Population Structure and Genetic Diversity of the Spotted Sleeper Odontobutis interrupta (Odontobutidae), a Fish Endemic to Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and DNA Extraction
2.2. Whole-Genome Sequencing and Microsatellite Screening
2.3. Microsatellite Genotyping and mtDNA Sequencing
2.4. Microsatellite and mtDNA Genetic Diversity Analyses
2.5. Population Genetic Structure Analysis
3. Results
3.1. Microsatellite and Mitochondrial DNA Genetic Diversity
3.2. Bottleneck Analysis
3.3. Population Structure and Genetic Differentiation Analyses
4. Discussion
4.1. Genetic Diversity and Population Bottleneck
4.2. Genetic Structure and Gene Flow for Wild and Restoration Populations
4.3. Conservation Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Barnosky, A.D.; Matzke, N.; Tomiya, S.; Wogan, G.O.; Swartz, B.; Quental, T.B.; Marshall, C.; McGuire, J.L.; Lindsey, E.L.; Maguire, K.C.; et al. Has the Earth’s sixth mass extinction already arrived? Nature 2011, 471, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Katsanevakis, S.; Lefkaditou, E.; Galinou-Mitsoudi, S.; Koutsoubas, D.; Zenetos, A. Molluscan species of minor commercial interest in Hellenic seas: Distribution, exploitation and conservation status. Mediterr. Mar. Sci. 2008, 9, 77–118. [Google Scholar] [CrossRef] [Green Version]
- Pimm, S.L.; Jenkins, C.N.; Abell, R.; Brooks, T.M.; Gittleman, J.L.; Joppa, L.N.; Raven, P.H.; Roberts, C.M.; Sexton, J.O. The biodiversity of species and their rates of extinction, distribution, and protection. Science 2014, 344, 1246752. [Google Scholar] [CrossRef]
- Frankham, R. Conservation genetics. Annu. Rev. Genet. 1995, 29, 305–327. [Google Scholar] [CrossRef]
- Işik, K. Rare and endemic species: Why are they prone to extinction? Turk. J. Bot. 2011, 35, 411–417. [Google Scholar] [CrossRef]
- Pouteau, R.; Brunel, C.; Dawson, W.; Essl, F.; Kreft, H.; Lenzner, B.; Meyer, C.; Pergl, J.; Pyšek, P.; Seebens, H.; et al. Environmental and socioeconomic correlates of extinction risk in endemic species. Divers. Distrib. 2022, 28, 53–64. [Google Scholar] [CrossRef]
- Maxwell, S.L.; Fuller, R.A.; Brooks, T.M.; Watson, J.E. Biodiversity: The ravages of guns, nets and bulldozers. Nature 2016, 536, 143–145. [Google Scholar] [CrossRef] [Green Version]
- Markert, J.A.; Champlin, D.M.; Gutjahr-Gobell, R.; Grear, J.S.; Kuhn, A.; McGreevy, T.J.; Roth, A.; Bagley, M.J.; Nacci, D.E. Population genetic diversity and fitness in multiple environments. BMC Evol. Biol. 2010, 10, 205. [Google Scholar] [CrossRef] [Green Version]
- Frankham, R. Genetics and extinction. Biol. Conserv. 2005, 126, 131–140. [Google Scholar] [CrossRef]
- Brauer, C.J.; Beheregaray, L.B. Recent and rapid anthropogenic habitat fragmentation increases extinction risk for freshwater biodiversity. Evol. Appl. 2020, 13, 2857–2869. [Google Scholar] [CrossRef]
