Multi-Biomarker Analysis Uncovers High Spatio-Temporal Stability of a Subarctic Rhodolith (Lithothamnion glaciale) Bed Food Web
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Selection of Focal Species
2.2. Timing of Sampling
2.3. Rhodolith Community
2.4. Rhodolith Percent Cover and Epiphyte Coverage
2.5. Collection and Preparation of Samples for Food Web Analyses
2.6. Extraction and Characterization of Lipid Classes
2.7. Preparation and Characterization of Fatty Acid Methyl Esters (FAME)
2.8. Stable Isotope Preparation and Analysis
2.9. Trophic Magnification of Fatty Acids
2.10. Statistical Analysis
2.10.1. Lipid Classes
2.10.2. Fatty Acids
2.10.3. Stable Isotopes
2.10.4. General Aspects of Statistical Tests
3. Results
3.1. Rhodolith Community
3.2. Total Lipid Content and Lipid Classes
3.3. Fatty Acid Profiles
3.4. Stable Isotopes and Trophic Magnification
4. Discussion
4.1. Rhodolith Community
4.2. Lipid Content and Class Composition
4.3. Fatty Acids
4.4. Stable Isotopes
5. Conclusions and Future Research Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Physicochemical Environment and Timing of Phytoplankton Bloom at the Study Site
Temperature | Fluorescence | Salinity | ||
---|---|---|---|---|
Site | Collection Month (2017) | °C (±SE) | (mg/m3) (±SE) | psu (±SE) |
South | April | 0.3 (0.1) | 0.4 (0.1) | 31.4 (0.1) |
July | 7.9 (0.5) | 0.1(0.1) | 31.2 (0.1) | |
December | 4.4 (0.1) | 0 (0.1) | 31.5 (0.1) | |
North | April | 0.3 (0.1) | 0.4 (0.1) | 31.4 (0.1) |
July | 6.2 (0.2) | 0.1 (0.1) | 31.4 (0.1) | |
December | 0 (0.1) | 0 (0) | 31.5 (0.1) |
Appendix B. Justification for General Statistical Approach
Component Group | P-Perm |
---|---|
Asterias rubens vs. Seawater | <0.001 |
Asterias rubens vs. Sediment | <0.001 |
Hiatella arctica vs. Asterias rubens | <0.001 |
Hiatella arctica vs. Nereididae | <0.001 |
Hiatella arctica vs. Ophiopholis aculeata | <0.001 |
Hiatella arctica vs. Strongylocentrotus droebachiensis | 0.0692 |
Hiatella arctica vs. Seawater | <0.001 |
Hiatella arctica vs. Sediment | <0.001 |
Nerididae vs. Asterias rubens | <0.001 |
Nerididae vs. Strongylocentrotus droebachiensis | 0.1037 |
Nerididae vs. Seawater | <0.001 |
Nerididae vs. Sediment | <0.001 |
Ophiopholis aculeata vs. Asterias rubens | <0.001 |
Ophiopholis aculeata vs. Nerididae | <0.001 |
Ophiopholis aculeata vs. Strongylocentrotus droebachiensis | 0.2208 |
Ophiopholis aculeata vs. Seawater | <0.001 |
Ophiopholis aculeata vs. Sediment | <0.001 |
Strongylocentrotus droebachiensis vs. Asterias rubens | 0.0813 |
Strongylocentrotus droebachiensis vs. Seawater | 0.0606 |
Strongylocentrotus droebachiensis vs. Sediment | 0.2037 |
Seawater vs. Sediment | <0.001 |
Tonicella spp. vs. Asterias rubens | <0.001 |
Tonicella spp. vs. Hiatella arctica | <0.001 |
Tonicella spp. vs. Nerididae | <0.001 |
Tonicella spp. vs. Ophiopholis aculeata | <0.001 |
Tonicella spp. vs. Strongylocentrotus droebachiensis | 0.0739 |
Tonicella spp. vs. Seawater | <0.001 |
Tonicella spp. vs. Sediment | <0.001 |
April–July | ||
Variable | Dissimilarity (%) | Average Abundance |
Phospholipid (%) | 14.7 | 45.7 |
Free fatty acid (%) | 12.7 | 15.2 |
