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Abstract: A new species of the genus Niphargus Schiödte, 1849 (Crustacea: Amphipoda: Niphargi-
dae), co-existing with other stygobiotic amphipods, Diasynurella kiwi Marin and Palatov, 2023 and
Pontonyx donensis (Martynov, 1919) (Crangonyctidae), is described from a small spring on a shore of
Kiziterinka River in Rostov-on-Don City in the mouth of the Don River. Two of the three species in
the studied spring, D. kiwi and the discovered Niphargus, belong to microcrustaceans not exceeding
the total body size of 3 mm. The new species, Niphargus rostovi sp. nov., represents one of the
smallest species within the genus and is mostly related to the Greek Niphargus karkabounasi Ntakis,
Anastasiadou, Zakšek and Fišer, 2015, which is also not reaching the body size of 3 mm. One more
related undescribed species is found on the Crete Island by the molecular genetic data. These species
represent a separate phylogenetic lineage within the “carpathicus” species complex, which diverged
from the congeners in the Late Miocene for more than 10 Mya. At the same time, the speciation within
the ingroup started about 5–6 Mya, obviously correlating with the drainage of the Euxinian basin of
the Eastern Paratethys, connecting the lower Don and southern Greece areas. Niphargus potamophilus
Birštein, 1954 is also first recorded from the mouth of the Belbek River in the Crimean Peninsula,
closing the known area from the Kuban River delta to Rostov-on-Don area and further along the
western coast of the Black Sea to Bulgaria. Analysis of the recent records of long-time lineages
of endemic/subterranean/stygobiotic animals unable to disperse for long distances assumed that
glacial refugium existed at the mouth of the Don River, along with the South Caucasus (Colchis) and
the southern Caspian (Hyrcania), where many species have survived several periods of glaciation
since the late Miocene.

Keywords: diversity; phylogeny; refugee; barcoding; time-scale

1. Introduction

The genus Niphargus Schiödte, 1849 (Crustacea: Amphipoda: Niphargidae) is one of
the most diverse freshwater amphipod genera, comprising over 450+ species living in a
wide range of subterranean aquatic (stygobiotic) habitats, from deep cave lakes and small
pores in the epikarst to helocrene spring, wells and hyporheic zones of rivers in the West
Palaearctic [1–5]. Among the known diversity of the genus, only 49 species are currently
found on the Crimean Peninsula and the Caucasus, mainly from the southern slope of the
Greater Caucasian Ridge (41 species) [6–14], and only one species, Niphargus alanicus Marin
and Palatov, 2021, has been recorded from the central mountainous parts of the northern
slope of the Greater Caucasus in the Republic of Northern Ossetia-Alania [5,15]. However,
the diversity of the genus Niphargus is still far from being fully studied in the Caucasus and
Ciscaucasian Plain [5,9].
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Similar to most of subterranean/stygobiotic animals, the representatives of the genus
Niphargus are unable to live outside of their habitats as they are well adapted to eco-
logically narrow stygobiotic/subterranean conditions, very sensitive to environmental
changes (stenobiotic) [16–18], and unable to travel or disperse for long distances [17,19–21].
These ecological features allowed using them for different evolutional and biogeographical
studies [22]. It is also clear that the diverse fauna of stygobiotic crustaceans, and even
the presence of the only long-time genetically isolated stygobiotic species of the genus
Niphargus, is obviously associated with the presence of an ancient cryptic refugium in the
area in the past [11,15].

Global climate changes that significantly changed the diversity and composition of
fauna were observed during the Cenozoic Era (since 65.5 Mya until today) with glacial
cycles during the Miocene, Pliocene and Pleistocene [23,24]. However, the most significant
glacial periods were observed during the Pleistocene period (since 2.6 Mya) and the Last
Glacial Maximum (LGM, 23–18 Tya) [25–28]. At this time, ice sheets and an unsuitable cold
and dry climate made large areas of the Northern Hemisphere, almost reaching southern
Europe, making the subterranean and water biota of Northern Europe virtually uninhab-
itable [28–30]. However, a number of species were able to survive unfavorable climatic
conditions in the southern glacial refugium [31,32]. Southern glacial refugees in the Western
Palearctic, such are the Iberian, Italian and Balkan peninsulas, Anatolia, the southern Cau-
casian Kolkhida coastal lowland (Colchis) and the southern coastal valley of the Caspian
Sea (Hyrcania), as well as their diversity, conservation and post-glacial re-colonization
paths for different taxa from there are currently quite well understood [28,31,33–40]. Most
of these shelters are deeply indented protected mountain valleys, which have played a
significant role in the survival of the species living there during the Ice Period [41]. In
addition, in areas outside the aforementioned refugium protected by mountainous areas,
for example, coastal plains, there is also a fairly high diversity of animals living in springs
and groundwater [40,42–44], which are usually fragmented and poorly connected [45–47].
At the same time, it was believed that the areas adjacent to the Black/Azov Sea Lowland,
not protected by mountains from the cold northern air masses, were seriously affected by
periods of cooling/glaciation, especially during the Quaternary period, which is why their
modern fauna is now severely impoverished. However, recent studies show that at least
some endemic and sub-endemic stygobiotic/subterranean animals could have survived in
their modern habitats along the northern lowland of the Black/Azov Seas during the past
glacial periods [48–53], and the existence of an ancient glacial refugium has already been
proposed in the Azov–Prikubanskaya Lowland [54].

In May–October 2022, studying the stygobiotic fauna of different water resources of the
Black/Azov Sea Lowland, we discovered an unusual diversity of stygobiotic amphipods in
a captured small spring on a shore of Kiziterinka River (Rostov-on-Don), 47◦13′59.9′ ′ N
39◦47′00.1′ ′ E, in the mouth of the Don River [48,55]. Two of the three crustacean species
in the studied spring, namely Diasynurella kiwi Marin and Palatov, 2023 (Crangonyctidae)
and undescribed species of the genus Niphargus (Niphargidae), belong to microcrustaceans
not exceeding the total body size of 3 mm. It is obvious that all the discovered species,
co-existing in the spring [55,56], are unable to spread over long distances [17,20,21] and
survived here, isolated in the spring water system since Pliocene (see below). The discovery
of these stygobiotic animals suggested the ancient glacial refugium in the mouth of the
Don River and the Northern Black/Azov Sea Lowland since Late Miocene–Pliocene. The
presented paper also discusses the current known diversity of the endemic and sub-endemic
fauna of the non-mountainous habitats of the Northern Black/Azov Sea Lowland. At
the same time, we did not consider or analyze the subterranean/stygobiotic diversity
of the adjacent Caucasian, Crimean and Carpathian Mountains, since speciation there
went on in different evolution ways, although we understand that these are certainly
interrelated issues.
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2. Materials and Methods

Study area. The study area includes the Northern Black/Azov Sea Lowland bordered
with estuaries of the Kuban and Don (Sea of Azov), Dnieper and Dniester (Black Sea) rivers,
representing the northern part of the Euxinian basin of the Eastern Paratethys during
the Late Miocene (about 10–6 Mya) (see Figure 1) [57–59]. The lower Danube Lowland
(former Dacian Basin) also connected with the studied region, but was rather isolated
since Pliocene, and we consider the fauna only partially. It is also likely that in the past,
similar to the modern times, the Danube riverbed connected the middle of the Black Sea
with the Pannonian Lowland (Pannonian Basin), and was a channel for the distribution of
many ancestral lines of modern groups of stygobiotic animals, such as the genus Niphargus.
Currently, it is proven as a transit waterway for Niphargus hrabei S. Karaman, 1932 and
Niphargus valachicus Dobreanu and Manolache, 1933 [14,60–63]. Moreover, the Danube
Delta is the southernmost part of the studied area, and the influence of glaciation on it
was significantly lesser, so that the evolutionary processes could occur there in a slightly
different way than in the northern areas of the Northern Black/Azov Sea Lowland [64,65].