- Gurevitch, J.; Padilla, D.K. Are invasive species a major cause of extinctions? Trends Ecol. Evol. 2004, 19, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.B.; Song, H.Y.; Suk, H.Y.; Bang, I.C. Phylogeography of the Korean endemic Coreoleuciscus (Cypriniformes: Gobionidae): The genetic evidence of colonization through Eurasian continent to the Korean Peninsula during Late Plio-Pleistocene. Genes Genom. 2022, 44, 709–719. [Google Scholar] [CrossRef]
- Qiu, Y.X.; Hong, D.Y.; Fu, C.X.; Cameron, K.M. Genetic variation in the endangered and endemic species Changium smyrnioides (Apiaceae). Biochem. Syst. Ecol. 2004, 32, 583–596. [Google Scholar] [CrossRef]
- López-Pujol, J.; Martinell, M.C.; Massó, S.; Blanché, C.; Sáez, L. The ‘paradigm of extremes’: Extremely low genetic diversity in an extremely narrow endemic species, Coristospermum huteri (Umbelliferae). Plant Syst. Evol. 2013, 299, 439–446. [Google Scholar] [CrossRef]
- Park, S.-H.; Yoon, J.-D.; Kim, J.-H.; Lee, J.-W.; Baek, S.-H.; Jang, M.-H. Length–weight relationships of fifteen endemic freshwater fishes in South Korea. J. Appl. Ichthyol. 2016, 32, 158–159. [Google Scholar] [CrossRef]
- Hu, Y.; Li, H.; Xia, J.; Li, C. Population Structure, Genetic Diversity, and Conservation Strategies of a Commercially Important Sleeper Fish, Odontobutis potamophilus (Gobiiformes: Odontobutidae) Based on Gene-Capture Data. Front. Genet. 2022, 13, 843848. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Han, K.H.; Seo, W.I.; Yoon, S.M.; Kim, C.C.; Hwang, S.Y.; Kim, K.S. Ichthyofauna and fish community of Sora stream in Yeosu, Korea. Korean J. Ichthyol. 2004, 16, 348–355. [Google Scholar]
- Kim, I.S.; Choi, Y.; Lee, C.L.; Lee, Y.J.; Kim, B.J.; Kim, J.H. Illustrated Book of Korean Fishes; Kyo-Hak Publishing Co.: Seoul, Republic of Korea, 2005; p. 615. [Google Scholar]
- Kolar, C. Risk assessment and screening for potentially invasive fishes. N. Z. J. Mar. Freshw. Res. 2004, 38, 391–397. [Google Scholar] [CrossRef]
- Martin, C.W.; Valentine, M.M.; Valentine, J.F. Competitive interactions between invasive Nile tilapia and native fish: The potential for altered trophic exchange and modification of food webs. PLoS ONE 2010, 5, e14395. [Google Scholar] [CrossRef] [Green Version]
- Paolucci, E.M.; MacIsaac, H.J.; Ricciardi, A. Origin matters: Alien consumers inflict greater damage on prey populations than do native consumers. Divers. Distrib. 2013, 19, 988–995. [Google Scholar] [CrossRef]
- Stepien, C.A.; Brown, J.E.; Neilson, M.E.; Tumeo, M.A. Genetic diversity of invasive species in the Great Lakes versus their Eurasian source populations: Insights for risk analysis. Risk Anal. 2005, 25, 1043–1060. [Google Scholar] [CrossRef]
- Wright, J.M.; Bentzen, P. Microsatellites: Genetic markers for the future. In Molecular Genetics in Fisheries; Springer: Dordrecht, The Netherlands, 1995; pp. 117–121. [Google Scholar]
- Hodel, R.G.; Segovia-Salcedo, M.C.; Landis, J.B.; Crowl, A.A.; Sun, M.; Liu, X.; Gitzendanner, M.A.; Douglas, N.A.; Germain-Aubrey, C.C.; Chen, S.; et al. The report of my death was an exaggeration: A review for researchers using microsatellites in the 21st century. Appl. Plant Sci. 2016, 4, 1600025. [Google Scholar] [CrossRef] [Green Version]