Triacylglycerol (%) | 9.9 | 14.9 |
20:5ω3 (EPA) | 5.2 | 17.7 |
18:1ω9 | 4.4 | 7.3 |
18:0 | 4.0 | 8.3 |
16:0 | 3.4 | 12.9 |
Acetone mobile polar lipid (%) | 3.4 | 8.7 |
Temperature | 3.3 | 0.3 |
Sterol (%) | 3.2 | 10.7 |
20:4ω6 (ARA) | 3.1 | 5.4 |
Total lipid | 3.0 | 6.6 |
April–December | ||
Variable | Dissimilarity (%) | Average Abundance |
Phospholipid (%) | 14.1 | 45.7 |
Free fatty acid (%) | 12.0 | 15.2 |
Triacylglycerol (%) | 7.3 | 14.9 |
20:5ω3 (EPA) | 6.0 | 17.7 |
18:1ω9 | 4.6 | 7.3 |
16:0 | 4.1 | 12.9 |
Sterol (%) | 3.7 | 10.7 |
16:1ω7 | 3.7 | 7.2 |
18:0 | 3.4 | 8.3 |
Acetone mobile polar lipid (%) | 3.4 | 8.7 |
22:6ω3 (DHA) | 3.3 | 3.1 |
20:4ω6 (ARA) | 3.2 | 5.4 |
Total lipid | 2.6 | 6.6 |
July–December | ||
Variable | Dissimilarity (%) | Average Abundance |
Phospholipid (%) | 14.2 | 40.1 |
Free fatty acid (%) | 14.1 | 20.6 |
Triacylglycerol (%) | 9.9 | 22.2 |
20:5ω3 (EPA) | 5.5 | 19.2 |
18:1ω9 | 4.4 | 6.8 |
Sterol (%) | 3.7 | 10.9 |
18:0 | 3.5 | 8.2 |
22:6ω3 (DHA) | 3.4 | 3.4 |
16:0 | 3.4 | 11.4 |
16:1ω7 | 3.2 | 5.1 |
Total lipid | 3.1 | 8.2 |
Acetone mobile polar lipid (%) | 2.7 | 3.1 |
Appendix C. List of Abbreviations and Symbols
AMPL | Acetone mobile polar lipid(s) |
ALC | Alcohol(s) |
ARA | Arachidonic acid |
°C | Degrees Celsius |
cm | Centimetres |
CTD | Conductivity, Temperature, and Depth Instrument |
DHA | Docosahexaenoic acid |
DHA/EPA | Docosahexaenoic acid:eicosapentaenoic acid ratio |
EPA | Eicosapentaenoic acid |
EA | Elemental analyzer |
FA | Fatty acid(s) [notation: A:Bωn (e.g.,. 20:5ω3)] |
FAME | Fatty acid methyl ester(s) |
A:Bωn | Fatty acid notation |
FID | Flame ionization detection |
FFA | Free fatty acid(s) |
g | Grams |
GC | Gas chromatography |
GC-FID | Gas chromatography and flame ionization detection |
h | Hours |
HC | Hydrocarbon(s) |
KET | Ketone(s) |
kg | Kilograms |
L | Litres |
MS | Mass Spectrometer |
MUN | Memorial University of Newfoundland |
m | Metres |
μL | Microlitres |
mL | Millilitres |
mm | Millimetres |
min | Minutes |
MUFA | Monounsaturated fatty acid(s) |
ω3 | Omega-3 fatty acid(s) |
ω6 | Omega-6 fatty acid(s) |
OSC | Ocean Sciences Centre |
PL | Phospholipid(s) |
PAR | Photosynthetically Active Radiation |
PUFA | Polyunsaturated fatty acid(s) |
P/S | Polyunsaturated:saturated fatty acid ratio |
PCO | Principal coordinates analysis |
rpm | Revolutions per minute |
SFA | Saturated fatty acid(s) |
δ13C | Stable carbon isotope ratio |
δ15N | Stable nitrogen isotope ratio |
SD | Standard deviation |
SE | Standard error |
SE (lipid class) | Steryl ether |
ST | Sterol(s) |
TERRA | The Earth Resources Research and Analysis facility |
TCD | Thermal conductivity meter |
TLC-FID | Thin-layer chromatography with flame ionization detection |
TAG | Triacylglycerol(s) |
TMF | Trophic multiplication factor |
TP | Trophic position |
References
- Kharlamenko, V.I.; Kiyashko, S.I.; Imbs, A.B.; Vyshkvartzev, D.I. Identification of food sources of invertebrates from the seagrass Zostera marina community using carbon and sulfur stable isotope ratio and fatty acid analyses. Mar. Ecol. Prog. Ser. 2001, 220, 103–117. [Google Scholar] [CrossRef]