Morphological studies. Amphipods were collected using a hand net and then fixed
in a 90% ethanol solution. Line drawings of collected amphipods were produced using
camera lucida attached to Olympus SZX10 light stereomicroscope. The scanning electron
microscopy (SEM) images were collected using the Vega 3 Tescan microscope in the Yu.A.
Orlov Paleontological Museum of the Paleontological Institute of the Russian Academy
of Sciences, Moscow. Amphipods were placed in 95% ethanol, cleaned in an ultrasonic
cleaner, then dehydrated with acetone, critical-point dried (CPD), fixed on specimen stubs
with double-sided tape and coated with gold by sputtering using Polaron PS 100. The body
length (bl., mm), the dorsal straight body length from distal margin of head to the posterior
margin of telson, without the length of uropod III and antennas, was used as a standard
measurement. The type material was deposited at the collection of the Zoological Museum
of Moscow State University, Moscow, Russia (ZMMU). Additional material was deposited
in the author’s personal collection at the A.N. Severtsov Institute of Ecology and Evolution
of the Russian Academy of Sciences, Moscow, Russia (LEMMI).

Molecular and phylogenetic study. The mitochondrial cytochrome oxidase c subunit
I (COI mtDNA) gene has been proven to be extremely informative in previous studies at
both population and species level [66]. Total genomic DNA was extracted from muscle
tissue using the innuPREP DNA Micro Kit (AnalitikJena, Germany). The COI mtDNA gene
marker was amplified using universal primers LCO1490 (5′–GGTCAACAAATCATAAAGA
TATTGG–3′) and HC02198 (5′–TAAACTTCAGGGTGACCAAAAAATCA–3′) under stan-
dard protocol conditions [67]. PCR products were then sequenced using Genetic Analyzer
ABI 3500 (Applied Biosystems, Waltham, MA, USA) and BigDye 3.1 (Applied Biosystems,
Waltham, MA, USA) with forward and reverse primers. The dataset of aligned sequences of
COI mtDNA gene markers, about 617 base pairs in length used in the study, were obtained
from the GenBank (NCBI) database and the author’s personal dataset.

Pairwise genetic divergences (p-distances) and their standard errors (SE) were calcu-
lated based on the available COI sequences using MEGA 7.0 with the Kimura 2-Parameter
(K2P) model of evolution [68].

Phylogenetic analysis is based on the dataset of consensus of the sequences (see Ap-
pendix) obtained with MEGA 7.0 [69]. The best evolutionary substitution model was
determined using MEGA 7.0 and jModeltest2.1.141 (Diego Darriba, Universidade da
Coruña as part of the Computer Architecture Group (GAC), Coruña, Spain) on XSEDE
via the CIPRES (Cyber Infrastructure for Phylogenetic Research) Science Gateway V. 3.3
(http://www.phylo.org/, accessed on 10 November 2022). Phylogenetic analysis was con-
ducted using PhyML 3.0 (http://www.atgc-montpellier.fr/phyml/; accessed on 12 January
2023) [70] with several models based on BIC (Bayesian Information Criterion) and AIC
(Akaike Information Criterion). The general tree of all studied sequences/species (A) as
well as the reconstruction between the studied species of the “carpathicus” complex (B) were
visualized with FigTree v1.4.3 and presented in Figure 1.

http://www.phylo.org/
http://www.atgc-montpellier.fr/phyml/
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Molecular clock analysis was performed based on Bayesian Inference (BI) trees gener-
ated with the BEAST2 package [71]. Maximum Clad Credibility Tree was obtained using
TreeAnnotator v2.5.1, with a 10% burn-in and selected mean node height [71,72]. The
resulting trees were visualized with FigTree v1.4.3. Time calibration points were chosen
based on the adapted time scale [17] and the analysis of possibly related historical events.

Abbreviations: Mx–maxilla; Gn–gnathopod; P–pereopod; Pp–pereopods; Pl–pleopod;
Ep–epimeral plate; U–uropod.

3. Results
Phylogenetic Approach of Newly Discovered Species of the Genus Niphargus

According to the molecular genetic analysis (Figure 1), the newly discovered species
is closely related to Niphargus karkabounasi Ntakis, Anastasiadou, Zakšek and Fišer, 2015,
obtained from continental Greece [73], with which they form a distinct monophyletic lineage
(Bayesian–PP = 1.00; ML–BS = 95%). Both species are related to the polyphyletic “Niphargus
carpathicus” species complex (see Figure 1), including Romanian Niphargus carpathicus
Dobreanu and Manolache, 1939, N. decui G. Karaman and Sarbu, 1995, N. transsylvanicus
Schellenberg, 1934, as well as N. grandii Ruffo, 1936, N. aberrans Sket, 1972, N. microcerberus
Sket, 1972, N. barbatus Karaman, 1985 and some others, which are found in stygobiotic
mountainous habitats of Austria, Northern Italy and Slovenia (see Figure 1; [74,75]). The
estimated time of the origin of the studied lineage and its separation from the related
species of the “carpathicus” species complex is calculated as 0.215 ± 0.015015 substitutions
per 100 nucleotides (about 21%) (about 10–9 Mya (95% HPD: 27.92–4.16) (min (0.0077/Mya)
and max (0.0516/Mya) after [76], the average (about 0.025/Mya) for COI mtDNA gene
marker (after [45,77]). It is probably related to the separation of the Eastern Basin from other
basins of the former Paratethys (Euxinian, Alpine and Pannonian basins) (see Figure 1).

The interspecific uncorrected pairwise genetic distances (p-distances) between the
studied individuals (n = 2) of Niphargus rostovi sp. nov. is very low, showing about
0.003 substitutions per 100 nucleotides (about 0.3%).

