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Abstract: Coralline algal beds are comprised of biogenic calcareous formations considered a habitat
of high conservation interest, hosting a high great biodiversity. To assess the status of this habitat
in the Italian seas, we report results from a systematic analysis of the available scientific literature.
Italian rhodolith/maerl beds are reported on 31 Italian sites mostly located around islands, shoals,
banks, terraces, and gentley sloping shelves, from 9 m to 130 m water depth (with a mean depth
of about 56 m). The dominant species occurring in the Italian submarine sites are Phymatolithon
calcareum and Lithothamnion corallioides, with a rich associated fauna including sponges, bryozoans,
hydrozoans, polichaetes, molluscs, amphipods, gastropods, echinoderms. Despite the high biodiversity
characterizing the Italian rhodolith/maerl beds, only seven submarine sites hosting this sensitive habitat
are part of Marine Protected Areas (MPAs). This evidence highlights the need for actions focused on the
implementation of effective management and proper conservation measures to preserve such precious
habitats. Protection of this habitat cannot be effectively provided without access to multidisciplinary
data (e.g., geospatial, biological, geophysical, geomorphological data) capable of assessing its spatial
distribution and biological characteristics over wide areas. An increased research effort to improve the
production of fine-scale distribution maps and monitoring activities is therefore needed.

Keywords: coralline algae; rhodophyta; precious habitat

1. Introduction

Free living coralline algae (rhodolith or maerl) are distributed worldwide on the
continental shelves [1] from tropical to polar [2–4] regions. The algae may form thick
beds over sedimentary bottoms from the low intertidal zone to depths of over 250 m [5–7].
Rhodolith/maerl beds are an important hotspot for biodiversity [6,7] providing a three-
dimensional setting for several species, also of commercial interest [8,9]. Specifically, the
biodiversity associated with Mediterranean coralline algae beds is very high, with about
700 species recorded [10,11], making it one of the most important submarine Mediterranean
ecosystems [12–14].

Free-living coralline algae, depending on the size, inner structure, external shape, algal
growth forms, and taxonomic composition, are characterized by three different morphotypes:
boxwork (usually large and vacuolar), praline (compact and nodular) and branches [15–17].
The main environmental factors controlling the development of coralline algae beds are light,
temperature, nutrients, hydrodynamism (i.e., waves and currents), and bioturbation phenomena
that avoid the coralline algae being buried by sediments [18–22]. Rhodolith/maerl beds may
be considered as a non-renewable resource [7,16] and are in need of important protection
and conservation actions. Consequently, the European Union (EU) developed a network of
protected areas known as Natura 2000 sites at the end of the twentieth century. In addition,
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different national and international actions were developed, including the the “Action Plan for
the Conservation of Coralligenous and other Mediterranean bioconstructions” (UNEP-MAP,
2008), and the “Good Environmental Status” in EU “Marine Strategy Framework Directive”
(Council Directive, 2008/56/EC). In addition, the maerl-forming species Lithothamnion corallioides
and Phymatolithon calcareum are included in Annex V of the European Community Habitats
Directive 1992.

The knowledge regarding the distribution of Mediterranean rhodolith/maerl beds is
still fragmented and incomplete [11], and wide-scale mapping initiatives are essential for
their effective conservation. To this end, Mediterranean rhodolith/maerl beds were recently
included among the habitats of special interest within the Marine Strategy Framework
Directive (MSFD-2008/56/EC), aiming at achieving the “Good Environmental Status”
(GES) of all marine waters by 2020. Monitoring protocols of rhodolith/maerl beds within
the MSFD were also adopted by Italy.

The aim of this study was to summarize and update the current knowledge regarding
the distribution of the Italian rhodolith/maerl beds, highlighting the urgent need for
conservation strategies targeted at the protection of this sensitive habitat and its biodiversity.
Finally, information regarding a new submarine site (the Costacuti Shoal, central Tyrrhenian
Sea), characterized by the presence of rhodolith/maerl beds, is also presented.

