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Abstract: Understanding how environmental gradients shape the spatial patterns of intraspecific
genetic diversity is a central issue in ecological and evolutionary sciences. In riverine ecosystems,
there is generally an increase in neutral genetic diversity downstream, as well as an increase in genetic
differentiation among upstream populations. However, selective pressures may vary markedly along
the upstream–downstream gradient, which could modify these patterns, but this has rarely been
tested empirically. Here, we investigated how environmental gradients in a river network could shape
the spatial patterns of intraspecific genetic diversity and differentiation in both neutral SNP markers
and functional genetic markers putatively under natural selection (candidate SNPs associated with
physiological functions and immune Major Histocompatibility Complex (MHC) loci) in wild brown
trout populations. First, we showed that both the distance from the confluence and the centrality on
the river network could explain the variation in genetic diversity and differentiation. Second, we
found that both neutral and functional markers followed a similar pattern, with a higher genetic
diversity and a lower genetic differentiation among populations that were more central and/or
near to the confluence. This study highlights the importance of considering both the spatial and
hydrological factors of a river network to understand and predict the role of dendritic connectivity in
the spatial patterns of genetic diversity and differentiation in wild fish populations.

Keywords: genetic diversity; genetic differentiation; SNP; MHC; upstream–downstream gradient;
Salmo trutta; riverscape

1. Introduction

Understanding how environmental gradients shape the spatial patterns of intraspecific
genetic diversity and differentiation is a central issue in ecology and evolution, with
important implications for biodiversity conservation [1–3]. Genetic variation in natural
populations is shaped by a combination of neutral factors such as mutation, drift, dispersal,
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and changes in the effective population size, as well as non neutral mechanisms such
as natural selection. These mechanisms can lead to spatial patterns of genetic diversity
and differentiation that can be observed at a small and large scale along latitudinal and
longitudinal gradients [4–7].

Over the last decade, an increasing number of studies have examined how the spe-
cific spatial structure of riverine ecosystems and the associated environmental gradients
shape genetic and ecological patterns [8]. Indeed, riverine ecosystems are hierarchical and
dendritic networks are structured by elevation [9]. First, unidirectional water flow may
cause downstream-biased dispersal and asymmetric gene flow [10–12]. Second, increased
habitat availability downstream (due to increasing river width) may favor larger effective
population sizes (Ne) [12,13]. Third, an upstream-directed colonization (assuming that
founding populations are located downstream after, e.g., a glacial event) may lead to a
loss of genetic variation along colonization routes [14]. These three processes may lead to
an increase in neutral genetic diversity downstream [6,12,15–17]. Moreover, the dendritic
geometry of riverscapes shapes the population structure so that downstream zones of
confluence are potential admixture zones between individuals from different lineages,
while upstream populations are expected to be more isolated from each other. This often
leads to a higher neutral genetic differentiation among upstream populations compared to
downstream populations [13,18–20]. Finally, anthropogenic fragmentation, such as dams or
weirs, may negatively impact genetic diversity and the population structure according to
species [21]. Up to now, most studies investigating the spatial patterns of genetic diversity
of and/or differentiation in riverscapes have focused on neutral genetic markers, and there
is thus a lack of knowledge on how functional genetic markers (i.e., DNA sequences coding
for a protein) vary along dendritic networks, despite their functional importance in natural
populations.

Indeed, environmental pressures in rivers may vary significantly along the upstream–
downstream gradient, potentially resulting in different spatial patterns in functional genetic
markers compared to neutral markers. For instance, water temperature, a key selective
agent in ectotherms such as fish [22], generally increases downstream, while water quality
generally decreases due to increased anthropogenic activities and pollution along the course
of the river [23]. Additionally, predator and pathogen communities tend to be more diverse
and more virulent in downstream areas due to increased temperature and prey/host
diversity [24]. These environmental variations in selective pressures may influence the
distribution of functional genetic variations in fish populations along rivers [25,26].

To tackle these questions, we used the brown trout (Salmo trutta) as a model species
because it is particularly sensitive to temperature and water quality changes [27–29]. In
addition, many wild brown trout populations suffer from various pathogens and diseases,
whose prevalence and severity vary along the upstream–downstream gradient [30,31]. For
instance, the myxozoan pathogen Tetracapsuloides bryosalmonae, responsible for Prolifera-
tive Kidney Disease (PKD), is often more prevalent downstream due to increased water
temperature [32–34].