The intraspecific genetic difference (p-distances calculated using COI mtDNA gene
marker) between Niphargus rostovi sp. nov. and N. karkabounasi is 0.135± 0.015 substitutions
per 100 nucleotides (about 13%), showing the average divergence time for about 5.4 Mya
(95% HPD: 17.53–2.61). Such divergence time is probably correlated with the disappearing
(drying out) of the late Euxinian Basin of the Eastern Paratethys during the Messinian Crisis
(5.96–5.33 Mya), which connected the regions of Greece and the modern mouth of the Don
River [57–59,78,79]. There is also an undescribed species from a captured spring northeast
of Arkadi Monastery, Arkadi, Crete, Greece, closely related to N. karkabounasi, which is
known by molecular genetic data [73,74] (see Figure 1). Unfortunately, the sequences of the
COI mtDNA gene marker for this species are not presented in GenBank (NCBI database),
and we were not able to use it in our phylogenetic analysis.

The intraspecific genetic differences (p-distances of COI mtDNA gene marker) of
Niphargus rostovi sp. nov. and other above-mentioned species of the “carpathicus” complex
exceed 21% (Table 1), showing the absence of the gene flow and a long-time isolation for
about 10–9 Mya (see above), which is well correlated with the time of the regression of the
former Paratethys since the Late Miocene.
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Figure 1. Phylogenetic tree (reconstruction) (based on COI mtDNA gene marker) of the relationships
of the Niphargus rostovi sp. nov. from the mouth of the Don River. (A)—the study area with
the records of the species within the outlined boundaries of the Paratethys and the later Eastern
Paratethys (after [58]) taken from [59]; (B)—General phylogenetic tree of the used sequences of genus
Niphargus with the indication of the studied Clade (red, arrow); (C)—the phylogenetic relationships
(ML analysis) of the studied species of the “carpathicus” complex; (D)—time-calibrated tree (BI) with
the estimated time scale. Map of the Paratethys during late Pontian regional stage (about 7–5 Mya)
(modified) from [66]. Posterior probabilities of the nodes are reported. Blue horizontal bars show
the 95% HPD (highest posterior density) of node ages on an arbitrary time scale. The drawing of
Niphargus karkabounasi is taken from [74].



Diversity 2023, 15, 682 6 of 27

Table 1. Pairwise genetic (COI mtDNA) distances (substitutions per 100 nucleotides) and standard
errors (SE) between Niphargus rostovi sp. nov. and related species of the “carpathicus” complex.

Species p-Distance ± SE

Niphargus karkabounasi 0.135 ± 0.015
Niphargus italicus 0.211 ± 0.020

Niphargus microcerebrus 0.213 ± 0.018
Niphargus abberans 0.215 ± 0.019
Niphargus grandii 0.218 ± 0.018
Niphargus decui 0.222 ± 0.019

Niphargus alpinus 0.223 ± 0.019
Niphargus carpathicus 0.224 ± 0.019
Niphargus danielopoli 0.234 ± 0.020

Niphargus transsylvanicus 0.242 ± 0.021
Niphargus barbatus 0.270 ± 0.024

Taxonomic part

Order Amphipoda Latreille, 1816;
Family Niphargidae Bousfield, 1977;
Genus Niphargus Schiödte, 1849.
Niphargus rostovi sp. nov.
Figures 2–7
Material examined: Holotype, ♂(bl. 3.0 mm), ZMMU Mb-1259, Russian Federation,

the Northern Black/Azov Sea Lowland, Rostov Oblast’, Rostov-on-Don, Proletarskiy
district, 47◦13′59.9′ ′ N 39◦47′00.1′ ′ E, about 40 m asl, a small spring on a shore of Kiziterinka
river, hand net sampling, coll. D. Palatov et I. Marin, 18 May 2022.

Paratypes, 1♂, 1♀(bl. 3.0 and 2.5 mm), ZMMU Mb-1260, same locality and data as
for holotype.

Additional material: 4♀♀, LEMMI, same locality and data as for holotype.
Etymology: The new species is named after the locality, Rostov-on-Don, where this

species was discovered.
Diagnosis: Head without eyes or pigmented spots on anterior lobe. Posteroventral

corners of epimeral plates I–II rounded and bluntly, produced in epimeral plate III. Urosomite I
unarmed, urosomite II with 1 strong spine in a posterodorsal angle, one on each side;
urosomite III unarmed. Accessory flagellum of antenna I short, 2-articulated. Article III of
mandibular palp equal to article II, with 1 A-seta; 1 C-seta; 8–10 D-setae and 4 E-setae. Outer
plate of maxilliped III with strong spines. Dactyli of pereopods III–VII simple, with small
simple seta at the inner margin near basis of nail, dactyli of pereopods III–VII elongated,
about 4–5 times as long as it is wide. Uropod I rami of nearly equal length, equal in length
to basal segment. Pleopods with 2 hooks in retinacules, without setae. Telson elongated, with
3 relatively long distal spines, accompanied by 1–2 simple setae on each side; dorsal surface
with a tuft of 2–3 long simple setae in the medial part.

Description. BODY: Body length up to 2.5–3 mm, depigmented, moderately
slender (Figure 2).

HEAD: length is approximately 9–10% of body length (Figure 7a); rostrum and
eyes/pigmented spots on anterior lobe absent, with distally produced rounded lateral
cephalic lobes and shallowly excavated anteroventral sinus.

PEREON: pereonites I–VII smooth, without setae (Figure 2).
PLEOSOMA: pleonites I–III with several short marginal setae on each postero-dorsal

margin (Figure 7b).
EPIMERAL PLATES: Epimeral plates I–III with rounded posteroventral angles

(Figures 6a–c and 7b). Epimeral plate I (Figure 6a): posterior and ventral margin convex;
without spines along ventral margin; with 2 setae along the posterior margin; subrounded
posteroventral angle with 1 strong seta. Epimeral plate II (Figure 6b): posterior margin
bluntly rounded, ventral margin strongly convex, with 1 spine in the medial part; with
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2 setae along the posterior margin; posteroventral angle bluntly rounded, with 1 strong
seta. Epimeral plate III (Figure 6c): posteroventral margin bluntly produced posteriorly;
posterior margin with 3 setae, ventral margin convex, with 1–2 spines in the anterior part.
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Figure 3. Niphargus rostovi sp. nov., Rostov-on-Don, holotype ♂, ZMMU Mb-1259: (a)—antenna I;
(b)—accessory flagellum of antenna I; (c)—antenna II; (d)—gnathopod I; (e)—distoventral palmar
margin of chela of GnI; (f )—gnathopod II; (g,h)—distoventral palmar margin of chela of GnII.
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(upper lip); (b)—labium (lower lip); (c)—left mandible; (d)—same, incisor process and pars incisiva; 
(e)–right mandible; (f)—same, incisor process and pars incisiva; (g)—maxilla I; (h)—maxilla II; (i)—
maxilliped. 

UROSOMITES (Figure 7d,e): Urosomite I unarmed; urosomite II with 1 small strong 
spine posterolaterally; urosomite III unarmed. 

