]. In Proceedings of the Conference on Biodiversity Protection in Slovakia, Záhorská Bystrica, Slovakia, 6–8 April 1993; 1994; pp. 153–158. (In Slovak). [Google Scholar]
- Hensel, K.; Mužik, V. Červeny (ekosozologickỳ) zoznam mihṻl’ (Petromyzontes) a rỳb (Osteichthyes) Slovenska [Red (ecosozological) list of lampreys (Petromyzontes) and fishes (Osteichthyes) of Slovakia]. In Červenỳ Zoznam Rastlin a Živočichov Slovenska; Baláž, D., Marhold, K., Urban, P., Eds.; Ochrana prírody 20 Suplement; Štátna ochrana prírody Slovenskej republiky Centrum ochrany prírody a krajiny Banská Bystrica: Banská Bystrica, Slovakia, 2001; Volume 20, pp. 143–145. (In Slovak) [Google Scholar]
- Kirchhofer, A.; Zaugg, B.; Pedroli, C. Rote Liste der Fische und Rundmäuler der Scweiz. In Rote Listen der Gefardeten Tiere der Schweiz; Duelli, P., Ed.; Buwal: Bern, Switzerland, 1994; pp. 35–37. [Google Scholar]
- Kirchhofer, A. Blaue Liste mit Ergänzungen und Hinweisen zur Förderung der Fische und Rundmäuler in den Kantonen Aargau, Schaffhausen und Zürich. In Blaue Listen der Erfolgreich Erhaltenen. Geförderten Tier-und Pflanzenarten der Roten Listen; Gigon, A., Langenauer, R., Meier, C., Nievergelt, B., Eds.; Veröff. Geobot. Inst. ETH, Stiftung Rübel: Zürich, Switzerland, 1998; Volume 129, pp. 1–7. [Google Scholar]
- Keresztessy, K. Threatened freshwater fish in Hungary. In Conservation of Endangered Freshwater Fish in Europe; Kirchhofer, A., Müller, D., Eds.; Birkhäuser: Basel, Switzerland, 1996; pp. 73–77. [Google Scholar] [CrossRef]
- Spindler, T. Fischfauna in Österreich. In Ökologie—Gefährdung—Bioindikation—Fischerei—Gesetzgebung; Zach, I., Ed.; Bundesministerium für Umwelt: Wien, Austria, 1997; p. 120. [Google Scholar]
- Schiemer, F.; Guti, G.; Keckeis, H.; Staras, M. Ecological status and problems of the Danube River and its fish fauna: A review. In Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries; Welcomme, R., Petr, T., Eds.; RAP Publication 2004/16; FAO Regional Office for Asia and the Pacific: Bangkok, Thailand, 2004; Volume 1, pp. 273–299. [Google Scholar]
- Jedicke, E. Die Roten Listen. Gefährdete Pflanzen, Tiere, Pflanzengesellschaften und Biotoptypen in Bund und Ländern; Ulmer: Stuttgart, Germany, 1997; p. 581. [Google Scholar]
- Kotusz, J.; Witkowski, A.; Baran, M.; Błachuta, J. Fish migrations in a large lowland river (Odra R., Poland)–based on fish pass observations. Folia Zool. 2006, 55, 386–398. [Google Scholar]
- Marszał, L.; Błońska, D. Reproductive traits of the spirlin Alburnoides bipunctatus in the Vistula River basin. Reprod. Biol. 2015, 15, 184–187. [Google Scholar] [CrossRef] [PubMed]
- De Nie, H. Red List of Freshwater fishes and Lampreys in the Netherlands; Organization for Improvement of Inland Fisheries (OVB) and Foundation for Field Research on Reptiles, Amphibians and Freshwater Fishes (RAVON): AK Nieuwegein, The Netherlands, 1998. [Google Scholar]
- Wohlgemutgh, E. K problematice ochrany ouklejky pruhované on the problem of protecting the spirlin, Alburnoides bipunctatus. Biodiverzita Ichthyofauny 1996, 1, 76–77, (In Czech with English Summary). [Google Scholar]
- Lusk, S.; Luskova, V.; Halačka, K.; Šlechta, V.; Šlechtova, V. Trends and production of fish communities of the barbel zone in a stream of the Czech Republik. Folia Zool. 1998, 47, 67–72. [Google Scholar]
- Freyhof, J. Alburnoides bipunctatus. The IUCN Red List of Threatened Species 2010: eT184450A8278352. Available online: https://www.iucnredlist.org (accessed on 10 June 2022).