The aim of this study is therefore to investigate how environmental gradients shape
intraspecific diversity and differentiation in both neutral and functional genetic markers in
wild brown trout populations. Based on previous studies, we first predicted that neutral
genetic diversity would be higher downstream due to one of the three processes explained
above (i.e., downstream-biased dispersal, higher effective population size in downstream
areas, upstream-directed colonization) [12]. We also expected to find a higher downstream
genetic diversity for functional markers due to a higher selective pressure downstream.
Second, we predicted that genetic differentiation measured using neutral markers would
be higher between populations located upstream because of geographic isolation caused
by dendritic networks of riverscapes [13]. In contrast, genetic differentiation in functional
genetic markers could be lower between populations located upstream due to conver-
gent selective pressures in all upstream sites (similar environmental biotic and abiotic
conditions).
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2. Materials and Methods
2.1. Study Areas and Fish Sampling

We sampled sixteen brown trout populations in the Central French Pyrenees along
upstream–downstream gradients in the Garonne and Ariège sub-river basins (Ariège
Department, southwestern France, Figure 1) between September and October 2018. For
each site, up to twenty fish of different ages (0+, 1+ and 2+ fish) were sampled (n = 318,
Table 1) using electrofishing. After anesthesia, a small piece of pelvic fin was sampled from
each individual and stored in 96% alcohol for genotyping analyses.
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Figure 1. Map of the sampling sites in the Central French Pyrenees along the Garonne and Ariège
sub-river basins (Ariège Department, southwestern France). The dams and weirs that may impede
the migration of brown trout (i.e., >3 m and without a fishway) are illustrated on the map, with, in
yellow, those whose height is between 3 and 5 m, in orange, those whose height is between 5 and
10 m and in red, those whose height is >10 m.

Table 1. Characteristics of sampled sites. Distances from the confluence (km) and centrality were
calculated using QGIS software. N represents the number of trout sampled.

Population River Site Distance from the
Confluence (km) Centrality N

ARABas L’Arac Bas des gorges 117.8 −0.518 20
ARIPam L’Ariège Pamiers 63.3 2.354 22
ARISav L’Ariège Savignac 132.1 0.035 16
ARIVar L’Ariège Varilhes 76.8 2.163 20
ARZDur L’Arize Durban 95.8 −0.518 25
BOUArg La Bouigane Argein 119.9 −0.615 20
COUPis La Courbière Aval pisciculturé 105.8 −0.711 20
HERPey L’Hers Peyrat 134.3 −0.330 20
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Table 1. Cont.

Population River Site Distance from the
Confluence (km) Centrality N

LEZAub Le Lez Aubert 107.8 −0.145 20
ORIAx L’Oriège Ax-les-Thermes 135.4 −0.615 22
SALGir Le Salat St-Girons 104.8 0.124 20
SALTau Le Salat Taurignan-Castet 97.9 1.335 13
SAUAri Le Saurat Arignac 106.2 −0.810 20
SIOTra Le Sios Tramezaïgues 92.4 −0.712 20
TOULar Le Touyre Laroque-d’Olmes 127.7 −0.615 20
VICNia Vicdessos Niaux 110.4 −0.424 20

Total 16 318

2.2. Spatial Data

We used the distance of each site from a common confluence as a measure of the
population position along the upstream–downstream gradient, with downstream popula-
tions having the shortest distance from the confluence [12,16]. Here, the nearest confluence
shared by all the sites was that between the Ariège and the Garonne rivers (Figure 1).
We also computed the centrality of each site on the river network, which represents how
important a site is in terms of structural connectivity [35]). The centrality measure in a
river network is the sum of distances of a node to all other nodes. We have thus added
about 200 points along our river network every 5km, so that they are evenly spread over
the network (Figure S1). We then calculated the shortest path between each pair of points
in the network. Finally, we counted how often our sites of interest lie on the shortest path
between each pair of nodes in the network in order to obtain centrality values, which were
then scaled to the mean (Table 1). All these measures (i.e., distance from the confluence
and centrality) were computed using Geographic Information System software (QGIS De-
velopment Team, 2008, V 3.12) with the “Shortest path” option from the network analysis
tools.

2.3. Genotyping of Neutral and Functional Genetic Markers

Neutral genetic diversity was measured using a set of 143 putative neutral Single
Nucleotide Polymorphisms (SNPs, Table S1) evenly spread across the brown trout genome,
developed by Saint-Pé et al. [36]. Functional genetic diversity was first evaluated using
a set of 19 ‘candidate’ SNPs markers (Table S2) related to physiological functions and/or
tolerance or resistance to pathogens in brown trout [37]. SNP genotyping was conducted
by the genomic service of LGC Genomics (Biosearch Technology, Teddington, UK) using a
KASPAR® genotyping approach. To ensure the reliability of the genotyping, we duplicated
54 individuals that indicated no error in scoring. We also screened the genetic diversity
of Major Histocompatibility Complex (MHC) class IIβ that is involved in several critical
immune processes and parasite resistance [38,39]. MHC gene diversity is strongly affected
by environmental variations (temperature, water quality and pathogen communities) along
spatial gradients in salmonids [24,38].