- Pitt, K.A.; Connolly, R.M.; Meziane, T. Stable isotope and fatty acid tracers in energy and nutrient studies of jellyfish: A review. Hydrobiologia 2009, 616, 119–132. [Google Scholar] [CrossRef]
- Kelly, J.R.; Scheibling, R.E. Fatty acids as dietary tracers in benthic food webs. Mar. Ecol. Prog. Ser. 2012, 446, 1–22. [Google Scholar] [CrossRef]
- Schiel, D.R.; Steinbeck, J.R.; Foster, M.S. Ten years of induced ocean warming causes comprehensive changes in marine benthic communities. Ecology 2004, 85, 1833–1839. [Google Scholar] [CrossRef]
- Steneck, R.S. The ecology of coralline algal crusts: Convergent patterns and adaptative strategies. Annu. Rev. Ecol. Syst. 1986, 17, 273–303. [Google Scholar] [CrossRef]
- Gagnon, P.; Matheson, K.; Stapleton, M. Variation in rhodolith morphology and biogenic potential of newly discovered rhodolith beds in Newfoundland and Labrador (Canada). Bot. Mar. 2012, 55, 85–99. [Google Scholar] [CrossRef]
- Teichert, S.; Woelkerling, W.; Rüggeberg, A.; Wisshak, M.; Piepenburg, D.; Meyerhöfer, M.; Form, A.; Freiwald, A. Arctic rhodolith beds and their environmental controls (Spitsbergen, Norway). Facies 2014, 60, 15–37. [Google Scholar] [CrossRef]
- Górska, B.; Włodarska-Kowalczuk, M. Food and disturbance effects on Arctic benthic biomass and production size spectra. Prog. Oceanogr. 2017, 152, 50–61. [Google Scholar] [CrossRef]
- Kuklinski, P.; Berge, J.; McFadden, L.; Dmoch, K.; Zajaczkowski, M.; Nygård, H.; Piwosz, K.; Tatarek, A. Seasonality of occurrence and recruitment of Arctic marine benthic invertebrate larvae in relation to environmental variables. Polar Biol. 2013, 36, 549–560. [Google Scholar] [CrossRef]
- Parrish, C.C. Lipids in Marine Ecosystems. ISRN Oceanogr. 2013, 2013, 604045. [Google Scholar] [CrossRef]
- Czaja, R., Jr.; Beal, B.; Pepperman, K.; Espinosa, E.P.; Munroe, D.; Cerrato, R.; Busch, E.; Allam, B. Interactive roles of temperature and food availability in predicting habitat suitability for marine invertebrates. Estuar. Coast. Shelf Sci. 2023, 293, 108515. [Google Scholar] [CrossRef]
- Schertenleib, K.S.H. Quantifying the impacts of multiple stressors on the production of marine benthic resources. Ph.D. Thesis, Trinity College, Dublin, Irland, 2024. [Google Scholar]
- Honya, M.; Kinoshita, T.; Ishikawa, M.; Mori, H.; Nisizawa, K. Seasonal variation in the lipid content of cultured Laminaria japonica: Fatty acids, sterols, β-carotene and tocopherol. J. Appl. Phycol. 1994, 6, 25–29. [Google Scholar] [CrossRef]
- Nelson, M.M.; Phleger, C.F.; Nichols, P.D. Seasonal lipid composition in macroalgae of the northeastern Pacific Ocean. Bot. Mar. 2002, 45, 58–65. [Google Scholar] [CrossRef]
- Pakhomov, E.A.; McClelland, J.W.; Bernard, K.; Kaehler, S.; Montoya, J.P. Spatial and temporal shifts in stable isotope values of the bottom-dwelling shrimp Nauticaris marionis at the sub-Antarctic archipelago. Mar. Biol. 2004, 144, 317–325. [Google Scholar] [CrossRef]
- Foster, M.S. Rhodoliths: Between rocks and soft places. J. Phycol. 2001, 37, 659–667. [Google Scholar] [CrossRef]