- Alexiades, A.; Kraft, C. Effects of stocked trout on stream invertebrate communities. J. Freshw. Ecol. 2016, 32, 95–102. [Google Scholar] [CrossRef]
- Jansen, I.; George, O.; Collins, S. Assessing the Predatory Effects of Invasive Brown Trout on Native Rio Grande Sucker and Rio Grande Chub in Mountain Streams of New Mexico, USA. Conservation 2022, 2, 514–525. [Google Scholar] [CrossRef]
- Treer, T.; Piria, M.; Aničić, I.; Safner, R.; Tomljanović, T. Diet and growth of spirlin, Alburnoides bipunctatus in the barbel zone of the Sava River. Folia Zool. 2006, 55, 97–106. [Google Scholar]
- Habeković, D.; Homen, Z.; Fašaić, K. Ichthyofauna of a part of the River Sava. Ribarstvo 1990, 45, 8–14. [Google Scholar]
- Habeković, D.; Safner, R.; Ančić, I.; Treer, T. Ichthyofauna of a part of the river. Ribarstvo 1997, 50, 99–110. [Google Scholar]
- Habeković, D.; Popović, J. State and exploitation of the fish fund in the Sava River from Podsused to Strelečko. Ribarstvo 1991, 46, 1–9. [Google Scholar]
- Šorić, V.; Ilić, K. Systematical and ecological characteristics of Alburnoides bipunctatus (Bloch) in some waters of Yugoslavia. Ichthyologia 1985, 17, 47–58. [Google Scholar]
- Simonović, P. Ribe Srbije; NNK International, Zavod za zaštitu prirode Srbije i Biološki fakultet: Beograd, Serbia, 2001; p. 247. [Google Scholar]
- Stojković, M.; Simić, V.; Milošević, D.; Mančev, D.; Penczak, T. Visualization of fish community distribution patterns using the self-organizing map: A case study of the Great Morava River system (Serbia). Ecol. Model. 2013, 248, 20–29. [Google Scholar] [CrossRef]
- Froese, R.; Pauly, D.; FishBase. World Wide Web Electronic Publication. 2022. Available online: www.fishbase.org (accessed on 8 June 2022).
- Gavrilović, L.J.; Dukić, D. Reke Srbije; Zavod za udžbenike: Beograd, Serbia, 2014; p. 227. [Google Scholar]
- Justus, B. Methods for Monitoring Fish Communities of Buffalo National River and Ozark National Scenic Riverways in the Ozark Plateaus of Arkansas and Missouri: Version 1; Geological Survey: Reston, VA, USA, 2008. [Google Scholar] [CrossRef]
- Simić., V.; Simić, S.; Petrović, A.; Paunović, M.; Šorić, V.; Dimitrijević, V. Biodiversity in Aquatic Ecosystems in Serbia, Ex Situ Conservation (BAES ex-situ); Faculty of Science: Kragujevac, Serbia, 2006; Available online: http://baes.pmf.kg.ac.rs (accessed on 8 June 2022).