The genotyping procedure of MHC class IIβ was described in Portanier et al. [40].
Concisely, a two-step PCR (polymerase chain reaction) was performed to amplify the
second exon of the MHC class IIβ gene (Satr-DAB) in each fish, using the forward primer
5′-TCT GTA TTA TGT TTT CCT TCC-3′ [41] and the reverse primer 5′-CAC CTG TCT TGT
CCA GTA TG-3′ [42]. Technical replicates for 54 individuals (17%) were used to measure
the error rate and assess the robustness of the genotypes, and negative controls for PCR
and indexing were added to each PCR microplate to detect potential contamination. PCR
products were pooled by volume and a 2 × 250 bp paired-end Nano MiSeq (Illumina,
San Diego, CA, USA) run was conducted. The FROGS software [43] was used to sort
sequences, identify and discard artifactual variants, and generate the haplotypes and
individual genotypes (Table S3).
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2.4. Genetic Analyses

Descriptive statistics. Hardy-Weinberg expectations were calculated using Arlequin V.
3.5.2.2 [44]. Only the loci that showed deviations from Hardy–Weinberg equilibrium in all
populations were excluded from the analysis. The loci that showed HWE deviations for at
least one population were retained. FIS, observed (Ho), and expected (He) heterozygosity
per population were calculated using GENETIX V. 4.05.2 [45] after 10,000 permutations of
alleles within each population. The potential occurrence of null alleles and scoring errors
due to stuttering or large allele dropout in the dataset was assessed using the software
Micro-Checker V.2.2.3 ([46], Supporting Information S1).

Genetic diversity. FSTAT V.2.9.4 [47] was used to compute the allelic richness (Ar) as
a standardized measure of population genetic diversity, adjusted for the smallest sample
size (n = 13 individuals in our case) [12]. The local diversity estimate based on expected
heterozygosity (He) was also tested along the environmental gradient.

Genetic differentiation. As a measure of differentiation, we computed the Pairwise
FST. The pairwise FST was calculated using GENEPOP V. 4.7.5 [48] for each marker inde-
pendently. We then computed the mean values of the pairwise FST for each population
(hereafter mean FST) as a measure of population genetic uniqueness (Table S4; Refs. [12,49]).

Population genetic structure. In order to determine the number of genetically homo-
geneous groups, a Bayesian genetic clustering algorithm implemented in the package
‘rmaverick’ [50] of the R statistical software v.3.6.1 (R Development Core Team 2015) was
performed on each type of genetic marker. Log-likelihood plots were obtained using the
thermodynamic integration procedure implemented in ‘rmaverick’ to determine the opti-
mal genetic clusters K (ranking from 1 to 10). Ten iterations were performed for each value
of K. Each iteration consisted of a “Burnin” period of 10,000 steps, followed by a Monte
Carlo Markov Chain (MCMC) of 200,000 steps. Individuals were assigned to the selected K
groups with the greatest individual membership probabilities (Q-value). A preliminary
analysis using neutral SNPs, which included individuals from the four main hatchery
strains, allowed us to confirm that only the Touyre river sampled was impacted from the
captive-bred strains (Figure S2).

2.5. Statistical Analyses

We tested the relationships between genetic diversity (Ar), the upstream–downstream
gradient (using the distance from the confluence, hereafter called ‘dist conf’), centrality and
the type of genetic marker (neutral/functional) using linear models. Explicative variables
were set as fixed effects and we included first-order interactions. Quadratic terms were
added to test for nonlinear effects. The model was written as follows:

Ar ~ dist conf ×markers + dist conf2 ×markers + centrality ×markers + centrality2 ×markers

Then, we tested the effects of the upstream–downstream gradient, centrality and the
type of genetic marker on genetic differentiation (FST) using the same explanatory variables
as described before. The model was written as follows:

mean FST ~ dist conf ×markers + dist conf2 ×markers + centrality ×markers + centrality2 ×markers