Figure 4. Niphargus rostovi sp. nov., Rostov-on-Don, holotype ♂, ZMMU Mb-1259: (a)—labrum
(upper lip); (b)—labium (lower lip); (c)—left mandible; (d)—same, incisor process and pars incisiva;
(e)–right mandible; (f )—same, incisor process and pars incisiva; (g)—maxilla I; (h)—maxilla II;
(i)—maxilliped.

UROSOMITES (Figure 7d,e): Urosomite I unarmed; urosomite II with 1 small strong
spine posterolaterally; urosomite III unarmed.

ANTENNA I (Figure 3a): slender, relatively short, 0.50–0.51 of body length; peduncu-
lar articles moderately slender, ratio is 1/0.68/0.45; flagellum consists of 12 articles, most
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of them with 2 short aesthetascs each; accessory flagellum short, 2-articulated (Figure 3b).
Length ratio of antennas I/II is 1/0.57.

ANTENNA II (Figure 3c): peduncular articles moderately stout, with several long
setae along ventral margin, dorsal setae shorter than inner ones; flagellum relatively short,
consisting of 5 articles with relatively short setae; lengths of peduncle articles 4/5 is 1/0.9;
flagellum about 0.67 times of the length of peduncular articles 4 + 5.

LABRUM (Figure 4a) typical, dorsally rounded.
LABIUM (Figure 4b): with entire, subrounded outer lobes and well-developed smaller

inner lobes.
MANDIBLES (Figure 4c–f). Left mandible (Figure 3c,d): incisor with 5 teeth, lacinia

mobilis with 4 teeth; with a row of 6 serrated setae between lacinia and molar, few spatulate
setae and one long seta at the base of molar (Figure 4d). Right mandible (Figure 3e,f): incisor
process with 4 teeth, lacinia mobilis 6-dentate, with a row of 5 serrated setae between lacinia
and molar (Figure 4f); ratio of mandibular palp article 2/3 (distal) is 1/1–1.05; proximal
article of palp without setae; article 2 with 3 setae; distal article with 1 A-seta; 1 C-seta;
8–10 D-setae and 4 E-setae (Figure 3c,e).

MAXILLA I (Figure 4g): inner lobe with 1 distal seta, outer lobe with 7 robust spines
(4 spines without lateral tooth, and 2 with 1 and 1 with 2 strong lateral teeth, respec-
tively (0–0–0–0–1–2–1); palp 2-articulated, distal article with 4–6 simple setae distally and
2 subdistal setae.

MAXILLA II (Figure 4h): both plates with numerous long distal simple setae, outer
lobe without setae along the outer margin.

MAXILLIPED (Figure 4i): inner plate relatively slender with 2 distal robust setae
intermixed with 5 distal simple setae, subdistally with 1–2 simple thin lateral setae; outer
plate reaching half of palpal article 2, with a row of 7 strong lateral and 3 longer distolateral
spines and several distal simple setae; palpal article 3 about 2 times longer than article 4,
with long simple setae along the outer margin; palpal article 4 about as long as it is wide,
with produced rounded distodorsal lobe; nail shorter than pedestal, with 2 setae near basis.

GNATHOPOD I (Figure 3d): smaller than GnII; coxal plate nearly rectangular, with
rounded corners, with 2 apical setae, width/depth ratio 0.64/1; basis width/length ratio is
0.40/1, 3 long setae on anterior and posterior surfaces; ischium rectangular, about as long
as it is wide, with 1 subdistal setae; merus rectangular, about as long as it is wide, similar
in size to ischium, with 6–7 distal and subdistal setae; carpus about 1.6 times as long as it is
wide, 1.7 times of merus, with 6–8 simple setae in the inner margin, 2–3 distodorsal setae
and unarmed in the outer margin; propodus subtrapezoidal, feebly setose, with 3–4 rows
of setae at anterodorsal angle, palmar corner bluntly rounded, armed with 1 long spiniform
palmar seta, 2 serrated stout spiniform setae, supported by 1 stout spiniform seta on the inner
surface (Figure 3e); dactylus with 1 seta along the anterior margin, and strong well-marked
subdistal inner tooth under the nail, with the nail 0.4 times the length of dactylus.

GNATHOPOD II (Figure 3f–h): coxal plate subrogate, with 3 apical setae, width/depth
ratio is 0.88/1; basis width/length ratio is 0.27/1, 3 long setae on the posterior margin;
ischium rectangular, about 1.3 times as long as it is wide, with 1 subdistal setae; merus
rectangular, about 1.3 times as long as it is wide, similar in size to ischium, with 6–7 distal
and subdistal setae; carpus about 2.0 times as long as it is wide, 1.8 times of merus, with
6–8 simple setae in the inner margin, 2–3 distodorsal setae and unarmed in the outer margin;
propodus close to triangular shape, feebly setose, with 3–4 rows of setae at an anterodorsal
angle, palmar corner bluntly rounded, armed with 1 long spiniform palmar seta, 2 serrated
stout spiniform setae, supported by 1 stout spiniform seta on the inner surface (Figure 4g);
dactylus with 1 seta along the anterior margin, and strong well-marked subdistal inner
tooth under the nail (Figure 3h), with the nail 0.4 times the length of dactylus.
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Figure 5. Niphargus rostovi sp. nov., Rostov-on-Don, holotype ♂, ZMMU Mb-1259: (a)—pereopod III;
(b)—dactylus of PIII; (c)—pereopod IV; (d)—dactylus of PIV; (e)—pereopod V; (f )—dactylus of PV;
(g)—pereopod VI; (h)—dactylus of PVI; (i)—pereopod VII; (j)—dactylus of PVII.
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Figure 6. Niphargus rostovi sp. nov., Rostov-on-Don, holotype ♂, ZMMU Mb-1259 (a–i,k), paratype ♀,
ZMMU Mb-1260 (j): (a)—epimeral plate I; (b)—epimeral plate II; (c)—epimeral plate III; (d)—telson,
female; (e)—telson, male; (f )—pleopod III; (g)—hooks of retinacula of pleopod II; (h)—uropod II;
(i)—uropod I; (j,k)—uropod III.
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PEREOPODS III–IV (Figure 4a–d) almost similar in size and shape; coxa mostly
quadrate, straight ventrally, about as long as it is wide, with 2 setae along the anterior
margin; basis about 4.5 times as long as it is wide, with the posterior margin bearing long
marginal setae, with distoventral simple seta; ischium short, length/width ratio is 1.1–1/1,
with ventrodistal simple seta; merus with slender simple setae, about 3.8 times as long as it
is wide, along dorsal and ventral margins; ratio carpus/propodus is 0.7–0.8/1; propodus
with several simple setae along posterior margin; dactylus (Figure 5b) relatively stout,
curved, sharp distally, with 1 tiny ventral seta at the base of the nail and 1 long seta at the
outer margin; the ratio of dactyli of propodus of PIII/IV is 0.9/1, the nail length is about
0.50–0.52 of the total length of dactylus.