- Le Cren, D. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). J. Anim. Ecol. 1951, 20, 201–219. [Google Scholar] [CrossRef]
- Ricker, E. Linear regressions in fishery research. J. Fish. Res. Board. Can. 1973, 30, 409–434. [Google Scholar] [CrossRef]
- Pauly, D. Some Simple Methods for the Assessment of Tropical Fish Stock; FAO Fisheries Technical paper; FAO: Rome, Italy, 1983; p. 52. [Google Scholar]
- Froese, R. Cube law, condition factor and weight–length relationships: History, meta-analysis and recommendations. J. Appl. Ichthyol. 2006, 22, 241–253. [Google Scholar] [CrossRef]
- Marinović, Z.; Lujić, J.; Bolić-Trivunović, V.; Marković, G. Comparative study of growth in Carassius gibelio (Bloch, 1782) and Rutilus rutilus (L., 1758) from two Serbian reservoirs: Multi-model analysis and inferences. Fish. Res. 2016, 173, 11–16. [Google Scholar] [CrossRef]
- Stefanov, T. Length-weight Relationship, Condition Factor and Diet of the Two Dominant Fish Species Notothenia rossii Richardson, 1844 and N. coriiceps Richardson, 1844 (Nototheniidae) in the Shallow Coastal Waters of Livingston Island, South Shetland Islands, Antarctica. Acta Zool. Bulg. 2022, 74, 85–93. [Google Scholar]
- Bobori, D.; Noutopoulos, D.; Bekri, M.; Salvarina, I.; Muňoz, P. Length-weight relationships of freshwater fish species in three Greek lakes. J. Biol. Res. (Thessal.) 2010, 14, 219–224. [Google Scholar]
- Fulton, W.T. The Rate of Growth of Fishes. 22nd Annual Report of the Fishery Board of Scotland, 1904; Volume 3, 141–241. [Google Scholar]
- Von Bertalanffy, L. A quantitative theory of organic growth (inquiries on growth laws II). Hum. Biol. 1938, 10, 181–213. [Google Scholar]
- Pauly, D.; Munro, J.L. Once more on the comparison of growth in fish and invertebrates. ICLARM Fishbyte 1984, 2, 21. [Google Scholar]
- Froese, R.; Tsikliras, A.C.; Stergiou, K.I. Editorial note on weight–length relations of fishes. Acta Ichthyol. Piscat. 2011, 41, 261–263. [Google Scholar] [CrossRef]
- Ursin, E. A mathematical model of some aspects of fish growth respiration and mortality. J. Fish. Res. Board. Can. 1967, 24, 2355–2453. [Google Scholar] [CrossRef]
- Sparre, P.; Venema, S. Introduction to Tropical Fish Stock Assessment; Part I. Manual. FAO Fisheries Technical Paper No. 306.1. Rev. 1; FAO: Rome, Italy, 1992; p. 376. [Google Scholar]
- Chapman, W. Production. In Methods for Assessment of Fish Production in Freshwaters; Ricker, E., Ed.; Blackwell: Oxford, UK, 1971; Volume 3, pp. 199–214. [Google Scholar]
- Cicek, E.; Sigirci, U.; Birecikligil, S.; Saylar, Ö. Age, growth and mortality of Caspian Spirlin, Alburnoides eichwaldii (De Filippi, 1863), from Aras River Basin in Turkey. Iran. J. Fish. Sci. 2016, 15, 1237–1245. [Google Scholar]
- Jaćimović, M.; Lenhardt, M.; Krpo-Ćetković, J.; Jarić, I.; Gačić, Z.; Hegediš, A. Boom-bust like dynamics of invasive black bullhead (Ameiurus melas) in Lake Sava (Serbia). Fish. Manag. Ecol. 2019, 26, 153–164. [Google Scholar] [CrossRef]
- Hernáez, P.; Joăo, A.M.C. Social structure, sexual dimorphism and relative growth in the ghost shrimp Callichirus seilacheri (Bott, 1955) (Decapoda, Axiidea, Callianassidae) from the tropical eastern Pacific. Mar. Biol. Res. 2018, 14, 856–867. [Google Scholar] [CrossRef]