- Foster, M.S.; McConnico, L.C.; Lundsten, L.; Wadsworth, T.; Kimball, T.; Brooks, L.B.; Medina-López, M.; Riosmena-Rodríguez, R.; Hernandez-Carmona, G.; Vásquez-Elizondo, R.M. Diversity and natural history of a Lithothamnion muelleri-Sargassum horridum community in the Gulf of California. Cienc. Mar. 2007, 33, 367–384. [Google Scholar] [CrossRef]
- Kamenos, N.A.; Moore, P.G.; Hall-Spencer, J.M. Attachment of the juvenile queen scallop (Aequipecten opercularis (L.)) to maërl in mesocosm conditions; juvenile habitat selection. J. Exp. Mar. Biol. Ecol. 2004, 306, 139–155. [Google Scholar] [CrossRef]
- Steller, D.L.; Cáceres-Martínez, C. Coralline algal rhodoliths enhance larval settlement and early growth of the pacific calico scallop Argopecten ventricosus. Mar. Ecol. Prog. Ser. 2009, 396, 49–60. [Google Scholar] [CrossRef]
- Riosmena-Rodriguez, R.; Medina-López, M.A. The role of rhodolith beds in the recruitment of invertebrate species from the southwestern Gulf of California, Mexico. Seaweeds Their Role Glob. Chang. Environ. 2010, 127–138. [Google Scholar]
- Kamenos, N.A.; Moore, P.G.; Hall-Spencer, J.M. Nursery-area function of maërl grounds for juvenile queen scallops Aequipecten opercularis and other invertebrates. Mar. Ecol. Prog. Ser. 2004, 274, 183–189. [Google Scholar] [CrossRef]
- Steller, D.L.; Riosmena-Rodriguez, R.; Foster, M.S.; Roberts, C.A. Rhodolith bed diversity in the Gulf of California: The importance of rhodolith structure and consequences of disturbance. Aquat. Conserv. Mar. Freshw. Ecosyst. 2003, 13, 5–20. [Google Scholar] [CrossRef]
- Riosmena-Rodríguez, R.; Nelson, W.; Aguirre, J. Rhodolith/maërl Beds: A Global Perspective; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Amado-Filho, G.M.; Moura, R.L.; Bastos, A.C.; Salgado, L.T.; Sumida, P.Y.; Guth, A.Z.; Francini-Filho, R.B.; Pereira-Filho, G.H.; Abrantes, D.P.; Brasileiro, P.S. Rhodolith beds are major CaCO3 bio-factories in the tropical South West Atlantic. PLoS ONE 2012, 7, e35171. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.S.; Harvey, R.M.; Merton, E. The distribution, significance and vulnerability of Australian rhodolith beds: A review. Mar. Freshw. Res. 2017, 68, 411–428. [Google Scholar] [CrossRef]
- Teed, L.; Bélanger, D.; Gagnon, P.; Edinger, E. Calcium carbonate (CaCO3) production of a subpolar rhodolith bed: Methods of estimation, effect of bioturbators, and global comparisons. Estuar. Coast. Shelf Sci. 2020, 242, 106822. [Google Scholar] [CrossRef]
- Marrack, E.C. The relationship between water motion and living rhodolith beds in the southwestern Gulf of California, Mexico. Palaios 1999, 14, 159–171. [Google Scholar] [CrossRef]
- Hinojosa-Arango, G.; Maggs, C.A.; Johnson, M.P. Like a rolling stone: The mobility of maërl (Corallinaceae) and the neutrality of the associated assemblages. Ecology 2009, 90, 517–528. [Google Scholar] [CrossRef]
- Millar, K.R.; Gagnon, P. Mechanisms of stability of rhodolith beds: Sedimentological aspects. Mar. Ecol. Prog. Ser. 2018, 594, 65–83. [Google Scholar] [CrossRef]
- Hacker Teper, S.; Parrish, C.C.; Gagnon, P. Multiple trophic tracer analyses of subarctic Rhodolith (Lithothamnion glaciale) bed trophodynamics uncover bottom-up forcing and benthic-pelagic coupling. Front. Mar. Sci. 2022, 9, 899812. [Google Scholar] [CrossRef]