- Eaton, M.J.; Meyers, G.L.; Kolokotronis, S.O.; Leslie, M.S.; Martin, A.P.; Amato, G. Barcoding bushmeat: Molecular identification of Central African and South American harvested vertebrates. Conserv. Genet. 2010, 11, 1389–1404. [Google Scholar] [CrossRef]
- Bonett, R.M.; Kozak, K.H.; Vieites, D.R.; Bare, A.; Wooten, J.A.; Trauth, S.E. The importance of comparative phylogeography in diagnosing introduced species: A lesson from the seal salamander, Desmognathus monticola. BMC Ecol. 2007, 7, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, R.D.; Zemlak, T.S.; Innes, B.H.; Last, P.R.; Hebert, P.D. DNA barcoding Australia’s fish species. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 1847–1857. [Google Scholar] [CrossRef] [PubMed]
- Sekino, M.; Hara, M.; Taniguchi, N. Loss of microsatellite and mitochondrial DNA variation in hatchery strains of Japanese flounder Paralichthys olivaceus. Aquaculture 2002, 213, 101–122. [Google Scholar] [CrossRef]
- Schuelke, M. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 2000, 18, 233–234. [Google Scholar] [CrossRef]
- Van Oosterhout, C.; Hutchinson, W.F.; Wills, D.P.M.; Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 2004, 4, 535–538. [Google Scholar] [CrossRef]
- Marshall, T.C.; Slate, J.B.K.E.; Kruuk, L.E.B.; Pemberton, J.M. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 1998, 7, 639–655. [Google Scholar] [CrossRef] [Green Version]
- Raymond, M.; Rousset, F. Population genetics software for exact test and ecumenicism. J. Hered. 1995, 86, 248–249. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Piry, S.; Luikart, G.; Cornuet, J.M. Computer note. BOTTLENECK: A computer program for detecting recent reductions in the effective size using allele frequency data. J. Hered. 1999, 90, 502–503. [Google Scholar] [CrossRef]
- Maruyama, T.; Fuerst, P.A. Population bottlenecks and nonequilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 1985, 111, 675–689. [Google Scholar] [CrossRef]
- Cornuet, J.M.; Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 1996, 144, 2001–2014. [Google Scholar] [CrossRef] [PubMed]
- Luikart, G.; Cornuet, J.M. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv. Biol. 1998, 12, 228–237. [Google Scholar] [CrossRef]
- Waples, R.S.; Do, C.H.I. LDNE: A program for estimating effective population size from data on linkage disequilibrium. Mol. Ecol. Resour. 2008, 8, 753–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, K.; Dudley, J.; Nei, M.; Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 2007, 24, 1596–1599. [Google Scholar] [CrossRef] [PubMed]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [Green Version]