- Isely, J.J.; Grabowski, T.B. Age and growth. In Analysis and Interpretation of Freshwater Fisheries Data; Brown, M.L., Guy, C.S., Eds.; American Fisheries Society: Bethesda, MA, USA, 2007; pp. 187–228. [Google Scholar]
- Grabowski, T.B.; Young, S.P.; Isely, J.J.; Ely, P.C. Age, growth, and reproductive biology of catostomid species from the Apalachicola River, Florida. J. Fish Wildl. Manag. 2012, 3, 223–237. [Google Scholar] [CrossRef]
- Arrighi, C.; Castelli, F. Prediction of ecological status of surface water bodies with supervised machine learning classiefiers. Sci. Total Environ. 2023, 857, 159655. [Google Scholar] [CrossRef]
- Legendre, P.; Gallagher, E.D. Ecologically meaningful transformations for ordination of species data. Oecologia 2010, 129, 271–280. [Google Scholar] [CrossRef]
- Milošević, Đ.; Medeiros, A.; Piperac-Stojković, M.; Cvijanović, D.; Soininen, J.; Milosavljević, A.; Predić, B. The application of Uniform Manifold Approximation and Projection (UMAP) for unconstrained ordination and classification of biological indicators in aquatic ecology. Sci. Total Environ. 2022, 815, 152365. [Google Scholar] [CrossRef]
- Hall, M.A. Correaltion-Based Feature Subset Selection for Machine Learning. Ph.D. Thesis, University of Waikato, Hamilton, New Zealand, 1998. [Google Scholar]
- Rokach, L.; Maimon, O. Data mining with Decision Trees: Theory and Applications. In Machine Perception and Artificial Intelligence, 2nd ed.; Hunke, H., Wang, P.S.P., Eds.; World Scientific: Singapore, 2014; Volume 81, p. 328. [Google Scholar] [CrossRef]
- Nilar, S. Mining big data in drug discovery—Triaging and decision trees. Big Data Anal. Chemoinformatics Bioinform. 2023, 265–281. [Google Scholar] [CrossRef]
- Pelletier, M.; Ebersole, J.; Mulvaney, K.; Rashleigh, B.; Gutierrez, M.N.; Chintala, M.; Kuhn, A.; Mollina, M.; Bagley, M.; Lane, C. Resilience of aquatic systems: Review and management implications. Aquat. Sci. 2020, 82, 44. [Google Scholar] [CrossRef] [PubMed]
- Kováč, V.; Katina, S.; Copp, S.; Siryova, S. Ontogenetic variability in external morphology and microhabitat use of spirlin Alburnoides bipunctatus from the River Rudava (Danube catchment). J. Fish Biol. 2006, 68, 1257–1270. [Google Scholar] [CrossRef]
- Skóra, S. The cyprinid Alburnus bipunctatus Bloch from the basins of the rivers Upper San and Dunajec. Acta Hydrobiol. Sin. 1972, 14, 173–204. [Google Scholar]
- Patimar, R.; Zare, M.; Hesem, M. On the life history of spirlin Alburnoides bipunctatus (Bloch, 1972) in the qanat of Uzineh, northern Iran. Turk. J. Zool. 2012, 36, 383–393. [Google Scholar] [CrossRef]
- Kuriakose, S. Estimation of length-weight relationship in fishes. In Training Manual on Fish Stock Assessment and Fisheries Management; CMFRI FRAD: Kochi, India, 2017; pp. 215–220. [Google Scholar]
- King, P. Length-Weight Relationships of Nigerian Freshwater Fishes; The WorldFish Center: Naga, Philippines, 1996; Volume 19, pp. 53–58. [Google Scholar]
- Tsoumani, M.; Liasko, R.; Moutsaki, P.; Kagalou, I.; Leonardos, I. Length-weight relationships of an invasive cyprinid fish (Carassius gibelio) from 12 Greek lakes in relation to their trophic states. J. Appl. Ichth. 2006, 22, 281–284. [Google Scholar] [CrossRef]