2. Materials and Methods
2.1. Italian Dataset from Literature

From an historical point of view, the first record of rhodolith/maerl beds was reported
by [23] in the Naples Gulf (central Tyrrhenian Sea), and since then, rhodolith/maerl beds
have been identified in various locations of the Italian seas. The distribution of the Italian
rhodolith/maerl beds herein reported (Table 1) is based on the available scientific literature
from 1999 to 2023. For each site, the following information was extracted: site, Italian
seas, region, setting, substrate, minimum depth, maximum depth, medium depth, algae
morphotype (pralines, boxwork, branches), dominant coralline algae species, Marine
Protected Area (MPA), and references.

Table 1. Dataset of the Italian submarine sites hosting rhodolith/maerl beds reported in the available
scientific literature. The Costacuti Shoal site (ID 27) is herein reported for the first time. Codes used for
the Italian seas: STS (Southern Tyrrhenian Sea), SC (Sicily Channel), TS (Tyrrhenian Sea), AS (Adriatic
Sea), IS (Ionian Sea), LS (Ligurian Sea). Codes used for the coralline algae species: Pc (Phymatolithon
calcareum), Lc (Lithothamnion corallioides), Lm (Lithothamnion minervae), Lv (Lithothamnion valens), Pl
(Phymatolithon lenormandii), Lr (Lithophyllumn racemus), Ls (Lithophyllum stictaeforme).

ID Site Italian
Seas Region Setting Substrate Min

Depth
Max

Depth
Medium

Depth Morphotype Dominant
Species

Anthropogenic
Impact MPA Reference

1 Ustica Island STS Sicily Island
Biogenic
gravelly-

sand
70 100 85

prâlines,
boxwork,
branches

Lm Fishing activity * [24,25]

2 Marettimo, Egadi
islands SC Sicily Island

Biogenic
gravelly-

sand
46 46 prâlines Lv, Lm, Pl, n.d. [26,27]

3 Lampione Islet,
Pelagie islands SC Sicily Island Sand and

sandy mud 45 60 52.5 n.d. n.d. n.d. * [28]

4 Graham Bank SC Sicily Bank Coarse
sand 90 120 105 n.d. Pc, Lc n.d. [29]

5 Nereo Bank SC Sicily Bank Detritic
bottom 30 50 40 n.d. Pc, Lc n.d. [29]

6 Pantelleria SC Sicily Shoal Detritic
bottom 30 50 40 n.d. Pc, Lc n.d. [29]

7 Linosa SC Sicily Island Coarse
sediments 60 130 95

prâlines,
boxwork,
branches

Ls n.d. * [28]

8 Salina STS Sicily Island Detritic
bottom 48 48 48 n.d. n.d. n.d. [27]

9 Panarea STS Sicily Island n.d. 70 70 70 n.d. n.d. n.d. [27]

10 Ischia TS Campanian Island Fine
sediment 50 72 61 prâlines,

boxwork Pc, Lc Litter and Fishing
activity [30,31]
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Table 1. Cont.

ID Site Italian
Seas Region Setting Substrate Min

Depth
Max

Depth
Medium

Depth Morphotype Dominant
Species

Anthropogenic
Impact MPA Reference

11 Cilento TS Campanian Terrace
Fine and

coarse
sediments

42 65 53.5 prâlines,
branches Lc, Pc n.d. [30–32]

12 Miseno Bank TS Campanian Bank Coarse
sediments 35 58 46.5 branches Lc n.d. [33]

13 Secchitiello TS Campanian Shoal Fine
sediment 68 72 70 prâlines Lc Litter and Fishing

activity [30,31]

14 Punta
Campanella TS Campanian Shelf Coarse

sediments 52 62 57 prâlines Lm Litter and Fishing
activity [30,31]

15 Capri TS Campanian Shelf Coarse
sediments 40 59 49.5 prâlines Lm Litter and Fishing

activity [27,30,31]