All variables were centered to the mean. The relationship between the distance from
the confluence and the centrality was not significant (Spearman’s rho = −0.30, p = 0.255).
We used the corrected Akaike information criterion (AICc) to identify the best model. In
our case, a set of top models had a comparable AICc (∆AICc < 2) and/or no model had
a weight > 0.95 (i.e., the probability that a given submodel is the best; [51]). We thus
performed a model averaging method on this set of best submodels (∆AICc < 2) using
the zero method with the model.avg function implemented in the R package MuMIn V
1.47.1 [52]. This procedure involved calculating a weighted average of parameter estimates,
so that parameter estimates that provide the least information about the variance in the
response variable are given little weight. In that way, the parameter’s relative importance



Diversity 2023, 15, 784 6 of 16

(that is, the sum of weights over all the best submodels in which the variable appears)
reflects the ‘importance of the effect’ that an explanatory variable may have on the re-
sponse variable [53]. Additionally, we performed a correlation analysis between genetic
markers using the cor.test function implemented in the R package Stats V 3.6.3 [54] to exam-
ine whether populations with higher neutral genetic diversity/differentiation were also
those with higher functional genetic diversity/differentiation. The relationship between
population pairwise genetic (FST, computed as FST/1 − FST values according to [55]) and
hydrological distances for each type of marker was evaluated using a simple Mantel test
via the mantel.rtest function implemented in the R package Ade4 V 1.7.13 [56]. To control
for the potential impact of hydrological barriers such as dams or weirs on the population
structure, we performed a partial Mantel test based on Spearman’s rank correlation using
the mantel.partial implemented in the R package vegan V 2.5-6 [57]. The partial Mantel test
can be used to test whether two matrices (here the genetic distances and the hydrological
distances matrix) are correlated when controlling for a third matrix (matrix of hydrological
barriers) [58]. All tests were conducted using the R software (R Development Core Team
2010, V 3.6.3).

3. Results
3.1. Robustness and Descriptive Genetic Statistics

No deviation from Hardy–Weinberg equilibrium (HWE) was found at a p < 0.05
level, except for one SNP (X109230 locus) that showed HWE deviation for all the sixteen
populations. This SNP was thus removed from subsequent analyses. Seven populations
showed a significant deviation from the HWE in neutral SNP markers (Table 2). However,
these deviations were not associated with any particular locus (but with several), so these
loci were retained in our analysis. For candidate SNP markers, all populations were at the
HWE. Regarding the MHC class IIβ gene (Satr-DAB), a significant deviation from the HWE
was found in five populations (Table 2), suggesting an excess of homozygotes certainly due
to, e.g., potential null alleles (Supporting Information S1)).

Table 2. Summary of genetic index in SNP markers (N = 142 locus), candidate SNPs (N = 19 locus)
and MHC class IIβ gene. Na corresponds to the mean number of alleles over all loci; Ar is the
allelic richness adjusted for the sample size of the smallest population (12 individuals); He is the
expected heterozygosity and Ho is the observed heterozygosity. FIS corresponds to the inbreeding
coefficient. FST is the measure of population genetic differentiation, calculated from the average of the
pairwise FST values observed between a population and all other populations. (‘.’ p = 0.05; ‘*’ p < 0.05;
‘**’ p < 0.01; ‘***’ p < 0.001).