PEREOPOD V (Figure 5e) coxal plate anteriorly with large lobe, with 1 anterior and
1 posterior setae; basis almost rectangular, length/width ratio is 1/0.64, with feebly deve-
loped posteroventral lobe, with almost straight posterior margin armed with several simple
setae, anterior margin slightly convex armed with a row 2–3 marginal and a group of setae
in the distal part; ischium short, about as long as it is wide; merus about 2.4 times as long as
it is wide, with 2 slender spine-like setae along the posterior margin; carpus about 3 times
as long as it is wide, equal to merus, with 2 bunches of spine-like setae along the posterior
margin; propodus slender, 5–6 times as long as it is wide, with several short setae and a
tuft of long simple setae anterodorsally; dactylus (Figure 5f) with basal part about 3 times
as long as it is wide, with 1 tiny ventral seta at the base of the nail and 1 short seta at the
outer margin.

PEREOPOD VI (Figure 5g) coxal plate anteriorly with a large lobe, without anterior
and with 1 posterior seta; basis almost rectangular, length/width ratio is 1/0.58, with feebly
developed posteroventral lobe, with almost straight posterior margin armed with several
simple setae, anterior margin slightly convex armed with a row 3 marginal and a group of
setae in the distal part; ischium short, about as long as it is wide; merus about 3.1 times as
long as it is wide, with 2 slender spine-like setae along the posterior margin; carpus about
5 times as long as it is wide, subequal to merus, with 2 bunches of spine-like setae along
the posterior margin; propodus slender, 9–10 times as long as it is wide, with several short
setae and a tuft of long simple setae anterodorsally; dactylus (Figure 5h) with basal part
about 5 times as long as it is wide, with 1 tiny ventral seta at the base of the nail and 1 short
seta at the outer margin.

PEREOPOD VII (Figure 5i): coxa half-rounded shaped with 1 posterior tiny seta; basis
length/width ratio is 1/0.69, without distinct posteroventral lobe and convex posterior
margin bearing a row of 5–6 short marginal setae, anterior margin slightly convex, with a
row of 3 longer marginal and a group of setae in distal part; ischium short, about as long as
it is wide; merus about 2.6 times as long as it is wide, with several slender spine-like setae
along the anterior and posterior margins; carpus about 3.8 times as long as it is wide, equal
to merus, with 2 bunches of spine-like setae along the posterior margin; propodus slender,
about 5–6 times as long as it is wide, with several groups of short spine-like setae and a tuft
of long simple setae anterodorsally; dactylus (Figure 5j) with basal part about 4–5 times as
long as it is wide, with 1 small ventral seta at the base of the nail a and 1 long seta at the
outer margin.

PEREOPODS V–VII (Figure 5e–j); length ration of PpV/VI/VII is 1/1.43/1.48; length
of PVII is about half of total body length.

GILLS II–VI ovoid. Coxal gills II–VI ovoid, length ratios of gills/bases of pereopods
are 0.58/1, 0.57/1, 0.79/1, 0.62/1 and 0.51/1, respectively.

PLEOPODS (Figure 6f): pleopods I–III with basal segments with 2 long simple setae,
with 2 hooks in retinacules (Figure 6g).
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Figure 7. Niphargus rostovi sp. nov., Rostov-on-Don, ♂, non-type specimen, LEMMI: (a)—head;
(b)—epimeral plates I–III; (c)—coxal segments of pereiopod VI–VII; (d,e)—urosomal segments, lateral
view; (f )—hooks of retinacula of pleopod II.

UROPOD I (Figure 6h): protopodite about 4.5 times as long as it is wide, with 3 dor-
sointernal and 2 subdistal spines; rami straight, equal in length and equal to protopodite;
exopodite not paddle-like, straight, with 1 medial spiniform setae laterally and 4 strong
spines apically; endopodite without setae laterally, with 4–5 spines apically.

UROPOD II (Figure 6i): protopodite about 2.0 times as long as it is wide, about
1.2 times shorter than rami in length, with 2 subdistal spines only; rami with 1 lateral and
4–5 distal slender spines; ratio of exopodite/endopodite is 1.1/1.
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UROPOD III (Figure 6k,j): 0.18–0.20 of body length in females and males; protopodite
about 2.0 times as long as it is wide, without lateral setae and 2–3 apical spines; rami
unequal, endopodite short, about 9 and 10–11 times shorter than the exopodite in females
and males, respectively, with 1 small setae laterally and 1 long setae apically; exopodite
with proximal article with 5–7 groups of thin-flexible, spiniform setae along inner and outer
margins and 2 distolateral groups of simple setae distally; distal article is 0.4 and 0.5 of the
length of proximal article in females and males, respectively, with and 1–2 lateral setae and
2–3 long simple setae apically.

TELSON (Figure 6d,e): ratio of length/width is 1/1.2–1.4; cleft about 0.9 of telson
length; margins straight and narrowing apically; with 1–2 medial long simple setae on each
side, and 3 strong distal spines accompanied with 1–2 small simple setae; apical setae are
about 0.5 of length of telson.

Coloration and Body size: Body coloration is completely white. The largest collected
male has bl. 3 mm.

GenBank accession numbers: OQ918541, OQ918542.
Distribution and ecology: Currently, the species is known only from a single spring

on the slope of the Kiziterinka River in the Proletarskiy district (Nakhichevan) within the
borders of the city of Rostov-on-Don. It is possible that the species may live in other nearby
springs, but the careful study in 2021–2022 did not allow for collecting more specimens
in other localities. However, the collecting of this species is rather difficult due to its very
small size (about 2.5–3 mm of body length for adults), as well as habitat in the thickness of
the pebbles covering the bottom of springs and wells. The other subterranean crustaceans
inhabiting the same spring are crangonyctid Diasynurella kiwi Marin and Palatov, 2023 and
Pontonyx donensis (Martynov, 1919) (Amphipoda: Crangonyctidae) [56,57].

Taxonomic remarks: According to morpho-molecular analysis (see above, Figure 1),
the new species clearly belongs to the obviously polyphyletic “carpathicus” species com-
plex, mostly related to Niphargus karkabounasi Ntakis, Anastasiadou, Zakšek and Fišer, 2015
found in continental Greece [73] (Figure 1). Both species form a distinct phylogenetic lineage
(see above) and possess only 2 hooks in the retinacules of pleopods in contrast to other re-
lated species from the “carpathicus” complex, for example, Romanian Niphargus carpathicus,
N. decui, N. transsylvanicus, as well as N. grandii, N. aberrans, N. microcerberus, N. barbatus,
N. italicus G. Karaman, 1976, N. danielopoli G. Karaman, 1994 and N. alpinus G. Karaman
and Ruffo, 1989, found in Austria, Northern Italy and Slovenia and one undescribed species
from the Crimean Peninsula, all of which have 4–5 hooks in the retinacules [73]. This
feature most easily and reliably allows separating these species from the congeners.