16 Elba TS Tuscany Island Detritic
bottom 45 45 45 branches Lc, Pc n.d. [34]

17 Giglio TS Tuscany Island Sand 35 35 35 boxwork Lc n.d. [35]

18 Gorgona TS Tuscany Island Sand 40 100 70 n.d. Lc n.d. [36]

19 Asinara TS Sardinia Shoal Biogenic
sand 30 30 30 prâlines Pc n.d. * [37,38]

20 Capo Carbonara TS Sardinia Shoal Coarse
sediments 45 60 52.5 prâlines,

boxwork n.d. n.d. * [17]

21 Tremiti AS Apulia Shelf Rock 15 48 31.5 prâlines,
boxwork Lr n.d. * [39]

22 Gallipoli IS Apulia Shelf Rock 36 45 40.5 branches Lr n.d. [39]

23 Armeleia IS Apulia Shoal 35 41 38 branches Lc n.d. [39]

24 Otranto AS Apulia n.d. 38 44 41 branches Lr n.d. [39]

25 Gulf of Venice AS Veneto Shelf Rock 25 25 25 n.d. Lc, Pc, Lm, Lr Fishing activity [40,41]

26 Gulf of Trieste AS Friuli Venezia
Giulia Shelf Fine

sediments 9 24 16.5 branches Lr n.d. [41,42]

27 Costacuti Shoal TS Latium Shoal Sand 45 50 47.5
prâlines,
boxwork,
branches

n.d. Fishing activity This study

28 Western Pontine TS Latium Terrace
Coarse and

fine
sediments

65 130 97.5
prâlines,
boxwork,
branches

Lr, Lc, Pc, Litter [43,44]

29 Santo Stefano TS Latium Terrace
Coarse and

fine
sediments

94 104 99 n.d. n.d. n.d. [27]

30 Portofino LS Ligurian Shelf Sand 16 104 60 n.d. n.d. n.d. * [45]

31 La Spezia LS Ligurian Shelf n.d. 16 104 60 n.d. n.d. Fishing activity [45]

All the sites reported in Table 1 were used to create the first distribution map of
rhodolith/maerl beds in the Italian seas.

2.2. General Setting of the New Site and Data Available

The Costacuti Shoal (ID 27 in Table 1) is located on the Latium continental shelf about
40 km off Capo d’Anzio Promontory (central Tyrrhenian Sea). The shelf is affected by
a microtidal regime [46] and sediments are mainly supplied from fluvial input and the
reworking of relict sediments during the Holocene [5,47]. The Costacuti Shoal, located
in a water depth ranging between 48 and 36 m, is elongated in a NW-SE direction and
has a width of 250 m wide, a length of 1600 m, and a height of 10 m with respect to
the surrounding seafloor. The shoal is characterized by the presence of Posidonia oceanica
meadows and coralligenous reefs [48,49]. A heavily exploited trawling fishing ground is
also observed offshore by the coasts of Anzio [50].

2.2.1. Geophysical Data

Geophysical data include both high-resolution multibeam bathymetry and side-scan
sonar data collected through Reson SeaBat 8125 (working at a frequency of 455 kHz) data
and Klein 3900 (working at a frequency of 455 kHz) systems, respectively. Data were
acquired between December 2017 over an area of about 25 km2 surrounding the Costacuti
Shoal. Processing of raw data was performed to produce a digital elevation model (DEM)
with a cell size of 2 m (Figure 1) and a mosaic of backscatter intensity with 0.2 m resolution
(Figure 1b). The analysis of geophysical data allowed for the identification of seafloor areas
hosting rhodolith/maerl beds.
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Figure 1. (a) Shaded relief map of the seafloor around the Costacuti Shoal showing the location of 

ROV transects and grab samples (insert with location of the new site, red dot); and (b) side-scan 
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dance of the coralline algae along the tracks. 