- Treer, T.; Habeković, D.; Aničić, I.; Safner, R.; Piria, M. Growth of five spirlin (Alburnoides bipunctatus) populations from the Croatian rivers. Agric. Conspec. Sci. 2000, 65, 175–180. [Google Scholar]
- Torcu-Koç, H.; Erdoğan, Z.; Treer, T. A review of length-weight relationships of fishes from freshwaters of Turkey. J. Appl. Ichth. 2006, 22, 264–270. [Google Scholar] [CrossRef]
- Patimar, R.; Dowlati, F. Investigation on age, growth, and reproduction of riffle minnow Alburnoides bipunctatus (Bloch, 1782) in Zarrin-Gol River, east Alborz Mountain. J. Fish. 2007, 1, 55–62. [Google Scholar]
- Filipović, D.; Janković, D. Relation between the bottom fauna and fish diet of the upland streams of East Serbia. Ichthyologia 1978, 10, 29–40. [Google Scholar]
- Stavrescu-Bedivan, M.; Scăeţeanu, G.; Madjar, M.; Manole, S.; Staicu, C.; Aioanei, T.; Plop, F.; Tobằ, L.; Nicolae, G. Interactions between fish well-being and water quality: A case study from Morii Lake area, Romania. Agric. Agric. Sci. Proceedia 2016, 10, 328–339. [Google Scholar] [CrossRef]
- Dadikyan, M.G. Variability of the Armenian riffle minnow Alburnoides bipunctatus eichwaldi in relation to the altitude at which it occurs. J. Ichthyol. 1972, 13, 68–78. [Google Scholar]
- Stavrescu-Bedivan, M.; Aioanei, T.; Scăeţeanu, G. Length-weight relationships and Condition factor of 11 fish species from the Timiș River, Western Romania. Agric. For. 2017, 63, 281–285. [Google Scholar] [CrossRef]
- Dikou, A. Length-weight relationship in fish populations reflects environmental regulation on growth. Hydrobiologia 2023, 850, 335–346. [Google Scholar] [CrossRef]
- Moreau, J.; Bambino, C.; Pauly, D. Indices of overall fish growth performance of 100 tilapia (Cichlidae) populations. In The First Asian Fisheries Forum; Maclean, L., Dizon, B., Hosillos, V., Eds.; Asian Fisheries Society: Manila, Philippines, 1986; pp. 201–206. [Google Scholar]
- Biro, P. Population structure, growth, P/B-ratio and egg-production of bleak (Alburnus alburnus L.) in lake Balaton. Aquac. Hung. 1990, 6, 105–118. [Google Scholar]
- Marszał, L.; Grzybkowska, B.; Błońska, D.; Leszczyńska, J.; Przybylskia, M. Diet of endangered spirlin (Alburnoides bipunctatus) at the centre of its distribution in Europe. Mar. Freshw. Res. 2018, 69, 1712–1723. [Google Scholar] [CrossRef]
- Bless, R. Reproduction and habitat preference of the threatened spirlin (Alburnoides bipunctatus, Bloch) and soufie (Leuciscus souffia, Risso) under laboratory conditions (Teleostei: Cyprinidae). In Conservation of Endangered Freshwater Fish in Europe; Kirchhofer, A., Hefti, D., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 249–258. [Google Scholar]
- Vetemaa, M. Riffle Minnow Alburnoides bipunctatus (Bloch), in Fishes of Estonia; Estonian Academy Publ.: Tallinn, Estonia, 2003; pp. 205–208. [Google Scholar]
- Virbickas, T. Regularities of Changes in the Production of Fish Populations and Communities in Lithuanian Rivers of Different Types. Acta Zool. Lith. Hydrobiol. 1998, 8, 3–67. [Google Scholar] [CrossRef]
- Korte, E.; Lesnik, V.; Lelek, A.; Sondermann, W. Der Einfluss der fischereilichen Nutzung auf die Fichartengemeinschaft des Oberen Dniestar. Tag. Dtsch. Ges. Fur Limnol. 1997, 2, 580–584. [Google Scholar]
- Zhukov, P.I. Ryby Belorussii (Fishes of Byelorussia); Nauka i Tekhnika: Minsk, Belarus, 1965. [Google Scholar]
