Approach Distances of Scottish Golden Eagles Aquila chrysaetos to Wind Turbines According to Blade Motion Status, Wind Speed, and Preferred Habitat
Abstract
:1. Introduction
2. Methods
2.1. Study Wind Farm
2.2. Study Species
2.3. Trapping and Tagging
2.4. Tag and Turbine Data Treatment
2.5. Distance to Turbines and Intrinsic Habitat Preference
2.6. Statistical Analyses
3. Results
4. Discussion
- The potentially adverse effects of turbines were not homogeneous within a wind farm, and some turbines presented a greater risk of adversity, regardless of whether that erred more towards collision fatality at one extreme or functional habitat loss (through avoidance) at the other extreme [13].
- Eagles were recorded at closer distances to turbines when wind speeds at turbines were higher [13].
- The motion status of turbines was not a major factor influencing approach distances [13]. In the present study, there was a weak effect of blade motion. However, this was against what was reasonably expected on eagles’ perception of a greater threat with moving blades because approach distances were marginally closer when blades were turning.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, X.; McElroy, M.B.; Kiviluoma, J. Global potential for wind-generated electricity. Proc. Natl. Acad. Sci. USA 2009, 106, 10933–10938. [Google Scholar] [CrossRef] [PubMed]
- Leung, D.Y.; Yang, Y. Wind energy development and its environmental impact: A review. Renew. Sustain. Energy Rev. 2012, 16, 1031–1039. [Google Scholar] [CrossRef]
- Premalatha, M.; Tabassum, A.; Abbasi, T.; Abbasi, S.A. Wind energy: Increasing deployment, rising environmental concerns. Renew. Sustain. Energy Rev. 2014, 31, 270–288. [Google Scholar]
- Schuster, E.; Bulling, L.; Köppel, J. Consolidating the State of Knowledge: A Synoptical Review of Wind Energy’s Wildlife Effects. Environ. Manag. 2015, 56, 300–331. [Google Scholar] [CrossRef] [PubMed]
- Voigt, C.C.; Straka, T.M.; Fritze, M. Producing wind energy at the cost of biodiversity: A stakeholder view on a green-green dilemma. J. Renew. Sustain. Energy 2019, 11, 063303. [Google Scholar] [CrossRef]
- GWEC. Global Wind Report. Annual Market Update; GWEC: Brussels, Belgium, 2015. [Google Scholar]
- RenewableUK. Wind Energy Statistics. 2023. Available online: https://www.renewableuk.com/page/UKWEDhome (accessed on 15 May 2023).
- Hunt, W.G.; Watson, J.W. Addressing the factors that juxtapose raptors and wind turbines. J. Raptor Res. 2016, 50, 92–96. [Google Scholar] [CrossRef]
- Marques, A.T.; Batalha, H.; Rodrigues, S.; Costa, H.; Pereira, M.J.R.; Fonseca, C.; Mascarenhas, M.; Bernardino, J. Understanding bird collisions at wind farms: An updated review on the causes and possible mitigation strategies. Biol. Conserv. 2014, 179, 40–52. [Google Scholar] [CrossRef]
- Hötker, H.; Krone, O.; Nehls, G. (Eds.) Birds of Prey and Wind Farms: Analysis of Problems and Possible Solutions; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Hötker, H.; Dürr, T.; Grajetzky, B.; Grünkorn, T.; Joest, R.; Krone, O.; Mammen, K.; Mammen, U.; Nehls, G.; Rasran, L.; et al. Conclusions, Risk Assessment, Conflict Minimisation, Practical Recommendations, Need for Further Study. In Birds of Prey and Wind Farms: Analysis of Problems and Possible Solutions; Hötker, H., Krone, O., Nehls, G., Eds.; Springer: Cham, Switzerland, 2017; pp. 323–331. [Google Scholar]