The new species can be easily separated from N. karkabounasi by the presence of
unarmed (smooth) spines on the outer lobe of maxilla I (Figure 4g) (vs. usually with
1–2 lateral teeth ([73]: Figure 8D); trapezoidal form of palm (propodus) of both gnathopods
I–II (Figure 3d,f) (vs. distinctly triangular [73]: Figure 9); unarmed protopodite of uropod
II (Figure 6i) (vs. 1–2 dorsointernal spines [73]: Figure 7e); rounded and non-produced
posteroventral angle of epimeral plate I (vs. sharply posteriorly produced [73]: Figure 7a),
and stouter and shorter distal spines of each telson lobe (Figure 6d,e).

From N. decui (after [80]), the new species can be also separated by significantly shorter
accessory flagellum of antenna I, unarmed (smooth) spines on the outer lobe of maxilla I,
rounded posteroventral angles of epimeral plates I–III, slender basal segments of pereiopod
III-VII without well-developed posterior lobes, 2 hooks in the retinacules of pleopods,
different armature (mostly reduced) of the urosomal segments, uropods I–II and distal
margins of lobes of telson.

From N. italicus (after [81]), the new species can be separated by the slender basal
segment of antenna I, significantly shorter accessory flagellum of antenna I, unarmed
(smooth) spines on outer lobe of maxilla I, rounded posteroventral angles of epimeral
plates I–III, non-produced palmar corner of gnathopods I–II, more slender basal segments
of pereiopods III–VII without well-developed posterior lobes, 2 hooks in retinacules of
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pleopods, different armature (mostly reduced) of the urosomal segments, uropods I–II and
distal margins of lobes of telson.

Niphargus potamophilus Birštein, 1954
Figure 8
Niphargus potamophilus Birštein, 1954: 1025–1028, Figure 1 (type locality–mouth of the

Don River)
Material examined: 5♂♂, 7♀♀, LEMMI, Crimean Peninsula, Sevastopol area, the

mouth of the Belbek River, Lubimovka, in a small canal flowing from a small artificial
pond, 44◦39′41.6′ ′ N 33◦32′47.7′ ′ E, about 3–5 m asl, hand net sampling, 15 December 2022,
coll. I. Marin.

GenBank accession numbers: OQ913572, OQ913573.
Ecology: Niphargus potamophilus lives in channels and small, shallow, densely over-

grown, well-warmed ponds and parts of the rivers where large predators (e.g., fish) and
other epigean species of the genus Niphargus are absent.

Distribution: The species was originally described from small water reservoirs in the
delta of the Don River near Rostov-on-Don [50]. Sub-endemic of the Northern Black/Azov
Sea Lowland, currently found in the Azov–Prikubanskaya Lowland (from Rostov-on-Don
to the lower delta of Kuban River) [14] and the coastal area of the Northern Black/Azov
Sea Lowland from southern Ukraine to Bulgaria [63] (Figure 9). A new discovery in the
Crimean Peninsula connected the known eastern area of its distribution in the delta of
the Kuban and Don rivers with the western one in the deltas of the Dnieper, Dniester
and Danube.

4. Discussion

The diversity and endemism of the stygobiotic fauna of the mountainous regions of the
Caucasus and the Crimean Peninsula in the south, especially their southern slopes, as well
as the Carpathian Mountains in the west of the studied region, are very well known, and
many endemic species have been described from there (see above; Table 2) [82–86]. In the
past, the abovementioned mountainous regions were interconnected with the Middle East,
representing a West Asian transition region for subterranean/stygobiotic animals [86–89]
within the boundaries of Paratethys [57,58]. The diversity of these regions largely exists
due to maintaining of a stable warm climate during periods of cooling and glaciation,
determined by the presence of glacial refugees during the Pliocene/Pleistocene time, such
as well-known Colchis and Hyrcania [90,91]. A small refugium, or several scattered ones,
probably also existed on the northern slope of the Greater Caucasian Ridge [15,92,93].
However, the adjacent foothill and coastal plains, for example, the Black Sea Lowland,
Azov–Prikubanskaya Lowland and the northern Crimean Lowland, and especially their
parts significantly removed from the modern sea line and mountains, have been studied
much worse in terms of diversity and endemism. At the same time, only a few endemics
have been found in these areas (see Table 2). Low diversity in these areas can also be
explained by the influence of ancient periods of cooling and glaciation, especially the
significant influence of the cold climate in Pleistocene [94,95].
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Figure 8. Niphargus potamophilus Birštein, 1954 from the mouth of the Belbek River, Crimean Peninsula,
general view, alive coloration.

According to the latest molecular genetic data, most of the endemic and sub-endemic
species of the genus Niphargus for the Northern Black Sea and the Azov–Prikubanskaya low-
lands, Caucasus and Crimean Peninsula are usually related to southwestern and western
European relatives [6,9–11,13,15,96–99], which indicates the presence of a common fresh-
water or brackish water ancestor during the existence of the Eastern Paratethys [57–59].
The formation of the Carpathian arc–shaped mountain belt led to the final division of
Paratethys into two parts in the Late Miocene (about 11.63–5.333 Mya)—the Central
Paratethys (Pannon Lake, or Pannonian Basin) and the Eastern Paratethys (Dacian, Eux-
ine and Caspian basins) [64,65,98,99]. Later, the Messinian crisis (5.96–5.33 Mya), fluc-
tuations in the level/salinity of the separated abovementioned basins of the Eastern
Paratethys during the Pliocene (5.333–2.58 Mya), divided ancestral genetic lineages into
various refugees, where they survived during the Pleistocene periods of cooling/glaciation
(2.58 Mya–11.7 Tya) [100,101], also representing the recent speciation [54]. Formation
of the northwestern foothills of the Great Caucasian Ridge and salinization of the Azov
Sea basin during the last 1.0–1.5 Mya probably led to the formation of a rather isolated
Azov-Prikubanskaya Lowland and its specific fauna.
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Figure 9. Stygobiotic crustaceans from the studied spring on a shore of the Kiziterinka River (Rostov-
on-Don) in the mouth of the Don River (above) and (below) currently known diversity of different
endemic and sub-endemic amphipods (Crustacea: Amphipoda), showing different types of the
distribution (local endemic and sub-endemic) in the Northern Black/Azov Sea Lowland bordered
with estuaries of the rivers Kuban and Don (Sea of Azov), Dnieper, Dniester and Danube (Black Sea).
Star indicates the well-studied region in the Rostov-on-Don, inhabited by endemic and stygobiotic
D. kiwi, P. donensis and N. rostovi sp. nov. Yellow circles indicate different species of the genera
Niphargus (signed); red (new record in the Crimean Peninsula) and blue circles indicate the distribu-
tion of N. potamophilus. Rhombs indicate the known records of the genus Pontonyx; red-colored area
indicates Cryptorchestia cf. garbinii (see Table 2). Fauna of the mountainous (Caucasian, Crimean and
Carpathian) areas are not presented.
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Recent studies indicate the existence of a number of narrowly distributed endemics on
the Northern Black/Azov Sea Lowland, among the species that are not capable of moving
and expanding their range, for example, slave-making ants of the genus Strongylognathus
Mayr, 1853 (Hymenoptera, Formicidae) [102,103], stygobiotic amphipods of the genera
Niphargus Schiödte, 1849 (Amphipoda, Niphargidae) [6,12,52,64,81,104–106], Diasynurella
Behning, 1940 and Pontonyx Palatov and Marin, 2021 (Amphipoda, Crangonyctidae) [52,55,56]
(see Figure 9), as well as, for example, sandy blind mole-rat Spalax arenarius Reshetnik, 1939,
strictly distributed in steppe habitats of the most southern left the left bank of the Dnieper
river [53,107]. The unique subterranean sulfide cave ecosystems of eastern Romania (for
example, the Movile Cave), isolated for about 5.0–2.5 Mya, are inhabited by a whole
complex of endemic animals of different taxonomic groups [108–110]; in addition, a kind
of endemism is observed for the fish of the Kuban River [111]. However, such studies are
limited, and present-day records are largely random, whereas the number of endemic and
narrowly distributed species discovered at the moment may be underestimated. There are
also a number of sub-endemic species characteristic of the Azov–Prikubanskaya Lowland
(e.g., form separate lineages of landhooper of Cryptorchestia cf. garbinii Ruffo, Tarocco and
Latella, 2014 (pers. observ, in prep.) and freshwater mussel Anodonta anatina (Linnaeus,
1758) [54], as well as the whole Black/Azov Sea Lowland (e.g., N. potamophilus [14,63]) (see
Figure 9) or different freshwater mollusks and snails [112] (see Table 2).