Figure 1. (a) Shaded relief map of the seafloor around the Costacuti Shoal showing the location of
ROV transects and grab samples (insert with location of the new site, red dot); and (b) side-scan sonar
mosaic of the Costacuti Shoal with location of video transects showing the percentage abundance of
the coralline algae along the tracks.
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2.2.2. Ground-Truth Data

Ground-truth data included ROV videos and grab samples collected in January 2018
on board the small vessel “VegaUno”. The ROV, Pollux III (Global Electric Italiana), was
equipped with a Sony CCD 1/3” navigation camera, a Sony HDRCX115E high-definition
camera and a GoPro camera. The ROV was equipped with laser pointers (with a laser beam
spacing of 20 cm) to provide references for scale and an ultra-short baseline positioning
system (USBL) to provide a record of the navigation track.

Three video transects (Figure 1a and Table 2) were acquired on shelf sectors adjacent
to the shoal. These were used to characterize the seafloor texture and the biological com-
munities inhabiting the seafloor, and to assess their environmental status. In addition, the
abundance percentage cover of the coralline algae cover was estimated along each track.
Specifically, image frames were extracted every 30 s of the footage and percentage cover-
ages were visually estimated for each frame, according to classes of percentage coverage
(i.e., <15; 20; 30; 40; 50; >60%).

Table 2. List of ROV transects performed around the Costacuti Shoal with an indication of the transect
code, length of transect, starting and ending coordinates of transects, and transect depth (m).

Code Length (m) Latitude (Start) Longitude
(Start) Latitude (End) Longitude (End) Depth

(m, Start-End)

S1 550 41.37071082◦ 12.61497847◦ 41.37256383◦ 12.61105010◦ 45–45

S2 212 41.36361100◦ 12.62258272◦ 41.36334395◦ 12.62184302◦ 44–45

S3 265 41.36537945◦ 12.60748005◦ 41.37068328◦ 12.60282734◦ 50–49

Nine grab samples (Figure 1a and Table 3) were collected with a 20 L Van Veen grab.
Sediment samples were analyzed for grain size distribution, using dry sieving and a laser
particle sizer (0.5 phi interval), and classified according to the Folk classification scheme [51].
Furthermore, the onboard analysis of grab samples allowed for defining the bed thickness.

Table 3. List of grab samples, with an indication of the sampling site code, and the coordinates, and
depth (m) from which grabs were made.

Code Latitude Longitude Depth (m)

S1_B1 41.37129642◦ 12.61459825◦ 45

S1_B2 41.37238438◦ 12.61393591◦ 45

S1_B3 41.37241608◦ 12.61206103◦ 45

S2_B1 41.36367024◦ 12.62238577◦ 46

S2_B2 41.36595069◦ 12.62333410◦ 45

S2_B3 41.36197936◦ 12.62213928◦ 49

S3_B1 41.36585067◦ 12.60682600◦ 50

S3_B2 41.36686492◦ 12.60494024◦ 49

S3_B3 41.36896419◦ 12.60299915◦ 49

3. Results
3.1. Coralline Algae Beds in the Italian Seas

This study shows the occurrence of rhodolith/maerl beds in 31 submarine Italian
sites (Figure 2) from nine regions of Italy (Ligurian, Friuli Venezia Giulia, Veneto, Tus-
cany, Latium, Campanian, Apulia, Sicily, and Sardinia). The bathymetric distribution of
rhodolith/maerl beds in the Italian seas range from 9 m to 130 m depth (average depth
56 m). The shallowest record (−9 m) was reported from the Trieste Gulf (Adriatic Sea) and
the deepest one (−130 m) from the Linosa Island (Sicily Channel). Many of these sites are in
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the Sicily region (9 sites) followed by the Campania (6 sites), Tuscany and Apulia (4 sites),
Latium (3), Sardinia and Liguria (2 sites), Friuli and Veneto (1 site).
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Figure 2. Distribution map of Italian rhodolith/maerl beds with their associated morphotypes
(pralines, boxwork, and branches) (red lines: −50 m isobaths; grey lines: isobaths at 200 m interval
after −50 m isobaths and at 10 m interval before −50 m isobaths). Numbers codes refer to the
identification (ID) sites reported in Table 1.