- Vasil’eva, E.D. The Bystryanka, Alburnoides bipunctatus rossicus Verg, 1924, Krasnaya kniga Rossiiskoi Federatsii. In The Red Data Book of the Russian Federation; OOO Astrel: Moscow, Russia, 2001. [Google Scholar]
- Chalupová, D.; Havlíková, P.; Janský, B. Water quality of selected fluvial lakes in the context of the Elbe River pollution and anthropogenic activities in the floodplain. Environ. Monit. Assess. 2012, 184, 83–95. [Google Scholar] [CrossRef]
- Thompson, M.Y.; Brandes, D.; Kney, A.D. Using electronic conductivity and hardness data for rapid assessment of stream water quality. J Environ Manage. 2012, 104, 152–157. [Google Scholar] [CrossRef]
- Sousa, D.; Mozeto, A.; Carneiro, R.; Fadini, P. Electrical conductivity and emerging contaminant as markers of surface freshwater contamination by wastewater. Sci. Total Environ. 2014, 484, 19–23. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; p. 3056. [Google Scholar]
- Kromp-Kolb, H.; Nakicenovic, N.; Steininger, K. Austrian Assessment Report 2014 (AAR14)-Austrian Panel on Climate Change (APCC); Austrian Academy of Sciences Press: Vienna, Austria, 2014; ISBN 978-3-7001-7699-2. [Google Scholar]
- Pletterbauer, F.; Melcher, A.H.; Ferreira, T.; Schmutz, S. Impact of climate change on the structure of fish assemblages in European rivers. Hydrobiologia 2015, 744, 235–254. [Google Scholar] [CrossRef]
- Larsen, S.; Bruno, M.C.; Zolezzi, G. WFD ecological status indicator shows poor correlation with flow parameters in a large Alpine catchment. Ecol. Indic. 2019, 98, 704–711. [Google Scholar] [CrossRef]
Year | N | n | Sexes combined | Range L (cm) | Range W (g) | b | SEb | a | r2 | CF | SEcf | A |
2010 | 10 | 118 | 5.2–11.5 | 1.5–15.0 | 2.533 | 0.249 | 0.025 | 0.745 | 0.98 | 0.08 | A− | |
2011 | 14 | 277 | 3.5–11.5 | 1.2–16.0 | 2.848 | 0.221 | 0.013 | 0.967 | 0.89 | 0.05 | A+ | |
2016 | 17 | 344 | 5.4–12.0 | 1.0–17.1 | 3.184 | 0.216 | 0.005 | 0.818 | 0.91 | 0.03 | A+ | |
2017 | 53 | 1322 | 5.0–13.7 | 2.0–29.2 | 2.780 | 0.119 | 0.015 | 0.841 | 1.00 | 0.03 | A− | |
2018 | 14 | 450 | 6.3–12.1 | 2.0–17.2 | 2.873 | 0.327 | 0.011 | 0.762 | 0.89 | 0.05 | A− | |
2019 | 4 | 76 | 8.0–10.5 | 4.0–12.0 | 3.740 | 0.096 | 0.001 | 0.953 | 0.93 | 0.01 | A+ | |
2020 | 29 | 315 | 5.5–12.5 | 1.0–21.0 | 3.384 | 0.080 | 0.003 | 0.832 | 0.79 | 0.01 | A+ | |
2021 | 7 | 139 | 6.5–12.5 | 2.0–16.0 | 3.438 | 0.123 | 0.002 | 0.849 | 0.78 | 0.02 | A+ | |
Total sample | ∑148 | ∑3041 | 3.5–13.7 | 1.0–21.0 | 3.258 | 0.053 | 0.004 | 0.889 | 0.94 | 0.02 | A+ |
Year | Von Bertalanffy Equation | φ′ | M | F | Z | E | |
---|---|---|---|---|---|---|---|
2010 ** | Lt = 17.30 [1−e(−0.22(t + 1.70))] | 1.82 | 0.93 | 0.08 | 1.01 | 0.07 | |
2011 | Lt = 14.79 [1−e(−0.29(t + 0.37))] | 1.80 | 1.21 | 0.01 | 1.22 | 0.008 | |
2016 | Lt = 17.04 [1−e(−0.22(t + 0.76))] | 1.80 | 1.07 | 0.06 | 1.13 | 0.05 | |
2017 * | Lt = 12.48 [1−e(−0.41(t + 0.35))] | 1.80 | 1.41 | 0.02 | 1.43 | 0.01 | |
2018 | Lt = 16.99 [1−e(−0.23(t + 0.67))] | 1.82 | 0.94 | 0.08 | 1.02 | 0.07 | |
2019 | Lt = 13.34 [1−e(−0.37(t + 0.56))] | 1.82 | 1.15 | 0.02 | 1.17 | 0.01 | |
2020 | Lt = 13.37 [1−e(−0.36(t + 0.57))] | 1.81 | 1.40 | 0.01 | 1.41 | 0.007 | |
2021 | Lt = 13.70 [1−e(−0.34(t + 0.60))] | 1.81 | 1.26 | 0.06 | 1.32 | 0.04 | |
Total sample | Lt = 17.11 [1−e(−0.28(t + 0.93))] | ±1.89 | 1.81 | 1.06 | 0.03 | 1.09 | 0.01 |