- May, R.; Nygård, T.; Falkdenen, U.; Åström, J.; Hamre, Ø.; Stokke, B.G. Paint it black: Efficacy of increased wind turbine blade visibility to reduce avian fatalities. Ecol. Evol. 2020, 10, 8927–8935. [Google Scholar] [CrossRef]
- Fielding, A.H.; Anderson, D.; Benn, S.; Dennis, R.; Geary, M.; Weston, E.; Whitfield, D.P. Non-territorial GPS-tagged golden eagles Aquila chrysaetos at two Scottish wind farms: Avoidance influenced by preferred habitat distribution, wind speed and blade motion status. PLoS ONE 2021, 16, e0254159. [Google Scholar] [CrossRef]
- Fielding, A.H.; Anderson, D.; Benn, S.; Dennis, R.; Geary, M.; Weston, E.; Whitfield, D.P. Responses of dispersing GPS-tagged Golden Eagles (Aquila chrysaetos) to multiple wind farms across Scotland. Ibis 2021, 164, 102–117. [Google Scholar] [CrossRef]
- Fielding, A.H.; Anderson, D.; Benn, S.; Taylor, J.; Tingay, R.; Weston, E.D.; Whitfield, D.P. Responses of GPS-Tagged Territorial Golden Eagles Aquila chrysaetos to Wind Turbines in Scotland. Diversity 2023, 15, 917. [Google Scholar] [CrossRef]
- Hunt, W.G. Golden Eagles in a Perilous Landscape: Predicting the Effects of Mitigation for Wind Turbine Blade-Strike Mortality. California Energy Commission; July 2002. Report No.: P500-02-043F. 2002. Available online: http://www.energy.ca.gov/reports/2002-11-04_500-02-043F.PDF (accessed on 15 January 2023).
- May, R.; Nygård, T.; Dahl, E.L.; Reitan, O.; Bevanger, K. Collision Risk in White-Tailed Eagles. Modelling Kernel-Based Collision Risk Using Satellite Telemetry Data in Smøla Wind-Power Plant; NINA Report 692; Norwegian Institute for Nature Research: Trondheim, Norway, 2011. [Google Scholar]
- Watson, R.T.; Kolar, P.S.; Ferrer, M.; Nygård, T.; Johnston, N.; Hunt, W.G.; Smit-Robinson, H.A.; Farmer, C.J.; Huso, M.; Katzner, T.E. Raptor Interactions With Wind Energy: Case Studies From Around the World. J. Raptor Res. 2018, 52, 1–18. [Google Scholar] [CrossRef]
- Newton, I. Population Ecology of Raptors; T. & A.D. Poyser: Berkhamstead, UK, 1979. [Google Scholar]
- May, R.F. A unifying framework for the underlying mechanisms of avian avoidance of wind farms. Biol. Conserv. 2015, 190, 179–187. [Google Scholar] [CrossRef]
- Pagel, J.E.; Kritz, K.J.; Millsap, B.A.; Murphy, R.K.; Kershner, E.L.; Covington, S. Bald Eagle and Golden Eagle Mortalities at Wind Energy Facilities in the Contiguous United States. J. Raptor Res. 2013, 47, 311–315. [Google Scholar] [CrossRef]
- Carrete, M.; Sánchez-Zapata, J.A.; Benítez, J.R.; Lobón, M.; Donázar, J.A. Large scale risk-assessment of wind-farms on population viability of a globally endangered long-lived raptor. Biol. Conserv. 2009, 142, 2954–2961. [Google Scholar] [CrossRef]
- Bellebaum, J.; Korner-Nievergelt, F.; Dürr, T.; Mammen, U. Wind turbine fatalities approach a level of concern in a raptor population. J. Nat. Conserv. 2013, 21, 394–400. [Google Scholar] [CrossRef]