- Piazzi, L.; Pardi, G.; Cinelli, F. Structure and temporal dynamics of a macroalgal assemblage associated with a rhodolith bed of the Tuscan archipelago (Tyrrhenian Sea). Atti Soc. Toscana Sci. Nat. Pisa Mem. 2002, 109, 5–10. [Google Scholar]
- Gabara, S.S. Community Structure and Energy Flow within Rhodolith Habitats at Santa Catalina Island, Ca; San José State University: San José, CA, USA, 2014. [Google Scholar]
- McConnico, L.A.; Carmona, G.H.; Morales, J.S.M.; Rodríguez, R.R. Temporal variation in seaweed and invertebrate assemblages in shallow rhodolith beds of Baja California Sur, México. Aquat. Bot. 2017, 139, 37–47. [Google Scholar] [CrossRef]
- Bélanger, D. Growth Controls of Rhodoliths (Lithothamnion glaciale) and Relationships between Structural Complexity and Macrofaunal Diversity in Subarctic Rhodolith Beds; Memorial University of Newfoundland: St. John’s, NL, Canada, 2020. [Google Scholar]
- Gabara, S.S.; Hamilton, S.L.; Edwards, M.S.; Steller, D.L. Rhodolith structural loss decreases abundance, diversity, and stability of benthic communities at Santa Catalina Island, CA. Mar. Ecol. Prog. Ser. 2018, 595, 71–88. [Google Scholar] [CrossRef]
- Newell, R.I.E.; Marshall, N.; Sasekumar, A.; Chong, V.C. Relative importance of benthic microalgae, phytoplankton, and mangroves as sources of nutrition for penaeid prawns and other coastal invertebrates from Malaysia. Mar. Biol. 1995, 123, 595–606. [Google Scholar] [CrossRef]
- McMeans, B.C.; McCann, K.S.; Humphries, M.; Rooney, N.; Fisk, A.T. Food web structure in temporally-forced ecosystems. TREE 2015, 30, 662–672. [Google Scholar] [CrossRef] [PubMed]
- Bélanger, D.; Gagnon, P. Spatiotemporal variability in subarctic Lithothamnion glaciale rhodolith bed structural complexity and macrofaunal diversity. Diversity 2023, 15, 774–794. [Google Scholar] [CrossRef]
- Bélanger, D.; Gagnon, P. High growth resilience of subarctic rhodoliths (Lithothamnion glaciale) to ocean warming and chronic low irradiance. Mar. Ecol. Prog. Ser. 2021, 663, 77–97. [Google Scholar] [CrossRef]
- Arnold, C.L.; Bélanger, D.; Gagnon, P. Growth resilience of subarctic rhodoliths (Lithothamnion glaciale, Rhodophyta) to chronic low sea temperature and irradiance. J. Phycol. 2022, 58, 251–266. [Google Scholar] [CrossRef]
- Budge, S.M.; Parrish, C.C. Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay, Newfoundland. II. Fatty acids. Org. Geochem. 1998, 29, 1547–1559. [Google Scholar] [CrossRef]
- Parrish, C.C.; Thompson, R.J.; Deibel, D. Lipid classes and fatty acids in plankton and settling matter during the spring bloom in a cold ocean coastal environment. Mar. Ecol. Prog. Ser. 2005, 286, 57–68. [Google Scholar] [CrossRef]
- Parrish, C.C.; McKenzie, C.H.; MacDonald, B.A.; Hatfield, E.A. Seasonal studies of seston lipids in relation to microplankton species composition and scallop growth in South Broad Cove, Newfoundland. Mar. Ecol. Prog. Ser. 1995, 129, 151–164. [Google Scholar] [CrossRef]