- Bandelt, H.J.; Forster, P.; Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999, 16, 37–48. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Earl, D.A.; VonHoldt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F.; Zhang, L.J.; Yin, S.W.; Zhang, H.W.; Hou, X.Y.; Hu, Y.L.; Luo, J. Genetic diversity and variation in wild populations of dark sleeper (Odontobutis potamophila) in China inferred with microsatellite markers. Biochem. Syst. Ecol. 2014, 57, 40–47. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Shi, L.; Yu, H.; Jia, Z. Population genetic pattern of the freshwater fish Amur sleeper (Perccottus glenii) across its native distribution area in China. Conserv. Genet. 2021, 22, 125–131. [Google Scholar] [CrossRef]
- Zhou, Y.; Lei, Y.; Lu, Y.; Song, Z. Population genetics of a Chinese endemic, Gymnocypris potanini Herzenstein, threatened by population isolation: Conflicting patterns between microsatellites and mitochondrial DNA. Hydrobiologia 2018, 819, 145–159. [Google Scholar] [CrossRef]
- Choi, S.S.; Na, Y.U. The spawning behavior and egg development of Odontobutis interrupta Iwata and Jeon, 1985. Korean J. Environ. Biol. 2000, 18, 323–330. [Google Scholar]
- Lee, S.H.; Lee, D.M.; Yu, T.S.; Lee, J.; Han, K.H. Ecology of Odontobutis platycephala in Bosung River, Korea. Boll. Fish Sci. Inst. Chonnam Nat. Univ. 2018, 26, 49–54. [Google Scholar]
- Grant, W.; Bowen, B.W. Shallow population histories in deep evolutionary lineages of marine fishes: Insights from sardines and anchovies and lessons for conservation. J. Hered. 1998, 89, 415–426. [Google Scholar] [CrossRef] [Green Version]
- Rokas, A.; Atkinson, R.J.; Brown, G.S.; West, S.A.; Stone, G.N. Understanding patterns of genetic diversity in the oak gallwasp Biorhiza pallida: Demographic history or a Wolbachia selective sweep? Heredity 2001, 87, 294–304. [Google Scholar] [CrossRef] [Green Version]
- Hartl, D.L.; Clark, A.G. Principles of Population Genetics, 4th ed.; Sinauer Associates: Sunderland, MA, USA, 2007. [Google Scholar]
- Kolbe, J.J.; Glor, R.E.; Rodríguez Schettino, L.; Lara, A.C.; Larson, A.; Losos, J.B. Genetic variation increases during biological invasion by a Cuban lizard. Nature 2004, 431, 177–181. [Google Scholar] [CrossRef]
- Gilbey, J.; Soshnina, V.A.; Volkov, A.A.; Zelenina, D.A. Comparative genetic variability of pink salmon from different parts of their range: Native Pacific, artificially introduced White Sea and naturally invasive Atlantic Scottish rivers. J. Fish Biol. 2022, 100, 549–560. [Google Scholar] [CrossRef]
- Fauvelot, C.; Bernardi, G.; Planes, S. Reductions in the mitochondrial DNA diversity of coral reef fish provide evidence of population bottlenecks resulting from Holocene sea-level change. Evolution 2003, 57, 1571–1583. [Google Scholar] [CrossRef] [PubMed]
- Frankham, R.; Ballou, J.D.; Briscoe, D.A. Introduction to Conservation Genetics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Frankham, R.; Bradshaw, C.J.A.; Brook, B.W. Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol. Conserv. 2014, 170, 56–63. [Google Scholar] [CrossRef]