SNPs Candidate SNPs MHC ClassIIβ
Population Na Ar He Ho FIS FST Na Ar He Ho FIS FST Na Ar He Ho FIS FST
ARABas 1.51 1.48 0.16 0.16 0.027 0.067 1.47 1.47 0.16 0.17 −0.007 0.070 19 14.56 0.93 0.70 0.253 ** 0.060
ARIPam 1.69 1.63 0.21 0.22 −0.037 0.063 1.68 1.62 0.19 0.19 0.021 0.069 16 12.27 0.91 0.86 0.053 0.076
ARISav 1.72 1.67 0.17 0.18 −0.015 0.114 1.63 1.60 0.17 0.16 0.076 0.060 12 11.00 0.90 1.00 −0.111 0.088
ARIVar 1.69 1.62 0.19 0.20 −0.034 0.062 1.68 1.63 0.18 0.17 0.100 0.039 13 11.38 0.91 0.84 0.077 0.075
ARZDur 1.50 1.45 0.14 0.15 −0.013 0.130 1.63 1.54 0.16 0.16 0.045 0.132 10 8.44 0.84 0.83 0.013 0.126
BOUArg 1.50 1.48 0.17 0.17 −0.005 0.081 1.53 1.46 0.14 0.14 0.046 0.072 8 6.71 0.70 0.60 0.146 0.180
COUPis 1.60 1.57 0.19 0.19 0.042. 0.066 1.58 1.56 0.20 0.18 0.105 0.085 18 14.79 0.95 0.90 0.051 0.068
HERPey 1.52 1.49 0.15 0.14 0.082 ** 0.116 1.53 1.48 0.13 0.14 −0.005 0.061 11 9.51 0.87 0.50 0.430 *** 0.098
LEZAub 1.52 1.50 0.18 0.17 0.047 * 0.064 1.47 1.45 0.16 0.16 0.007 0.055 17 13.70 0.91 0.50 0.459 *** 0.071
ORIAx 1.72 1.64 0.17 0.17 0.013 0.114 1.68 1.61 0.18 0.19 −0.034 0.070 11 8.43 0.79 0.76 0.036 0.141
SALGir 1.52 1.50 0.17 0.17 −0.006 0.137 1.58 1.53 0.17 0.18 −0.037 0.166 14 12.08 0.91 0.56 0.396 *** 0.091
SALTau 1.48 1.47 0.17 0.17 0.078 * 0.063 1.53 1.52 0.16 0.16 0.036 0.042 10 10.00 0.86 0.54 0.380 ** 0.070
SAUAri 1.62 1.56 0.18 0.17 0.092 *** 0.060 1.68 1.60 0.15 0.15 0.037 0.040 19 14.09 0.90 1.00 −0.114 0.094
SIOTra 1.66 1.61 0.19 0.19 0.047 * 0.083 1.58 1.54 0.17 0.18 −0.065 0.082 18 13.90 0.91 0.85 0.072 0.078

TOULar 1.56 1.53 0.17 0.17 0.040 0.060 1.53 1.51 0.16 0.16 0.067 0.052 15 12.74 0.92 0.95 −0.028 0.078
VICNia 1.52 1.49 0.16 0.16 0.050 * 0.078 1.53 1.51 0.17 0.19 −0.055 0.054 15 12.90 0.93 0.95 −0.023 0.070

3.2. Genetic Diversity

The mean allelic richness (Ar) per population ranged between 1.45–1.67 and 1.45–1.63
at the SNPs and the candidate SNPs, respectively (Table 2). At the MHC class IIβ gene, the
mean Ar per population ranged from 6.71 to 14.79, with a mean of 11.66 (Table 2).
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The centrality, as well as the distance from the confluence, were both important
predictors of genetic diversity in brown trout populations (Tables 3 and 4), with higher
genetic diversity in populations that were more central and/or closer to the confluence
(Figure 2). The two predictors have similar relative importance invariations regarding
genetic diversity (RI = 0.52, 0.48, respectively; Tables 3 and 4). The type of marker was
not retained in the best submodels, indicating that it does not explain the genetic diversity
variation along the river network.
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Table 3. Best submodels [∆ corrected Akaike’s information criterion (AICc) < 2] explaining the
variation in genetic diversity (Ar) and differentiation (FST) along environmental gradients (distance
from the confluence, centrality) considering the type of genetic marker (SNPs, candidate SNPs and
MHC).

df Loglik. AICc ∆AICc Weight

Genetic diversity (Ar)
c + c2 4 −62.957 134.8 0.00 0.246
d + d2 4 −63.368 135.7 0.82 0.163
d 3 −64.979 136.5 1.66 0.107

Genetic differentiation (FST)
c + c2 + d + d2 6 −60.599 135.2 0.00 0.319
c 3 −65.047 136.6 1.39 0.159

Loglik. Log-likelihood, c centrality, d distance from the confluence.

Regarding the He estimates, the distance from the confluence was the most important
predictor of local diversity, with higher diversity in populations away from the confluence
(Table S5, Figure S3).

Correlation analyses revealed that populations with higher neutral genetic diversity
(SNPs marker) also had higher genetic diversity in the candidate SNP marker (r = 0.80),
but not at the MHC marker (r = 0.15). There was no correlation between the two functional
markers; populations with higher genetic diversity in the candidate SNP marker were not
necessarily those with a higher genetic diversity in the MHC marker (r = 0.01).
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Table 4. Model-averaged coefficients of best submodels (∆AICc < 2) explaining the variation in
genetic diversity (Ar) and differentiation (FST) along environmental gradients (distance from the
confluence, centrality).