- Graham, D.J.; Midgley, N.G. Graphical representation of particle shape using triangular diagrams: An excel spreadsheet method. Earth Surf. Proc. Landf. 2000, 25, 1473–1477. [Google Scholar] [CrossRef]
- Sneed, E.D.; Folk, R.L. Pebbles in the Lower Colorado River, Texas: A study in particle morphogenesis. J. Geol. 1958, 66, 114–150. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. JBC 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Parrish, C.C. Determination of Total Lipid, Lipid Classes, and Fatty Acids in Aquatic Samples. Lipids Freshw. Ecosyst. 1999, 4–20. [Google Scholar]
- Parrish, C.C. Separation of aquatic lipid classes by Chromarod thin-layer chromatography with measurement by Iatroscan flame ionization detection. Can. J. Fish. Aquat. Sci. 1987, 44, 722–731. [Google Scholar] [CrossRef]
- Christie, W.W. A simple procedure for rapid transmethylation of glycerolipids and cholesteryl esters. JLR 1982, 23, 1072–1075. [Google Scholar] [CrossRef]
- Hamilton, S. Extraction of lipids and derivative formation. Lipid Anal. Pract. Approach 1992, 13–64. [Google Scholar]
- Minagawa, M.; Wada, E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 1984, 48, 1135–1140. [Google Scholar] [CrossRef]
- Gale, K.S.P.; Hamel, J.-F.; Mercier, A. Trophic ecology of deep-sea Asteroidea (Echinodermata) from eastern Canada. Deep. Sea Res. Part 1 Oceanogr. Res. Pap. 2013, 80, 25–36. [Google Scholar] [CrossRef]
- Cabana, G.; Rasmussen, J.B. Comparison of aquatic food chains using nitrogen isotopes. Proc. Natl. Acad. Sci. USA 1996, 93, 10844–10847. [Google Scholar] [CrossRef]
- Grall, J.; Leloch, F.; Guyonnet, B.; Riera, P. Community structure and food web based on stable isotopes (δ15N and δ13C) analysis of a North Eastern Atlantic maërl bed. J. Exp. Mar. Bio. Ecol. 2006, 338, 1–15. [Google Scholar] [CrossRef]
- Borgå, K.; Kidd, K.A.; Muir, D.C.G.; Berglund, O.; Conder, J.M.; Gobas, F.A.P.C.; Kucklick, J.; Malm, O.; Powell, D.E. Trophic magnification factors: Considerations of ecology, ecosystems, and study design. IEAM 2012, 8, 64–84. [Google Scholar] [CrossRef] [PubMed]
- Connelly, T.L.; Deibel, D.; Parrish, C.C. Trophic interactions in the benthic boundary layer of the Beaufort Sea shelf, Arctic Ocean: Combining bulk stable isotope and fatty acid signatures. Prog. Oceanogr. 2014, 120, 79–92. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis; Pearson Education India: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Guest, M.A.; Nichols, P.D.; Frusher, S.D.; Hirst, A.J. Evidence of abalone (Haliotis rubra) diet from combined fatty acid and stable isotope analyses. Mar. Biol. 2008, 153, 579–588. [Google Scholar] [CrossRef]
- Drazen, J.C.; Phleger, C.F.; Guest, M.A.; Nichols, P.D. Lipid composition and diet inferences in abyssal macrourids of the eastern North Pacific. Mar. Ecol. Prog. Ser. 2009, 387, 1–14. [Google Scholar] [CrossRef]
- Rohlf, F.J. An empirical comparison of three ordination techniques in numerical taxonomy. Syst. Zool. 1972, 21, 271–280. [Google Scholar] [CrossRef]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods. Affiliated East, 8th ed.; Iowa State University Press: Ames, IA, USA, 1994. [Google Scholar]