- Beston, J.A.; Diffendorfer, J.E.; Loss, S.R.; Johnson, D.H. Prioritizing Avian Species for Their Risk of Population-Level Consequences from Wind Energy Development. PLoS ONE 2016, 11, e0150813. [Google Scholar] [CrossRef]
- Hunt, W.G.; Wiens, J.D.; Law, P.R.; Fuller, M.R.; Hunt, T.L.; Driscoll, D.E.; Jackman, R.E. Quantifying the demographic cost of human-related mortality to a raptor population. PLoS ONE 2017, 12, e0172232. [Google Scholar] [CrossRef]
- Cervantes, F.; Martins, M.; Simmons, R.E. Population viability assessment of an endangered raptor using detection/non-detection data reveals susceptibility to anthropogenic impacts. R. Soc. Open Sci. 2022, 9, 220043. [Google Scholar] [CrossRef]
- Marques, A.T.; Santos, C.D.; Hanssen, F.; Muñoz, A.R.; Onrubia, A.; Wikelski, M.; Moreira, F.; Palmeirim, J.M.; Silva, J.P. Wind turbines cause functional habitat loss for migratory soaring birds. J. Anim. Ecol. 2020, 89, 93–103. [Google Scholar] [CrossRef]
- Birdlife International. Review and Guidance on Use of “Shutdown-on-Demand” for Wind Turbines to Conserve Migrating Soaring Birds in the Rift Valley/Red Sea Flyway; Regional Flyway Facility: Amman, Jordan, 2015. [Google Scholar]
- Allison, T.D.; Cochrane, J.F.; Lonsdorf, E.; Sanders-Reed, C. A Review of Options for Mitigating Take of Golden Eagles at Wind Energy Facilities. J. Raptor Res. 2017, 51, 319–333. [Google Scholar] [CrossRef]
- Smallwood, K.S.; Bell, D.A. Effects of Wind Turbine Curtailment on Bird and Bat Fatalities. J. Wildl. Manag. 2020, 84, 685–696. [Google Scholar] [CrossRef]
- de Lucas, M.; Ferrer, M.; Bechard, M.J.; Muñoz, A.R. Griffon vulture mortality at wind farms in southern Spain: Distribution of fatalities and active mitigation measures. Biol. Conserv. 2012, 147, 184–189. [Google Scholar] [CrossRef]
- McClure, C.J.W.; Rolek, B.W.; Braham, M.A.; Miller, T.A.; Duerr, A.E.; McCabe, J.D.; Dunn, L.; Katzner, T.E. Eagles enter rotor-swept zones of wind turbines at rates that vary per turbine. Ecol. Evol. 2021, 11, 11267–11274. [Google Scholar] [CrossRef]
- McClure, C.J.W.; Rolek, B.W.; Dunn, L.; McCabe, J.D.; Martinson, L.; Katzner, T. Eagle fatalities are reduced by automated curtailment of wind turbines. J. Appl. Ecol. 2021, 58, 446–452. [Google Scholar] [CrossRef]
- McClure, C.J.W.; Rolek, B.W.; Dunn, L.; McCabe, J.D.; Martinson, L.; Katzner, T.E. Confirmation that eagle fatalities can be reduced by automated curtailment of wind turbines. Ecol. Solut. Evid. 2022, 3, e12173. [Google Scholar] [CrossRef]
- McClure, C.J.W.; Rolek, B.W.; Dunn, L.; McCabe, J.D.; Martinson, L.; Katzner, T.E. Reanalysis ignores pertinent data, includes inappropriate observations, and disregards realities of applied ecology: Response to Huso and Dalthorp (2023). J. Appl. Ecol. 2023, 60, 2289–2294. [Google Scholar] [CrossRef]
- Rolek, B.W.; Braham, M.A.; Miller, T.A.; Duerr, A.E.; Katzner, T.E.; McCabe, J.D.; Dunn, L.; McClure, C.J.W. Flight characteristics forecast entry by eagles into rotor-swept zones of wind turbines. Ibis 2022, 164, 968–980. [Google Scholar] [CrossRef]