Estimate ± Se CI RI

Genetic diversity (Ar)
Centrality −0.41 ± 0.32 −1.05, 0.23 0.48
Centrality2 0.42 ± 0.19 0.03, 0.81 0.48
Distance from confluence −0.18 ± 0.15 −0.49, 0.12 0.52
Distance from confluence2 0.20 ± 0.11 −0.03, 0.42 0.32

Genetic differentiation (FST)
Centrality 0.08 ± 0.35 −0.62, 0.79 1
Centrality2 −0.90 ± 0.32 −1.54, −0.26 0.67
Distance from confluence −0.51 ± 0.26 −1.04, 0.02 0.67
Distance from confluence2 0.53 ± 0.20 0.12, 0.94 0.67

Parameter estimates are given ± adjusted SE; CI—95%Confidence interval, RI—relative importance of each
parameter.

3.3. Genetic Differentiation

The mean FST per population ranged between 0.060 and 0.137 0.040 and 0.166 and
0.060 and 0.180 in the SNPs, the candidate SNPs and the MCH class IIβ gene, respectively
(Table 2).

Centrality and the distance from the confluence both explained the variation in the
genetic differentiation in brown trout populations (Tables 3 and 4), with distinctly lower
genetic differentiation among populations that were both most central and closest to the
confluence (Figure 3). Centrality was retained in the two best submodels explaining
variations in genetic differentiation (RI = 1, Tables 3 and 4). The type of marker was
not a significant predictor of genetic differentiation, indicating that it does not affect the
variations in genetic differentiation.
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Correlation analyses revealed that populations with higher genetic differentiation
in the SNP marker also had higher genetic differentiation in the candidate SNPs marker
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(r = 0.71). However, this pattern was less evident in the MHC marker (r = 0.49). Moreover,
there was no correlation between the two functional markers (i.e., candidate SNPs and
MHC marker; r = 0.27).

The simple Mantel test suggested a significant positive relationship between genetic
and hydrological distances, whatever the type of marker (r = 0.24, p = 0.016; r = 0.19,
p = 0.045; r = 0.21, p = 0.030, in the SNPs, candidate SNPs and MHC marker, respectively,
Figure 4). A partial Mantel test revealed that the number of dams and/or weirs did not
impact the variance in the genetic differentiation in the SNPs, candidate SNPs and MHC
marker (r = 0.13, p = 0.119; r = 0.15, p = 0.098; r = 0.15, p = 0.144, respectively).
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populations.

3.4. Population Genetic Structure

The Bayesian clustering method applied on the neutral SNP genetic marker of all indi-
viduals revealed an optimal number of groups, K = 4, corresponding to four geographical
groups: Garonne bassin, Ariège bassin, upstream of the Ariège river and the Touyre river,
which were impacted by hatchery strains (Figures 1 and 5A). Regarding the functional SNP
genetic marker, the Bayesian clustering method revealed an optimal number of groups,
K = 2, with significant admixture observed within each population, except for the Arize
river and the Touyre river (Figure 5B). Finally, the Bayesian clustering method revealed an
optimal number of groups, K = 2, for the functional MHC genetic marker, highlighting two
geographical groups: the Garonne basin and the Ariège basin (Figures 1 and 5C).
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Figure 5. Probability of each individual (represented by a histogram bar) being assigned (Q) to the
inferred groups. (A) Results from the analysis conducted on SNP genetic marker (N = 318). The
orange part corresponds to the Garonne bassin, the purple part corresponds to the Ariège bassin,
the yellow part corresponds to the upstream of the Ariège river and the blue part corresponds to the
Touyre river. (B) Results from the analysis conducted on functional SNP genetic marker (N = 318).
Significant admixture is observed in this genetic marker; however, the Touyre and Arize rivers appear
to have a stronger affiliation with the second group. (C) Results from the analysis conducted on
functional MHC genetic marker (N = 314). The purple part corresponds to the Garonne bassin, while
the orange part corresponds to the Ariège bassin.

4. Discussion

This study aimed to investigate how environmental gradients, such as the upstream–
downstream gradient and centrality in the river network, could shape the spatial patterns
of intraspecific genetic diversity and differentiation at neutral compared to functional
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genetic markers, with the main assumption that functional markers do not necessarily have
the similar spatial patterns as neutral markers, as follows. First, our results revealed that
both the distance from the confluence and/or the centrality of the population in the river
network could explain the pattern of variation in genetic diversity and differentiation at the
metapopulation level. Second, contrary to our expectations, neutral and functional genetic
markers did not display significantly different spatial patterns along the riverscape. Overall,
genetic diversity was higher and genetic differentiation was lower in populations that were
more central and/or near to the confluence, regardless of the type of marker (neutral
or functional). Taken together, these results highlight the importance of considering the
network structure of watersheds to better understand the spatial patterns of intraspecific
variation.