The Italian rhodolith/maerl beds are represented by three morphotypes (pralines,
boxwork, and branches) and these beds are located around islands, shoals, banks, ter-
races, and over open shelves (Table 1 and Figure 3a). Rhodolith/maerl beds have the
widest distribution around islands. In detail, the pralines morphotype displays the widest
distribution around islands, shoals, shelves, and terraces. The boxwork morphotype is
distributed around islands, terraces, shoals, and shelves, with a maximum frequency in
island settings. Branches morphotype is reported from islands, banks, terraces, shoals,
and shelves, with a maximum frequency around island settings. The main sediment type
associated with the Italian rhodolith/maerl beds is represented by coarse sediments but
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this habitat is associated with substrates ranging from rocky to fine sediments (Figure 3b).
The pralines morphotype is associated with coarse sediment, biogenic gravelly sand, fine
sediment, a detritic bottom, and a rock substrate. The boxwork morphotype is associated
with rock, biogenic gravelly sand, sand, coarse and fine sediments. The branches mor-
photype is associated with biogenic gravelly sand, rock, a detritic bottom, and coarse and
fine sediments.
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rhodolith/maerl morphotypes.

The main Italian rhodolith/maerl species are represented by Lithothamnion corallioides
(40%), Phymatolithon calcareum (27%), Lithothamnion minervae (15%), Lithophyllum racemus (9%),
Lithothamnion valens (3%), Lithophyllum stictaeforme (3%), and Phymatolithon lenormandii
(3%). In detail, the pralines morphotype includes the L. corallioides, P. calcareum, L. minervae,
L. racemus, L. valens, P. lenormandii, and L. stictaeforme species. The boxwork morphotype
includes the species L. corallioides, P. calcareum, L. minervae, L. stictaeforme and L. racemus.
The branches morphotype is associated with L. corallioides, P. calcareum, L. minervae, L. stic-
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taeforme, and L. racemus. The most associated fauna of the Italian calcareous algae beds
include sponges, bryozoans, hydrozoans, polichaetes, molluscs, amphipods, gastropods, and
echinoderms [24,25,28–31,35,36].

The analysis of all the reported sites (Table 1) has also permitted an assessment of the main
anthropogenic impacts affecting the Italian sites hosting coralline algae beds [25,30,40,43,45].
These impacts are mainly represented by litter (plastic, grass, wood, and metal objects) and
by evidence of fishing activities (trawl marks and ghost net, longlines, lines, ropes, other
fishing-related debris). Finally, out of 31 identified sites, only 7 are included in MPAs (Ustica
Island, Pelagie islands, Asinara Island, Capo Carbonara, Tremiti Islands, and Portofino marine
protected areas).

3.2. Coralline Algae Beds at the Costacuti Shoal (Latium Region)

The seafloor surrounding the Costacuti Shoal, where rhodolith/maerl beds are ob-
served, is characterized by depth values ranging from 45 m to 50 m and by slope values
varying from 0 to 0.5◦. Video data show that the seafloor along the transects is colonized
by pralines, boxwork, and branches morphotypes (Figures 4 and 5).

Rhodolith/maerl beds are present with coverage percentages varying from 15 to 60%
(medium coverage percentage 30%), with maximum values observed in the northern sector
of the Costacuti Shoal (Figure 5).

Video and grab samples analyses show that the predominant morphotype is repre-
sented by pralines. The sedimentological analysis reveals that the sediments associated
with rhodolith/maerl beds are mainly composed of gravelly or muddy sand; the per-
centages of gravelly fractions (including pebbles) range from 3 to 12%, while percentages
of mud reach values up to 40% (Table 4). The Costacuti rhodolith/maerl beds host an
associated fauna mainly represented by sponges, echinoderms, polichaetes, and anthozoa
(Supplementary Material S1). As regards the anthropogenic impacts, trawl marks over the
soft bottom hosting coralline algae beds were observed both on the side-scan sonar mosaic
and on ROV videos, where local accumulations of coralline algae inside the marks were
sometimes observed (Figure 4c,d).
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Table 4. Sediment composition of the grab samples recovered around the Costacuti Shoal. (s) slightly.