- Rolek, B.W.; Braham, M.A.; Miller, T.A.; Duerr, A.E.; Katzner, T.E.; McClure, C.J.W. Variation in flight characteristics associated with entry by eagles into rotor-swept zones of wind turbines. Ibis 2024, 166, 308–314. [Google Scholar] [CrossRef]
- Dahl, E.L.; Bevanger, K.; Nygård, T.; Røskaft, E.; Stokke, B.G. Reduced breeding success in white-tailed eagles at Smøla windfarm, western Norway, is caused by mortality and displacement. Biol. Conserv. 2012, 145, 79–85. [Google Scholar] [CrossRef]
- Sims, C.; Hull, C.; Stark, E.; Barbour, R. Key learnings from ten years of monitoring and management interventions at the Bluff Point and Studland Bay Wind Farms: Results of a review. In Wind and Wildlife, Proceedings of the Conference on Wind Energy and Wildlife Impacts, Melbourne, Australia, 9th October 2012; Hull, C., Bennett, E., Stark, E., Smales, I., Lau, J., Venosta, M., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 125–144. [Google Scholar]
- Huso, M.; Dalthorp, D. Reanalysis indicates little evidence of reduction in eagle mortality rate by automated curtailment of wind turbines. J. Appl. Ecol. 2023, 60, 2282–2288. [Google Scholar] [CrossRef]
- Garvin, J.C.; Jennelle, C.S.; Drake, D.; Grodsky, S.M. Response of raptors to a windfarm. J. Appl. Ecol. 2011, 48, 199–209. [Google Scholar] [CrossRef]
- Johnston, N.N.; Bradley, J.E.; Otter, K.A. Increased Flight Altitudes among Migrating Golden Eagles Suggest Turbine Avoidance at a Rocky Mountain Wind Installation. PLoS ONE 2014, 9, e93030. [Google Scholar] [CrossRef]
- Villegas-Patraca, R.; Cabrera-Cruz, S.A.; Herrera-Alsina, L. Soaring Migratory Birds Avoid Wind Farm in the Isthmus of Tehuantepec, Southern Mexico. PLoS ONE 2014, 9, e92462. [Google Scholar] [CrossRef] [PubMed]
- Dohm, R.; Jennelle, C.S.; Garvin, J.C.; Drake, D. A long-term assessment of raptor displacement at a wind farm. Front. Ecol. Environ. 2019, 17, 433–438. [Google Scholar] [CrossRef]
- Dohm, R.; Jennelle, C.S.; Garvin, J.C.; Drake, D. Documented raptor displacement at a wind farm. Front. Ecol. Environ. 2020, 18, 122–123. [Google Scholar] [CrossRef]
- Walker, D.; McGrady, M.; McCluskie, A.; Madders, M.; McLeod, D.R.A. Resident golden eagle ranging behaviour before and after construction of a windfarm in Argyll. Scot. Birds 2005, 25, 24–40. [Google Scholar]
- Troen, I.; Petersen, E.L. European Wind Atlas. Published for the EU Commission DGXII; Risø National Laboratory: Copenhagen, Denmark, 1998. [Google Scholar]
- Robson, P. Review of Hen Harrier breeding and flight activity near a windfarm in Argyll. In Proceedings of the Proceedings Conference on Wind Energy and Wildlife Impacts, Trondheim, Norway, 2–5 May 2011. [Google Scholar]
- Whitfield, D.P.; Fielding, A.H.; Gregory, M.J.P.; Gordon, A.G.; Mcleod, D.R.A.; Haworth, P.F. Complex effects of habitat loss on Golden Eagles Aquila chrysaetos. Ibis 2007, 149, 26–36. [Google Scholar] [CrossRef]
- Hayhow, D.B.; Benn, S.; Stevenson, A.; Stirling-Aird, P.K.; Eaton, M.A. Status of Golden Eagle Aquila chrysaetos in Britain in 2015. Bird Study 2017, 64, 281–294. [Google Scholar] [CrossRef]
- Watson, J. The Golden Eagle, 2nd ed.; Poyser: London, UK, 2010. [Google Scholar]