Parameters | Abbreviation | Measuring Unit | Minimum | Maximum | Mean | ±SD |
---|---|---|---|---|---|---|
Production | P | kg/km2 | 0.02 | 32.88 | 1.39 | 3.19 |
Abundance | Ab | N/km | 28.00 | 2240.00 | 419.87 | 430.93 |
Biomass | B | kg/km | 0.08 | 23.90 | 2.72 | 3.38 |
Mean length | L | cm | 3.51 | 13.7 | 8.44 | 1.55 |
Mean weight | W | g | 1.00 | 29.20 | 6.73 | 3.78 |
Age | A | / | 1.00 | 5.00 | 2.34 | 0.60 |
Condition factor | CF | / | 0.74 | 1.15 | 0.94 | 0.16 |
Temperature | T | °C | 8.40 | 27.10 | 17.79 | 4.33 |
Conductivity | EC | µs/cm3 | 60.00 | 1300.00 | 364.27 | 149.29 |
pH | pH | 0–14 | 6.70 | 10.33 | 8.15 | 0.66 |
Dissolved oxygen | DO | mg/L | 4.75 | 13.70 | 9.32 | 5.51 |
Saturation | DO% | % | 52.50 | 173.70 | 103.58 | 9.71 |
Hardness | H | (CaCO3) (mg/L) | 80.00 | 650.00 | 186.85 | 77.51 |
Altitude | ALT | m | 34.00 | 970.00 | 341.44 | 176.84 |
P | Ab | B | L | W | A | CF | T | EC | pH | DO | DO% | H | ALT | |
P | 1.000 | 0.850 | 0.890 | 0.168 | 0.213 | 0.382 | 0.111 | −0.038 | −0.404 | −0.450 | 0.038 | 0.015 | −0.348 | −0.451 |
Ab | 1.000 | 0.870 | nss | nss | 0.265 | 0.051 | −0.183 | −0.875 | −0.574 | 0.117 | 0.084 | −0.271 | −0.481 | |
B | 1.000 | 0.247 | 0.310 | 0.344 | 0.216 | −0.117 | −0.614 | −0.524 | 0.066 | nss | −0.166 | −0.452 | ||
L | 1.000 | 0.790 | 0.017 | 0.050 | −0.037 | −0.107 | −0.080 | nss | −0.051 | −0.112 | −0.470 | |||
W | 1.000 | 0.092 | 0.454 | −0.038 | −0.052 | −0.024 | −0.037 | −0.092 | −0.018 | −0.205 | ||||
A | 1.000 | 0.105 | nss | −0.208 | 0.020 | −0.064 | −0.116 | −0.107 | −0.104 | |||||
CF | 1.000 | nss | 0.017 | −0.011 | −0.110 | −0.111 | nss | 0.099 | ||||||
T | 1.000 | 0.177 | −0.060 | −0.317 | 0.108 | 0.142 | −0.448 | |||||||
EC | 1.000 | 0.474 | −0.098 | 0.035 | 0.886 | −0.280 | ||||||||
pH | 1.000 | 0.164 | 0.229 | −0.073 | 0.118 | |||||||||
DO | 1.000 | 0.655 | −0.172 | 0.218 | ||||||||||
DO% | 1.000 | −0.059 | 0.100 | |||||||||||
H | 1.000 | −0.316 | ||||||||||||
ALT | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakovljević, M.; Nikolić, M.; Kojadinović, N.; Đuretanović, S.; Radenković, M.; Veličković, T.; Simić, V. Population Characteristics of Spirlin Alburnoides bipunctatus (Bloch, 1782) in Serbia (Central Balkans): Implications for Conservation. Diversity 2023, 15, 616. https://doi.org/10.3390/d15050616
Jakovljević M, Nikolić M, Kojadinović N, Đuretanović S, Radenković M, Veličković T, Simić V. Population Characteristics of Spirlin Alburnoides bipunctatus (Bloch, 1782) in Serbia (Central Balkans): Implications for Conservation. Diversity. 2023; 15(5):616. https://doi.org/10.3390/d15050616
Chicago/Turabian StyleJakovljević, Marija, Marijana Nikolić, Nataša Kojadinović, Simona Đuretanović, Milena Radenković, Tijana Veličković, and Vladica Simić. 2023. "Population Characteristics of Spirlin Alburnoides bipunctatus (Bloch, 1782) in Serbia (Central Balkans): Implications for Conservation" Diversity 15, no. 5: 616. https://doi.org/10.3390/d15050616
APA StyleJakovljević, M., Nikolić, M., Kojadinović, N., Đuretanović, S., Radenković, M., Veličković, T., & Simić, V. (2023). Population Characteristics of Spirlin Alburnoides bipunctatus (Bloch, 1782) in Serbia (Central Balkans): Implications for Conservation. Diversity, 15(5), 616. https://doi.org/10.3390/d15050616