- Won, H.; Jeon, H.B.; Suk, H.Y. Evidence of an ancient connectivity and biogeodispersal of a bitterling species, Rhodeus notatus, across the Korean Peninsula. Sci. Rep. 2020, 10, 1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, J.E.; Kim, J.H.; Kang, J.H.; Baek, S.Y.; Wang, J.H.; Lee, H.G.; Choi, J.K.; Choi, J.S.; Lee, H.J. Genetic diversity and genetic structure of the endangered Manchurian trout, Brachymystax lenok tsinlingensis, at its southern range margin: Conservation implications for future restoration. Conserv. Genet. 2017, 18, 1023–1036. [Google Scholar]
- Kim, Y.R.; Jang, J.E.; Choi, H.K.; Lee, H.J. Phylogeographic and population genetic study of a Korean endemic freshwater fish species, Zacco koreanus. Korean J. Environ. Biol. 2020, 38, 650–657. [Google Scholar] [CrossRef]
- Wang, X.Y.; Yang, X.M.; Lu, B.; Zhou, L.H.; Wu, K.M. Genetic variation and phylogeographic structure of the cotton aphid, Aphis gossypii, based on mitochondrial DNA and microsatellite markers. Sci. Rep. 2017, 7, 1920. [Google Scholar] [CrossRef] [Green Version]
- Baisvar, V.S.; Kumar, R.; Singh, M.; Singh, A.K.; Chauhan, U.K.; Mishra, A.K.; Kushwaha, B. Genetic diversity analyses for population structuring in Channa striata using mitochondrial and microsatellite DNA regions with implication to their conservation in Indian waters. Meta Gene 2018, 16, 28–38. [Google Scholar] [CrossRef]
- Kim, I.S.; Park, J.Y. Freshwater fishes of Korea. Kyohak 2002, 465. [Google Scholar]
- Song, J.; Hou, F.; Zhang, X.; Yue, B.; Song, Z. Mitochondrial genetic diversity and population structure of a vulnerable freshwater fish, rock carp (Procypris rabaudi) in upper Yangtze River drainage. Biochem. Syst. Ecol. 2014, 55, 1–9. [Google Scholar] [CrossRef]
- Jang, J.E.; Kim, J.K.; Yoon, S.M.; Lee, H.G.; Lee, W.O.; Kang, J.H.; Lee, H.J. Low genetic diversity, local-scale structure, and distinct genetic integrity of Korean chum salmon (Oncorhynchus keta) at the species range margin suggest a priority for conservation efforts. Evol. Appl. 2022, 15, 2142–2157. [Google Scholar] [CrossRef] [PubMed]
- Deines, A.M.; Bbole, I.; Katongo, C.; Feder, J.L.; Lodge, D.M. Hybridisation between native Oreochromis species and introduced Nile tilapia O. niloticus in the Kafue River, Zambia. Afr. J. Aquat. Sci. 2014, 39, 23–34. [Google Scholar] [CrossRef]
- Taybi, A.F.; Mabrouki, Y. The American blue crab Callinectes sapidus Rathbun, 1896 (Crustacea: Decapoda: Portunidae) is rapidly expanding through the Mediterranean coast of Morocco. Thalass. Int. J. Mar. Sci. 2020, 36, 267–271. [Google Scholar] [CrossRef]
ID | Water System | MtDNA/Microsatellite | h | Hd | Nucleotide Diversity (π) | D | F | NA | HO | HE | PHWE | FIS |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SOD | Somjingang River | 23/22 | 2 | 0.087 | 0.00033 | −1.51496 | −0.153 | 6.75 | 0.756 | 0.752 | 0.062 | −0.044 |
SCR | Somjingang River | 20/21 | 1 | 0.000 | 0.00000 | - | - | 3.00 | 0.440 | 0.570 | 0.013 * | 0.257 *** |
SGD | Somjingang River | 22/24 | 2 | 0.091 | 0.00034 | −1.51481 | −0.112 | 4.75 | 0.500 | 0.517 | 0.270 | 0.051 |