- Whitfield, D.P.; Fielding, A.H.; McLeod, D.R.A.; Morton, K.; Stirling-Aird, P.; Eaton, M. Factors constraining the distribution of Golden Eagles Aquila chrysaetos in Scotland. Bird Study 2007, 54, 199–211. [Google Scholar] [CrossRef]
- Whitfield, D.P.; Fielding, A.H.; McLeod, D.R.A.; Haworth, P.F. A Conservation Framework for Golden Eagles: Implications for Their Conservation and Management in Scotland; Scottish Natural Heritage Commissioned Report No.193; SNH: Battleby, Scotland, 2008. [Google Scholar]
- Whitfield, D.P.; Fielding, A.H. Analyses of the Fates of Satellite Tracked Golden Eagles in Scotland; SNH Commissioned Report No. 982; SNH: Battleby, Scotland, 2017. [Google Scholar]
- Ratcliffe, D.A.; Thompson, D.B.A. The British uplands: Their ecological character and international significance. In Ecological Change in the Uplands; Usher, M.B., Thompson, D.B.A., Eds.; Blackwell Scientific Publications: Oxford, UK, 1988; pp. 9–36. [Google Scholar]
- Fielding, A.H.; Haworth, P.F.; Anderson, D.; Benn, S.; Dennis, R.; Weston, E.; Whitfield, D.P. A simple topographical model to predict Golden Eagle Aquila chrysaetos space use during dispersal. Ibis 2019, 162, 400–415. [Google Scholar] [CrossRef]
- Weston, E.D.; Whitfield, D.P.; Travis, J.M.J.; Lambin, X. When do young birds disperse? Tests from studies of golden eagles in Scotland. BMC Ecology 2013, 13, 42. [Google Scholar] [CrossRef] [PubMed]
- Weston, E.D.; Whitfield, D.P.; Travis, J.M.J.; Lambin, X. The contribution of flight capability to the post-fledging dependence period of golden eagles. J. Avian Biol. 2017, 49, e01265. [Google Scholar] [CrossRef]
- Whitfield, D.P.; Fielding, A.H.; Anderson, D.; Benn, S.; Dennis, R.; Grant, J.; Weston, E.D. Age of First Territory Settlement of Golden Eagles Aquila chrysaetos in a Variable Competitive Landscape. Front. Ecol. Evol. 2022, 10, 743598. [Google Scholar] [CrossRef]
- Byrne, M.E.; Holland, A.E.; Bryan, A.L.; Beasley, J.C. Environmental conditions and animal behavior influence performance of solar-powered GPS-GSM transmitters. Condor 2017, 119, 389–404. [Google Scholar] [CrossRef]
- Santos, C.D.; Marques, A.T.; May, R. Recovery of raptors from displacement by wind farms–a response. Front. Ecol. Environ. 2020, 18, 121–122. [Google Scholar] [CrossRef]
- Lares, B. Lares: Analytics & Machine Learning Sidekick. 2023. Available online: https://rdrr.io/github/laresbernardo/lares/man/dist2d.html (accessed on 20 December 2023).
- Zuur, A.; Ieno, E.N.; Smith, G.M. Analyzing Ecological Data; Springer: New York, NY, USA, 2007. [Google Scholar]
- Zuur, A.F.; Hilbe, J.; Ieno, E.N.; Zuur, A.F.; Hilbe, J.M.; Leno, E.N. A Beginner’s Guide to GLM and GLMM with R: A Frequentist and Bayesian Perspective for Ecologists; Highland Statistics Ltd.: Newburgh, Scotland, 2013. [Google Scholar]
- Mazerolle, M.J. Package ‘AICcmodavg’. 2023. Available online: https://www.rdocumentation.org/packages/AICcmodavg/versions/1.0/topics/aictab (accessed on 15 August 2023).
- R Development Core Team. R: A language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: http://www.R–project.org/ (accessed on 10 August 2023).