The discovery of subterranean/stygobiotic species in this area, especially from the
genera Niphargus, Pontonyx and Diasynurella (see Figure 9; Table 2), in our opinion, clearly
indicates the existence of an ancient refugium in this area, since they cannot move into new
territories [17]. The new species, Niphargus rostovi sp. nov., diverged from the most related
Niphargus karkabounasi also for about 5 Mya (see above), as well as co-existing crangonyctid
D. kiwi and P. donensis for more than 20 Mya or an even longer time [55,56], indicating that
they have existed here at least since the Plio-Pleistocene times, and probably successfully
survived these events. A number of strictly endemic and a whole group of sub-endemic
species for the Northern Black Sea region (see Table 2) indicates the existence of a glacial
refugia in this area, similar to the Colchis and Hyrcania in the southeast, as well as the
Carpathian and Italian in the southwest.

A significant morpho-geological difference of the glacial refugium in the Northern
Black/Azov Sea Lowland is the absence of a restraining (protecting) northern ridge of
mountains or a separate mountain range, in contrast to the Great Caucasian Ridge, for
example, mostly protecting the Colchis from the cold air masses. In this case, the Black and
Azov Seas basins probably maintained the microclimate stability, restraining a large intake
of cold air, as it is happening at present. The deepest known ancient episodes of glaciation
to the south reached the northern borders of Ukraine and the modern Rostov and Samara
regions (for example, Don Glaciation (Donian Glaciation or the Donian Stage)), the major
glaciation of the Eastern European Plain, 0.5–0.8 Mya, during the Cromerian Stage of the
Middle Pleistocene [113]. The northernmost of the currently known representatives, for
example, of the genus Niphargus, are distributed up to the northern slopes of the Carpathian
Mountains and further north have been not found, indicating that their northward distribu-
tion boundary was probably limited by the Pleistocene glaciation [51,114–117]. Moreover,
Volgonyx dershavini (Behning, 1928) is one of the northernmost stygobiotic crangonyctid
amphipods (Amphipoda: Crangonyctidae), survived in the Saratov region of the Volga Up-
land since at least Miocene [118], also pointing to the southeastern border of the past events
of glaciations. The post-glacial re-colonization also largely explained the presence in the
fauna of some elements of the Western European and Caucasian fauna in the Black/Azov
Sea Lowlands [119–123]. Two epigean species of the genus Niphargus, N. hrabei S. Kara-
man, 1932 are N. valachicus Dobreanu and Manolache, 1933, currently found in the coastal
swamp area of SW Caucasus [14,63] and also the Pannonian River Basin [60–62]. Both
species are of the Ponto-Caspian origin, dispersed in the Black/Azov Sea Lowland from the
Pannonian region throughout the Danube riverbed possibly during or just after the Last
Glacial Maximum (30–25 Tya). At that time, the area of the Black and Azov Sea including
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the estuary of the Dnieper, Dniester, Danube and Don Rivers represented a freshwater
lake, isolated from the World Ocean [62,63,124–126], and lately (about 7–9 Tya) separated
by flooding of the saline waters from the Mediterranean Sea [127–129]. At the same time,
another epigean species, Niphargus potamophilus Birštein, 1954, is most likely native to the
Black/Azov Sea Lowland, while currently its populations are somewhat scattered [14,63]
or still undiscovered.

We believe that the current distribution of subterranean/stygobiotic species in the
Northern Black/Azov Sea Lowland is determined in the past by both the periods of
glaciation and the boundary of the Eastern Paratethys. The findings of a new stygobiotic
species of Niphargus in the mouth of the Don River and related species in continental Greece
confirm this fact, since they are all located along the boundaries of the Paratethys during the
Miocene, about 10–7 Mya [57,59]. Ancient historical events significantly modernized the
original fauna both by advancing the seawater boundary with the modern Black Sea coast,
which flooded the available habitats of stygobiotic animals while water masses of the Black
and Azov seas helped to maintain a warm and stable climate, and by shifting the northern
distribution boundary to the south under the influence of deeply penetrating episodes of
glaciation. At present, the primordial relict habitats of the time of the Eastern Paratethys
are probably represented only by a narrow landline (lowland) along the northern coastline
of the Black and Azov seas, which we consider as a refugium.

Table 2. The endemic/sub-endemic species of non-mountainous part of the northern Black and Azov
Sea area (the diversity of the Movile Cave, eastern Romania, is excluded [110]).