Code Depth (m) %Pebbles %Gravel %Sand %Silt Folk Class

S1 B1 45 0 3.70 72.38 23.92 (s) gravelly muddy sand
S1 B2 45 0 3.62 70.26 26.12 (s) gravelly muddy sand
S1 B3 45 4.42 3.5 55.04 37.04 Gravelly muddy sand
S2 B1 46 5.63 6.96 81.84 5.57 Gravelly sand
S2 B2 45 1.84 4.97 83.93 9.26 Gravelly sand
S2 B3 49 2.44 3.7 82.24 11.62 Gravelly muddy sand
S3 B1 50 5.30 2.89 51.48 40.33 Gravelly muddy sand
S3 B2 49 5.34 7.51 50.17 36.98 Gravelly muddy sand
S3 B3 49 1.55 3.26 59.54 35.65 (s) gravelly muddy sand

4. Discussion
4.1. Italian Coralline Algae Distribution

This study represents the first attempt to map the distribution of the Italian rhodolith/maerl
beds, highlighting their occurrence in all the Italian seas, except for the Messina Strait, likely
due to the complex geomorphological characteristics of its seafloor [52]. In the Italian seas,
living rhodolith/maerl beds were found from the low intertidal zone to depths of about 130 m,
which agrees with the worldwide rhodolith/maerl distributions [5,53]. As already suggested
by [10], rhodolith/maerl beds are frequently located around islands and isolated shoals. These
settings seem to favor their development due to the combination of both biotic (e.g., associated
fauna, bioturbation) and abiotic (e.g., water current, nutrients, sediment input, light penetration,
complexity of substrate) factors. The geomorphological characteristics associated with these
settings seem to create very high morphological heterogeneity at a small spatial scale, combined
with low sediment accumulation rates and enhanced bottom currents [32,54], which promote
benthic biodiversity. Although Italian rhodolith/maerl beds over hard bottoms are rare but not
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absent, we confirmed that the most common substrate suitable for coralline algal development
is represented by coarse sediments [5].

The dominant coralline algal species occurring in the Italian submarine sites, are repre-
sented by Phymatolithon calcareum and Lithothamnion corallioides, which are the two species
included in the Habitats Directive (92/43/EEC).

In the Mediterranean Sea, the benthic habitats characterized by the highest biodi-
versity are represented by coralligenous beds, Posidonia oceanica meadows [14,55], and
rhodolith/maerl beds [10,11,56,57].

The knowledge linked to the latter habitat has only recently increased [1], and available
data regarding their distribution, composition, structure, and natural variability, are still
inadequate. To fulfill such knowledge gaps, remote-sensing techniques coupled with
ground-truth data provide an effective tool for the large-scale assessment of coralline algae
spatial distributions, as well as for other pristine benthic habitats e.g., [16,58,59]. Mapping
the extent of rhodolith/maerl beds using information from full-area coverage geophysical
data, coupled with ground-truth data, represents a first pivotal step for their effective
management and conservation. This methodological approach has permitted us to obtain
fine-scale information about the coralline algae occurrence at the Costacuti site (Figure 2b).

Overall, the determination of the composition and structure of rhodolith/maerl beds,
and therefore of their heterogeneity, represents a crucial aspect of proposing a site as a
candidate for conservation measures. Examples of other Italian studies based on the use of
this type of approach are the Apulian Continental Shelf [39], the Campania coast [31], the
southern coast of Sardinia [26], and off Lampedusa Island [59]. All these above-mentioned
studies reiterate the importance of fine-scale distribution maps as an essential step in spatial
planning management policy aimed at the conservation of this sensitive habitat. The use of
a standard approach (e.g., monitoring protocol for deep Mediterranean RBs, developed
within the Marine Strategy Framework Directive—MSFD-2008/56/EC) applied to several
sites would allow us to compare all the environmental parameters, which can be considered
as drivers in determining the presence of coralline algae beds.