- Posit team. RStudio: Integrated Development Environment for R; Posit Software PBC: Boston, MA, USA, 2023; Available online: http://www.posit.co/ (accessed on 15 July 2023).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Burnham, K.; Anderson, D. Model Selection and Multi-Model Inference, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Fabozzi, F.J.; Focardi, S.M.; Rachev, S.T.; Arshanapalli, B.G. The Basics of Financial Econometrics: Tools, Concepts, and Asset Management Applications. Appendix E. Model Selection Criteria: AIC and BIC; John Wiley & Sons: New York, NY, USA, 2014. [Google Scholar]
- Urios, V.; Soutullo, A.; López-López, P.; Cadahía, L.; Limiñana, R.; Ferrer, M. The First Case of Successful Breeding of a Golden Eagle Aquila chrysaetos Tracked from Birth by Satellite Telemetry. Acta Ornithol. 2007, 42, 205–209. [Google Scholar] [CrossRef]
- Cadahía, L.; López-López, P.; Urios, V.; Soutullo, Á.; Negro, J.J. Natal dispersal and recruitment of two Bonelli’s Eagles Aquila fasciata: A four-year satellite tracking study. Acta Ornithol. 2009, 44, 193–198. [Google Scholar] [CrossRef]
- Murgatroyd, M.; Underhill, L.G.; Bouten, W.; Amar, A. Ranging Behaviour of Verreaux’s Eagles during the Pre-Breeding Period Determined through the Use of High Temporal Resolution Tracking. PLoS ONE 2016, 11, e0163378. [Google Scholar] [CrossRef]
- de Lucas, M.; Janss, G.F.E.; Whitfield, D.P.; Ferrer, M. Collision fatality of raptors in wind farms does not depend on raptor abundance. J. Appl. Ecol. 2008, 45, 1695–1703. [Google Scholar] [CrossRef]
- Dahl, E.L.; May, R.L.; Hoel, P.L.; Bevanger, K.; Pedersen, H.C.; Røskaft, E.; Stokke, B.G. White-tailed Eagles (Haliaeetus albicilla) at the Smøla wind power plant, central Norway, lack behavioral flight responses to wind turbines. Wildl. Soc. Bull. 2013, 37, 66–74. [Google Scholar] [CrossRef]
- Katzner, T.E.; Brandes, D.; Miller, T.; Lanzone, M.; Maisonneuve, C.; Tremblay, J.A.; Mulvihill, R.; Merovich, G.T. Topography drives migratory flight altitude of golden eagles: Implications for on-shore wind energy development. J. Appl. Ecol. 2012, 49, 1178–1186. [Google Scholar] [CrossRef]
- Katzner, T.E.; Turk, P.J.; Duerr, A.E.; Miller, T.A.; Lanzone, M.J.; Cooper, J.L.; Brandes, D.; Tremblay, J.A.; Lemaître, J. Use of multiple modes of flight subsidy by a soaring terrestrial bird, the golden eagle Aquila chrysaetos, when on migration. J. R. Soc. Interface 2015, 12, 20150530. [Google Scholar] [CrossRef] [PubMed]
- Braham, M.; Miller, T.; Duerr, A.E.; Lanzone, M.; Fesnock, A.; LaPre, L.; Driscoll, D.; Katzner, T. Home in the heat: Dramatic seasonal variation in home range of desert golden eagles informs management for renewable energy development. Biol. Conserv. 2015, 186, 225–232. [Google Scholar] [CrossRef]
- Diehl, R.H. The airspace is habitat. Trends Ecol. Evol. 2013, 28, 377–379. [Google Scholar] [CrossRef]
- Poessel, S.A.; Brandt, J.; Miller, T.A.; Katzner, T.E. Meteorological and environmental variables affect flight behaviour and decision-making of an obligate soaring bird, the California Condor Gymnogyps californianus. Ibis 2018, 160, 36–53. [Google Scholar] [CrossRef]
- Johnston, N.N.; Bradley, J.E.; Pomeroy, A.C.; Otter, K.A. Flight Paths of Migrating Golden Eagles and the Risk Associated with Wind Energy Development in the Rocky Mountains. Avian Conserv. Ecol. 2013, 8, 12. [Google Scholar] [CrossRef]
- de Lucas, M.; Ferrer, M.; Janss, G.F.E. Using Wind Tunnels to Predict Bird Mortality in Wind Farms: The Case of Griffon Vultures. PLoS ONE 2012, 7, e48092. [Google Scholar] [CrossRef]
- Tomé, R.; Canário, F.; Leitão, A.H.; Pires, N.; Repas, M. Radar assisted shutdown on demand ensures zero soaring bird mortality at a wind farm located in a migratory flyway. In Wind Energy and Wildlife Interactions: Presentations from the CWW2015 Conference; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 119–133. [Google Scholar]
- Scottish Government. Scotland’s Forestry Strategy 2019–2029. 2019. Available online: https://www.gov.scot/publications/scotlands-forestry-strategy-20192029/ (accessed on 7 January 2024).