- Parzanini, C. An integrated approach to studying the trophic ecology of a deep-sea faunal assemblage from the Northwest Atlantic; Memorial University of Newfoundland: St. John’s, NL, USA, 2018. [Google Scholar]
- Sargent, J.R.; Parkes, R.J.; Mueller-Harvey, I.; Henderson, R.J. Lipid biomarkers in marine ecology. Microbes Sea 1987, 119–138. [Google Scholar]
- Graeve, M.; Kattner, G.; Wiencke, C.; Karsten, U. Fatty acid composition of Arctic and Antarctic macroalgae: Indicator of phylogenetic and trophic relationships. Mar. Ecol. Prog. Ser. 2002, 231, 67–74. [Google Scholar] [CrossRef]
- Wessels, H.; Karsten, U.; Wiencke, C.; Hagen, W. On the potential of fatty acids as trophic markers in Arctic grazers: Feeding experiments with sea urchins and amphipods fed nine diets of macroalgae. Pol. Biol. 2012, 35, 555–565. [Google Scholar] [CrossRef]
- Reuss, N.; Poulsen, L. Evaluation of fatty acids as biomarkers for a natural plankton community. A field study of a spring bloom and a post-bloom period off West Greenland. Mar. Biol. 2002, 141, 423–434. [Google Scholar]
- Dalsgaard, J.; St. John, M.; Kattner, G.; Müller-Navarra, D.; Hagen, W. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 2003, 46, 225–340. [Google Scholar]
- Nyssen, F.; Brey, T.; Dauby, P.; Graeve, M. Trophic position of Antarctic amphipods—Enhanced analysis by a 2-dimensional biomarker assay. Mar. Ecol. Prog. Ser. 2005, 300, 135–145. [Google Scholar] [CrossRef]
- Søreide, J.E.; Falk-Petersen, S.; Hegseth, E.N.; Hop, H.; Carroll, M.L.; Hobson, K.A.; Blachowiak-Samolyk, K. Seasonal feeding strategies of Calanus in the high-Arctic Svalbard region. Deep Sea Res. Part 2 Top. Stud. Oceanogr. 2008, 55, 2225–2244. [Google Scholar] [CrossRef]
- Mayzaud, P.; Boutoute, M.; Noyon, M.; Narcy, F.; Gasparini, S. Lipid and fatty acid in naturally occurring particulate matter during spring and summer in a high arctic fjord (Kongsfjorden, Svalbard). Mar. Biol. 2013, 160, 383–398. [Google Scholar] [CrossRef]
- Legeżyńska, J.; Kędra, M.; Walkusz, W. Identifying trophic relationships within the high Arctic benthic community: How much can fatty acids tell? Mar. Biol. 2014, 161, 821–836. [Google Scholar] [CrossRef]
- Bélanger, D.; Gagnon, P. Low growth resilience of subarctic rhodoliths (Lithothamnion glaciale) to coastal eutrophication. Mar. Ecol. Prog. Ser. 2020, 642, 117–132. [Google Scholar] [CrossRef]
- de Young, B.; Sanderson, B. The circulation and hydrography of Conception Bay, Newfoundland. Atmos. Ocean 1995, 33, 135–162. [Google Scholar] [CrossRef]
- Robles-Tamayo, C.M.; Valdez-Holguín, J.E.; García-Morales, R.; Figueroa-Preciado, G.; Herrera-Cervantes, H.; López-Martínez, J.; Enríquez-Ocaña, L.F. Sea surface temperature (SST) variability of the eastern coastal zone of the gulf of California. Remote Sens. 2018, 10, 1434. [Google Scholar] [CrossRef]
- Smith, V.H.; Tilman, G.D.; Nekola, J.C. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 1999, 100, 179–196. [Google Scholar] [CrossRef]
- Lloret, J.; Planes, S. Condition, feeding and reproductive potential of white seabream Diplodus sargus as indicators of habitat quality and the effect of reserve protection in the northwestern Mediterranean. Mar. Ecol. Prog. Ser. 2003, 248, 197–208. [Google Scholar] [CrossRef]