4.1. Environmental Gradients Shape Spatial Patterns of Genetic Diversity and Differentiation

Paz-Vinas et al. [12] conducted a meta-analysis and found that the neutral genetic
diversity of organisms that disperse only in rivers, such as fish or crustaceans, generally
increases downstream, much more than those that also use the air (e.g., flying invertebrates)
or terrestrial environments (e.g., amphibians). For instance, some fish species exhibit a
very strong negative linear relationship between genetic diversity and distance from the
river mouth (Xyphophorus helleri, [59] or Xyrauchen texanus, [60]). Our results corroborate
this assumption, as the factors shaping genetic diversity were the populations’ centrality
on the river network and/or distance from the confluence, with populations that were
more central and/or closer to the confluence displaying a higher genetic diversity. We
noticed that populations considered as “central” were actually those located downstream
and closest to the confluence Garonne-Ariège, relative to all other populations (in the case
for ARIPam, ARIVar and SALTau, Table 1, Figure 1). These observations are consistent with
the literature, in which populations located close to a confluence displayed a higher genetic
diversity, because these populations were at the crossroad between several genetically
diversified populations [13,35]. Furthermore, it is possible that these populations displayed
a higher effective size due to the increasing river width, thus reducing the potential effects
of genetic drift [61].

Empirically and theoretically-based studies have shown an increase in genetic differ-
entiation among upstream populations due to genetic drift and geographic isolation in the
dendritic riverscape [13,19]. Our results corroborate this statement, as we found a relation-
ship between the genetic differentiation (FST) and the environmental gradients. Specifically,
populations that were least central and located farther away from the confluence exhibited
higher levels of genetic differentiation. This result is consistent with the significant positive
relationship observed in the Mantel test correlation analysis, which indicates that genetic
differentiation tends to increase as the distance between two populations increases in
brown trout populations. The genetic structure analysis further supports these findings,
revealing distinct genetic patterns and a distinct population structure within the brown
trout populations. Specifically, the Garonne basin and the Ariège basin exhibited different
genetic profiles based on the analyzed genetic markers. These findings reflect the influence
of river connectivity to gene flow, underlying the need to consider the dendritic shape of a
river network when studying genetic diversity and differentiation patterns [13].

In summary, our findings have highlighted the significant influence of environmental
gradients within river networks, such as centrality, the distance from the confluence, and
the overall profile of the river network, including sub-basins, on the genetic diversity
and differentiation observed in brown trout populations. These results underscore the
importance of considering both spatial and hydrological factors in studies of genetic
diversity and differentiation within riverine ecosystems. Moreover, these findings bring
important implications for the genetic conservation and management of brown trout
populations.
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4.2. Different Genetic Markers Can Exhibit a Similar Pattern

Our study provides valuable insights into the genetic diversity and differentiation, as
well as the population structure, of brown trout populations in the studied river network.
Interestingly, the type of marker did not significantly explain the variation in genetic
diversity and differentiation along the river network; the spatial distribution of alleles is
the same whether the markers are neutral (SNPs) or presumably functional (candidate
SNPs and MHC class IIβ gene), suggesting that the observed patterns were not marker-
dependent.

Correlation analyses revealed interesting relationships between different markers.
Populations with higher neutral genetic diversity and differentiation in the SNP genetic
marker also displayed higher genetic diversity and differentiation in the candidate SNP
genetic marker. One potential explanation is that the candidate SNPs used in this study
may not be under selection for these Pyrenean fish populations. Indeed, we chose these
candidate SNPs based on their potential role in immunity and resistance to a parasite in
brown trout based on previous studies, but these SNPs were developed in populations
from a different geographic area (Estonia, [37]). Because pathogen pressures vary between
regions and/or may act on different genes or SNPs, candidate SNP variation may have
been predominantly shaped by neutral evolutionary processes (e.g., drift and migration).
Furthermore, it could be assumed that upstream areas may harbor a higher quality habitat
for brown trout (e.g., a cooler water temperature), which would result in reduced selective
pressures and make drift and isolation the main evolutionary drivers for these upstream
populations, even at functional markers. Overall, we found an increase in genetic diversity
in populations that are more central and/or closest to the confluence, and in contrast, an
increase in genetic differentiation among populations that are least central and farther away
from the confluence in these two types of SNP markers (neutral and “functional”).