HWJ | Hangang River | 20/20 | 1 | 0.000 | 0.00000 | - | - | 5.00 | 0.726 | 0.697 | 0.740 | −0.082 |
HDM | Hangang River | 20/20 | 1 | 0.000 | 0.00000 | - | - | 5.00 | 0.600 | 0.642 | 0.149 | 0.078 |
HDC | Hangang River | 20/23 | 4 | 0.674 | 0.00159 | 1.15776 | −0.400 | 4.50 | 0.467 | 0.537 | 0.006 ** | 0.003 |
NJH | Nakdonggang River | 22/17 | 2 | 0.091 | 0.00034 | −1.51481 | −0.122 | 5.25 | 0.635 | 0.726 | 0.027 * | 0.005 |
NMG | Nakdonggang River | 23/22 | 2 | 0.166 | 0.00031 | −0.66215 | −0.213 | 3.75 | 0.529 | 0.548 | 0.375 | 0.012 |
GGP | Geumgang River | 20/23 | 2 | 0.189 | 0.00071 | −0.76857 | 0.909 | 8.25 | 0.750 | 0.719 | 0.557 | −0.045 |
GNS | Geumgang River | 21/22 | 1 | 0.000 | 0.00000 | - | - | 6.50 | 0.727 | 0.703 | 0.609 | −0.036 |
GBG | Geumgang River | 15/23 | 2 | 0.248 | 0.00047 | −0.39883 | 0.133 | 4.75 | 0.670 | 0.595 | 0.402 | −0.110 |
HSNC | Hyeongsangang River | 22/23 | 3 | 0.498 | 0.00155 | 1.13094 | 0.867 | 7.50 | 0.732 | 0.780 | 0.167 | 0.062 |
Seomjingang River Basin | Hangang River Basin | Geumgang River Basin | Nakdonggang River Basin | Hyeongsangang River | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SOD | SCR | SGD | HWJ | HDM | HDC | GGP | GNS | GBG | NJH * | NMG * | HSNC * | |
H1 | 1 | 20 | 1 | 20 | 20 | 10 | 18 | 21 | 2 | 21 | 21 | 5 |
H2 | 6 | 2 | ||||||||||
H3 | 2 | |||||||||||
H4 | 2 | |||||||||||
H5 | 1 | 15 | ||||||||||
H6 | 2 | |||||||||||
H7 | 13 | |||||||||||
H8 | 22 | 21 | 2 |
Population ID | N | Wilcoxon Sign-Rank Test | Ne^ | (95% CI) | |||
---|---|---|---|---|---|---|---|
PIAM | PTPM | PSMM | Mode-Shift | ||||
SOD | 22 | 0.031 * | 0.844 | 0.906 | L-shaped | 82 | (15–∞) |
SCR | 21 | 0.031 * | 0.063 | 0.063 | SHIFTED | 3 | (1–124) |
SGD | 24 | 0.906 | 1.000 | 1.000 | L-shaped | 4 | (1–18) |
HWJ | 20 | 0.031 * | 0.031 * | 0.063 | L-shaped | 25 | (6–∞) |
HDM | 20 | 0.156 | 0.563 | 0.906 | L-shaped | 23 | (8–1646) |
HDC | 23 | 0.563 | 0.938 | 0.969 | L-shaped | - | - |
NJH | 17 | 0.031 * | 0.063 | 0.063 | SHIFTED | 9 | (3–39) |
NMG | 22 | 0.094 | 0.844 | 0.844 | L-shaped | 10 | (2–∞) |
GGP | 23 | 0.563 | 1.000 | 1.000 | L-shaped | 61 | (20–∞) |
GNS | 22 | 0.063 | 0.844 | 0.906 | L-shaped | 36 | (4–∞) |
GBG | 23 | 0.438 | 0.438 | 0.438 | L-shaped | 16 | (6–105) |
SOD | SCR | SGD | HWJ | HDM | HDC | NJH | NMG | GGP | GNS | GBG | HSNC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SOD | - | 0.951 *** | 0.000 | 0.951 *** | 0.951 *** | 0.806 *** | 0.907 *** | 0.915 *** | 0.844 *** | 0.952 *** | 0.927 *** | 0.739 *** |
SCR | 0.279 *** | - | 0.950 *** | 0.000 | 0.000 | 0.298 *** | 0.000 | 0.037 | 0.053 | 0.000 | 0.876 *** | 0.707 *** |
SGD | 0.107 *** | 0.406 *** | - | 0.950 *** | 0.950 *** | 0.801 *** | 0.905 *** | 0.913 *** | 0.840 *** | 0.951 *** | 0.925 *** | 0.734 *** |
HWJ | 0.135 *** | 0.267 *** | 0.273 *** | - | 0.000 | 0.298 *** | 0.000 | 0.037 | 0.053 | 0.000 | 0.876 *** | 0.707 *** |
HDM | 0.246 *** | 0.266 *** | 0.419 *** | 0.167 *** | - | 0.298 *** | 0.000 | 0.037 | 0.053 | 0.000 | 0.876 *** | 0.707 *** |