Species Distribution Lifestyle and Habitats Reference

CRUSTACEA: AMPHIPODA
Synurella philareti Birštein, 1948 (=Pontonyx philareti) Endemic, a spring in a mouth of Dnieper stygobiotic, in springs [130]

Pontonyx odessana (Sidorov and Kovtun, 2015) Endemic, catacombs of Odessa subterranean water reservoirs
in the catacombs [52]

Pontonyx donensis (Martynov, 1919) Endemic, several springs in the Rostov-on-Don stygobiotic, in springs [48,56]
Diasynurella kiwi Marin and Palatov, 2023 Endemic, a spring in the Rostov-on-Don stygobiotic, in spring [55]

Niphargus ciscaucasicus Marin and Palatov, 2019 Endemic, Apsheronsk area stygobiotic, inside well [11]
Niphargus birsteini Dedyu, 1963 Endemic, a spring in Pyatra village, Moldova stygobiotic, in spring [51]

Niphargus jaroschenkoi Dedyu, 1963 Endemic, a spring in Novye Badrazi village, Moldova stygobiotic, in spring [51]
Niphargus tarkhankuticus Marin, Turbanov, Prokopov and

Palatov, 2022 Endemic, Tarkhankut Plain, Crimean Peninsula stygobiotic, in wells [9]

Niphargus dancaui Brad, Fišer, Flot and Sarbu, 2015 Endemic, Movile Cave and surrounding area in Mangalia sulphidic groundwater, caves [97]

Niphargus dobrogicus Dancau, 1964 Endemic, Doi Mai, Schitu and Vama Veche
(Dobrogea) in Eastern Romania sulphidic groundwater [104,108]

Niphargus ruffoi (Karaman and Sarbu, 1993) Endemic, Hagieni Spring near Mangalia sulphidic groundwater [106,108]
Niphargus racovitzai (Dancau, 1968) Endemic, Movile Cave, Mangalia sulphidic groundwater [105,108]

Niphargus decui G. Karaman and Sarbu, 1995 Endemic, in southern Dobrogea in Mangalia stygobiotic, in well [80,108]
Antrobathynella stammeri stammeri (Jakobi, 1954) Endemic, Danilo-Ivanovka village, Zaporozhye region stygobiotic, in spring [131]

Bathynella natans ukrainica Monchenko, 1968 Endemic, from the Chumshe spring in the vicinity
of the village of Vladimirovka, Odessa region stygobiotic, in spring [131]

Niphargus potamophilus Birštein, 1954 Sub-endemic, the Northern
Black/Azov Sea Lowland

epigean, in ponds and other
water reservoirs [14,53,63]

Cryptorchestia cf. garbinii Ruffo, Tarocco and Latella, 2014
(a separate mitochondrial DNA (COI) lineage) The Azov–Prikubanskaya Lowland terrestrial, cryptic pers. observ,

in prep.
Pontogammarus cf. maeoticus (Sovinskij, 1894) (a separate

mitochondrial DNA (COI) lineage) Eastern Crimean Peninsula free living, fresh water [132]

INSECTA
Ecdyonurus dispar gratificus Martynov and Godunko, 2013 Endemic to the Donetsk Ridge fresh water, stream [49]

Dorcadion spp. (ciscaucasicum-group, cinerarium-group) Endemic or sub-endemic to Northern Black and
Azov Sea Lowland terrestrial [133]

Colletes tardus Noskiewicz, 1936 Kherson Province terrestrial [134]
Melitta budashkini Radchenko and Ivanov, 2012 Cape Chauda, the Kerch Peninsula terrestrial, xerophytic steppe [135]

Andrena stepposa Osytshnjuk, 1977 Donetsk region, Khomutovskaya steppe, valley of the
Gruzsky Elanchik river, Kharkiv and Voronez regions terrestrial [136]

Strongylognathus arnoldii Radchenko, 1985 Endemic, Tarkhankut Plain, Crimean Peninsula terrestrial [137,138]
Strongylognathus chelifer Radchenko, 1985 Endemic, Kherson oblast, Askania-Nova terrestrial [102,103,138]
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Table 2. Cont.

Species Distribution Lifestyle and Habitats Reference

GASTROPODA
Elia novorossica nagolnica Balashov, 2013 Endemic of Donetsk Upland terrestrial [139]

Clathrocaspia knipowitchi (Makarov, 1938) Sub-endemic. In the Dnieper River near Kherson
City, Don River and Caspian Sea

in rivers and freshwater
parts of limans [140,141]

Clathrocaspia stanislavi (Alexenko and Starobogatov, 1987) Endemic, in the mouth of the Don river in the stream of the river;
probably crenobiotic [see 142] [140–142]

Laevicaspia lincta (Milaschewitsch, 1908) Sub-endemic, along the northern Black
and Azov Sea coastal area

in fresh and brackish
waterbodies [141–143]

Laevicaspia ismailensis (Golikov and Starobogatov, 1966) Endemic, along the northern Black
and Azov Sea coastal area

in fresh and brackish
waterbodies [141–143]

Clessiniola variabilis (Eichwald, 1838) Sub-endemic, northern Black
and Azov Sea coastal area

in fresh and brackish
waterbodies [141–143]

Turricaspia chersonica Alexenko and Starobogatov, 1987 Endemic, northern Black and Azov Sea coastal area in fresh and
brackish waterbodies [141–143]

BIVALVIA
Anodonta anatina (a separate

mitochondrial DNA (COI) lineage) The Azov–Prikubanskaya Lowland fresh water [54]

Adacna fragilis Milaschewitsch, 1908 Endemic, the northern Black Sea maritime area fresh and brackish waterbodies [141,144]
Adacna colorata (Eichwald, 1829) Sub-endemic, the northern Black Sea maritime area fresh and brackish waterbodies [141,144]

Hypanis plicata relicta (Milaschewitch, 1916) Endemic, the northern Black Sea maritime area fresh and brackish waterbodies [141,144]

FISHES
Barbus kubanicus Berg, 1912 Endemic of the Kuban River fresh water [11]

Sabanejewia maeotica Vasil’eva and Vasil’ev, 2023 Endemic of the lower Don River fresh water [145]
Sabanejewia spp., Romanogobius spp., Alburnus spp.,

Leuciscus spp. (some species) Local endemics of Ponto-Caspian Basin fresh and brackish waters [145–147]

MAMMALIA

Spalax arenarius Reshetnik, 1939 The southern part of the left bank of the Dnieper
River, opposite the city of Kherson terrestrial, burrowing [54,107,148]

Author Contributions: The authors of the article (I.N.M. and D.M.P.) participated in the execution
of all parts of this study equally. All authors have read and agreed to the published version of
the manuscript.

Funding: The study is supported by the Russian Foundation for Basic Research (RFBR) (grant No.
20-04-00803_A).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors are sending their special thanks to Roman A. Rakitov (Paleontologi-
cal Institute of Russian Academy of Sciences) for his help with obtaining SEM images.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Horton, T.; Lowry, J.; De Broyer, C.; Bellan-Santini, D.; Coleman, C.O.; Corbari, L.; Costello, M.J.; Daneliya, M.; Dauvin, J.-C.;

Fišer, C.; et al. World Amphipoda Database. Niphargus tatrensis Wrzesniovsky, 1888. World Register of Marine Species. 2023.
Available online: http://marinespecies.org/amphipoda/aphia.php?p=taxdetails&id=546804 (accessed on 31 January 2023).

2. Väinölä, R.; Witt, J.D.S.; Grabowski, M.; Bradbury, J.H.; Jazdzewski, K.; Sket, B. Global diversity of amphipods (Amphipoda;
Crustacea) in freshwater. Hydrobiologia 2008, 595, 241–255. [CrossRef]
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