Model | df | AICc | ΔAICc | AICcWt | LL |
---|---|---|---|---|---|
Turn + Wind + GET | 7 | 32,498.92 | 0.00 | 0.77 | −16,242.44 |
Wind + GET | 6 | 32,501.29 | 2.37 | 0.23 | −16,244.63 |
Turn + GET | 6 | 32,517.54 | 18.62 | 0.00 | −16,252.75 |
Turn + Wind | 6 | 32,523.72 | 24.79 | 0.00 | −16,255.84 |
Wind | 5 | 32,526.00 | 27.08 | 0.00 | −16,257.99 |
GET | 5 | 32,532.15 | 33.23 | 0.00 | −16,261.06 |
Turn | 5 | 32,544.15 | 45.23 | 0.00 | −16,267.06 |
Null | 4 | 32,559.22 | 60.30 | 0.00 | −16,275.60 |
Model 2 | Model 1 | |||||
---|---|---|---|---|---|---|
Distance from Hub | Distance from Hub | |||||
Predictors (fixed factors) | Estimates | CI | p | Estimates | CI | p |
(Intercept) | 820.35 | 688.60–952.09 | <0.001 | 834.06 | 701.94–966.19 | <0.001 |
Wind | −15.58 | −20.89–−10.27 | <0.001 | −13.29 | −19.01–−7.56 | <0.001 |
GET | −25.67 | −35.36–−15.97 | <0.001 | −25.77 | −35.48–−16.05 | <0.001 |
Turn | −37.59 | −72.68–−2.50 | 0.036 | |||
Random Effects | ||||||
σ2 | 70,731.72 | 70,570.61 | ||||
τ00 | 14,571.97 turbine | 15,491.51 turbine | ||||
11,847.69 ID | 11,568.62 ID | |||||
ICC | 0.27 | 0.28 | ||||
n | 18 turbine | 18 turbine | ||||
4 ID | 4 ID | |||||
Observations | 2316 | 2316 | ||||
Marginal R2/Conditional R2 | 0.031/0.294 | 0.032/0.300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fielding, A.H.; Anderson, D.; Benn, S.; Taylor, J.; Tingay, R.; Weston, E.D.; Whitfield, D.P. Approach Distances of Scottish Golden Eagles Aquila chrysaetos to Wind Turbines According to Blade Motion Status, Wind Speed, and Preferred Habitat. Diversity 2024, 16, 71. https://doi.org/10.3390/d16010071
Fielding AH, Anderson D, Benn S, Taylor J, Tingay R, Weston ED, Whitfield DP. Approach Distances of Scottish Golden Eagles Aquila chrysaetos to Wind Turbines According to Blade Motion Status, Wind Speed, and Preferred Habitat. Diversity. 2024; 16(1):71. https://doi.org/10.3390/d16010071
Chicago/Turabian StyleFielding, Alan H., David Anderson, Stuart Benn, John Taylor, Ruth Tingay, Ewan D. Weston, and D. Philip Whitfield. 2024. "Approach Distances of Scottish Golden Eagles Aquila chrysaetos to Wind Turbines According to Blade Motion Status, Wind Speed, and Preferred Habitat" Diversity 16, no. 1: 71. https://doi.org/10.3390/d16010071
APA StyleFielding, A. H., Anderson, D., Benn, S., Taylor, J., Tingay, R., Weston, E. D., & Whitfield, D. P. (2024). Approach Distances of Scottish Golden Eagles Aquila chrysaetos to Wind Turbines According to Blade Motion Status, Wind Speed, and Preferred Habitat. Diversity, 16(1), 71. https://doi.org/10.3390/d16010071