HDC | 0.244 *** | 0.380 *** | 0.348 *** | 0.160 *** | 0.246 *** | - | 0.267 *** | 0.194 *** | 0.237 *** | 0.305 *** | 0.608 *** | 0.595 *** |
NJH | 0.120 *** | 0.324 *** | 0.315 *** | 0.114 *** | 0.246 *** | 0.212 *** | - | 0.022 | 0.007 | 0.000 | 0.781 *** | 0.645 *** |
NMG | 0.172 *** | 0.331 *** | 0.348 *** | 0.244 *** | 0.287 *** | 0.360 *** | 0.231 *** | - | 0.054 | 0.040 | 0.791 *** | 0.683 *** |
GGP | 0.129 *** | 0.332 *** | 0.246 *** | 0.075 *** | 0.244 *** | 0.096 *** | 0.118 *** | 0.277 *** | - | 0.056 | 0.699 *** | 0.595 *** |
GNS | 0.155 *** | 0.291 *** | 0.314 *** | 0.066 *** | 0.215 *** | 0.201 *** | 0.104 *** | 0.257 *** | 0.137 *** | - | 0.880 *** | 0.712 *** |
GBG | 0.318 *** | 0.384 *** | 0.498 *** | 0.294 *** | 0.337 *** | 0.310 *** | 0.318 *** | 0.442 *** | 0.318 *** | 0.302 *** | - | 0.750 *** |
HSNC | 0.125 *** | 0.261 *** | 0.323 *** | 0.139 *** | 0.133 *** | 0.203 *** | 0.083 *** | 0.211 *** | 0.143 *** | 0.163 *** | 0.250 *** | - |
Source of Variation | d.f. | Sum of Squares | Variance Components | Percentage of Variance | F-Statistics |
---|---|---|---|---|---|
Microsatellite markers (Four groups based on their distribution in water systems (SOD, SGD, SCR vs. HWJ, HDM, HDC vs. GBG, GNS, GGP vs. NJH, NMG, HSNC) | |||||
Among groups | 3 | 55.644 | 0.04485 | 3.64 | FCT = 0.036 * |
Among populations within groups | 8 | 100.979 | 0.27091 | 21.97 | FSC = 0.228 *** |
Within populations | 508 | 466.129 | 0.91758 | 74.40 | FST = 0.256 *** |
Total | 519 | 622.752 | 1.23333 | 100.00 | |
Mitochondrial DNA (Four groups based on the distribution of shared haplotypes (SOD, SGD, GGP vs. GNS, SCR, HWJ, HDM, HDC, NJH, NMG, vs. GBG vs. HSNC) | |||||
Among groups | 3 | 71.3995 | 0.444 | 63.05 | FCT = 0.630 *** |
Among populations within groups | 8 | 23.727 | 0.135 | 19.18 | FSC = 0.519 *** |
Within populations | 236 | 29.527 | 0.125 | 17.77 | FST = 0.822 *** |
Total | 247 | 124.649 | 0.704 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.-R.; Choi, H.-k.; Lee, T.W.; Lee, H.J.; Yu, J.-N. Population Structure and Genetic Diversity of the Spotted Sleeper Odontobutis interrupta (Odontobutidae), a Fish Endemic to Korea. Diversity 2023, 15, 913. https://doi.org/10.3390/d15080913
Kim K-R, Choi H-k, Lee TW, Lee HJ, Yu J-N. Population Structure and Genetic Diversity of the Spotted Sleeper Odontobutis interrupta (Odontobutidae), a Fish Endemic to Korea. Diversity. 2023; 15(8):913. https://doi.org/10.3390/d15080913
Chicago/Turabian StyleKim, Kang-Rae, Hee-kyu Choi, Taek Won Lee, Hyuk Je Lee, and Jeong-Nam Yu. 2023. "Population Structure and Genetic Diversity of the Spotted Sleeper Odontobutis interrupta (Odontobutidae), a Fish Endemic to Korea" Diversity 15, no. 8: 913. https://doi.org/10.3390/d15080913
APA StyleKim, K. -R., Choi, H. -k., Lee, T. W., Lee, H. J., & Yu, J. -N. (2023). Population Structure and Genetic Diversity of the Spotted Sleeper Odontobutis interrupta (Odontobutidae), a Fish Endemic to Korea. Diversity, 15(8), 913. https://doi.org/10.3390/d15080913