Regarding the MHC genetic marker, we found the same pattern as the two SNP
markers, that is, a higher genetic diversity in the most central populations and/or nearest
to the confluence and a higher genetic differentiation among the least central populations
and those furthest from the confluence. However, when we looked more closely, the
correlation between the MHC marker and neutral SNP markers at the population scale
was less pronounced, suggesting potential differences in the underlying evolutionary
processes shaping genetic diversity in the MHC region. Furthermore, no correlation was
found between the two functional markers (candidate SNPs and MHC marker), suggesting
distinct genetic dynamics and selective pressures acting on these markers. As we mentioned
above, it is possible that candidate SNP markers are not under selective pressure, unlike
the MHC marker. Furthermore, it could be assumed that environmental pressures acting
on MHC, such as pathogen diversity, might exert stronger effects on highly connected
populations, particularly those located in the middle within the river network and near
confluences. These populations could potentially act as hotspots for a community of
diversified pathogens coming from various waterways [62]. Future MHC-based studies
should therefore monitor pathogen diversity more precisely in highly connected areas
while taking into account the connectivity between populations to further decipher the
underlying mechanisms shaping variations in MHC genetic diversity and differentiation in
river networks.

The population genetic structure analysis revealed distinct geographical groups within
the brown trout populations. The Bayesian clustering method identified four groups based
on the neutral SNPs marker, corresponding to the Garonne basin, Ariège basin, upstream
of the Ariège river, and the Touyre river. This suggests that these populations exhibit clear
genetic differentiation based on their geographic location. In contrast, the analysis of the
functional SNP marker revealed two optimal groups, with notable admixture within each
population, except for the Arize river and the Touyre river. Furthermore, the analysis of
the functional MHC genetic marker highlighted two geographical groups, representing
the Garonne basin and the Ariège basin. This result suggests that the genetic variation
observed in the MHC genes is associated with specific geographic regions, potentially
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indicating differences in pathogen diversity or selective pressures. The observed differences
in the population structure between the neutral and functional markers highlight the
potential influence of different evolutionary processes on the genetic variation in brown
trout populations. The patterns of population structure and local diversity observed
for neutral SNPs reflected genetic drift and limited gene flow among populations. On
the other hand, the functional genetic markers, such as the MHC genes, may be under
strong selective pressures related to pathogens i. However, we point out that the Bayesian
clustering methods could overestimate the genetic structure and detect artificial genetic
clusters when isolation due to distance is only tested using Mantel tests and the sampling
design is not evenly distributed along the river network [63,64].

Overall, our findings demonstrate the importance of considering both neutral and
functional genetic markers in genetic studies to gain a comprehensive understanding of the
population structure and genetic variation in wild species. The similar patterns observed in
different markers driven by both neutral and adaptive evolutionary processes contribute to
shaping the genetic diversity and differentiation of brown trout populations in this study
area. Further research is warranted to explore the specific environmental factors or selective
pressures that contribute to the observed genetic patterns. Additionally, investigating the
functional significance of the identified genetic variations and their implications for the
ecological and evolutionary dynamics of brown trout populations would provide valuable
insights for conservation and management strategies.

5. Conclusions

Our study provides novel insights into the spatial patterns of intraspecific genetic
diversity and differentiation in both neutral and functional genetic markers along environ-
mental gradients in wild aquatic populations. We showed that centrality, the population’s
distance from the confluence and the structure of the river network caused by the dendritic
connectivity strongly influenced the genetic diversity and the differentiation among pop-
ulations in both neutral and functional genetic markers. We also highlighted that these
different markers followed the same spatial patterns despite the fact that they are shapedby
different drift and isolation, with evolutionary forces shaping neutral genetic markers and
the adaptative response to environmental pressures shaping functional genetic markers.
This study highlights the importance of considering the spatial and hydrological factors of
a river network to gain insights into the patterns of genetic diversity and differentiation
in wild populations, which could help biodiversity managers to improve conservation
strategies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d15060784/s1, Table S1. List of the 143 supposedly neutral
SNP markers from the brown trout genome; Table S2. List of the 19 ‘candidate’ SNP markers
related to the physiological functions of and/or tolerance or resistance to pathogens in brown trout;
Table S3. Individual genotype at the MHC class IIβ gene (Satr-DAB); Figure S1. Map showing points
added to measure centrality; Supporting Information S1. Null alleles and scoring errors; Table S4.
Mean pairwise FST values (calculated using GENEPOP V.4.7.5) between sites measured at SNPs,
candidate SNPs and MHC class IIβ markers, hydrological distance (km) between sites and number
of dams and/or weirs >3m between sites; Figure S2. Introgressive hybridization; Table S5. Local
diversity estimates based on expected heterozygosity (He); Figure S3: Local diversity (He) is higher
in populations farther away from the confluence.
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