This approach becomes even more relevant if we consider that the Italian seas are a
good location for coralline algal growth, being represented by nine biogeographic sec-
tors after [60], including most of the ecological conditions of both western and east-
ern Mediterranean basins [61], and are therefore characterized by a high ecological and
environmental heterogeneity.

4.2. Threats and Conservation

Rhodolith/maerl beds are considered a non-renewable resource e.g., [7] because of
their slow growth rate (1 mm/year) and their inability to sustain direct exploitation [6,62].
However, rhodolith/maerl beds are exploited as a source of calcium carbonate and used
for a wide variety of economic applications e.g., [1,63,64]. In addition, this habitat can be
affected by disturbances of natural (i.e., sediment dislodgment e.g., [65,66] or anthropogenic
impacts such as the residuals of water-based drilling fluids discharging during drilling
activities [67] and impacts linked to oil extraction activities [68,69].

These beds are also considered sensitive habitats due to their diversity and their
potential importance as nurseries for other species [5]. The ongoing rise of water tem-
peratures and ocean acidification act as barriers for the formation and maintenance of
coralline algae [62,70], which can also be considered potential climate recorders [5]. These
organisms have the potential to provide paleo-climatic records useful to assess the effects
of concerning climate variability [71]. For all these reasons, destructive harvesting, and
extraction activities by humans should be forbidden in areas hosting such important habi-
tats [72,73]. The analysis of the available scientific literature highlights a lack of studies
focused on the potential levels of human pressure affecting coralline algae beds. In fact,
only ten studies report data regarding the presence or absence of different human impacts
e.g., [25,30,40,43,45]. It is important to note that while the presence of litter and fishing-
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related debris may represent alternative substrates for algae growth, the secondary effects
of marine litter (i.e., the release of compounds on coralline algae) are still largely unknown.

The high heterogeneity of the Italian submarine sites hosting rhodolith/maerl beds,
makes the Italian seas a good model for testing different strategic protection initiatives.
Despite this unique and high biodiversity, only seven Italian submarine sites are included in
MPAs (i.e., Ustica Island, Pelagie islands, Asinara Island, Capo Carbonara, Tremiti Islands,
and Portofino Marine Protected Areas).

The importance of coralline algae beds and their high vulnerability to human pressures
have been documented worldwide [9,74,75], and today, several legal instruments have been
adopted (i.e., Annex V of the Habitats Directive and Marine Strategy Framework Directive
(MSFD-2008/56/EC). This study updates the knowledge about coralline algal distributions
along the Italian coasts and reports on the main characteristics associated with these sites, high-
lighting the need for further actions focused on the implementation of effective management
and proper conservation measures to preserve this vulnerable habitat.

5. Conclusions

Despite rhodolith/maerl beds being considered hotspot sites of biodiversity that pro-
vide a suite of ecosystem goods and services, limited information is available regarding
their distribution and ecological role, especially in the Italian seas. This study presents new
insights on the coralline algal distributions along the Italian seas, providing information on
the main characteristics associated with the Italian sites. The high heterogeneity of the Ital-
ian submarine sites makes the Italian seas a good model for the testing of different strategic
protection initiatives that, today, are still scarce, as testified by the establishment of only
seven Marine Protected Areas. The study also highlighted that the future implementation
of effective management and conservation measures to preserve such a precious habitat
cannot be effectively gained without access to multidisciplinary data capable of assessing
its spatial distribution.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/d15070859/s1, Supplementary Material S1. The Costacuti rhodolith/maerl
beds host an associated fauna mainly represented by echinoderm, anthozoa, sponge, and polichaetes.
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