- Meador, J.P. Bioaccumulation of PAHs in Marine Invertebrates. PAHs Ecotoxicological Perspect. 2003, 147–171. [Google Scholar]
- Parzanini, C.; Parrish, C.C.; Hamel, J.-F.; Mercier, A. Functional diversity and nutritional content in a deep-sea faunal assemblage through total lipid, lipid class, and fatty acid analyses. PLoS ONE 2018, 13, e0207395. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.F.; Hagen, W.; Kattner, G. Lipid storage in marine zooplankton. Mar. Ecol. Prog. Ser. 2006, 307, 273–306. [Google Scholar] [CrossRef]
- Langer, P.D. Some aspects of the biology of three Northwestern Atlantic Chitons: Tonicella rubra, Tonicella marmorea, and Ischnochiton albus (Mollusca: Polyplacophora). Ph.D Thesis, University of New Hampshire, Durham, NH, USA, 1978. [Google Scholar]
- Graf, G. Benthic-pelagic coupling: A benthic view. OMBAR 1992, 30, 149–190. [Google Scholar]
- Hacker Teper, S. Assessing trophodynamics of a Newfoundland rhodolith (Lithothamnion glaciale) bed using lipid, fatty acid, and stable isotope analyses. Master’s Thesis, Memorial University of Newfoundland, St. John’s, NL, Canada, 2022. [Google Scholar]
- Iken, K.; Brey, T.; Wand, U.; Voigt, J.; Junghans, P. Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic): A stable isotope analysis. Prog. Oceanogr. 2001, 50, 383–405. [Google Scholar] [CrossRef]
- Allen, P.L. Feeding behaviour of Asterias rubens (L.) on soft bottom bivalves: A study in selective predation. J. Exp. Mar. Bio. Ecol. 1983, 70, 79–90. [Google Scholar] [CrossRef]
- Ramshaw, B.C.; Pakhomov, E.A.; Markel, R.W.; Kaehler, S. Quantifying spatial and temporal variations in phytoplankton and kelp isotopic signatures to estimate the distribution of kelp-derived detritus off the west coast of Vancouver Island, Canada. L&O 2017, 62, 2133–2153. [Google Scholar]
- Krumhansl, K.A.; Scheibling, R.E. Production and fate of kelp detritus. Mar. Ecol. Prog. Ser. 2012, 467, 281–302. [Google Scholar] [CrossRef]
- Yorke, C.E.; Page, H.M.; Miller, R.J. Sea urchins mediate the availability of kelp detritus to benthic consumers. Proc. R. Soc. Lond. B 2019, 286, 20190846. [Google Scholar] [CrossRef]
- Tenore, K.R.; Hanson, R.B.; McClain, J.; Maccubbin, A.E.; Hodson, R.E. Changes in composition and nutritional value to a benthic deposit feeder of decomposing detritus pools. Bull. Mar. Sci. 1984, 35, 299–311. [Google Scholar]
- Duggins, D.O.; Eckman, J.E. Is kelp detritus a good food for suspension feeders? Effects of kelp species, age and secondary metabolites. Mar. Biol. 1997, 128, 489–495. [Google Scholar] [CrossRef]
- Narciso, L.; da Fonseca, L.C. Growth, survival and fatty acid profile of Nereis diversicolor (OF Müller, 1776) fed on six different diets. Bull. Mar. Sci. 2000, 67, 337–343. [Google Scholar]
- Copeland, M.; Wieman, H.L. The chemical sense and feeding behavior of Nereis virens. Sars. Biol. Bull. 1924, 47, 231–238. [Google Scholar] [CrossRef]
- Fauchald, K.; Jumars, P.A. The diet of worms: A study of polychaete feeding guilds. OMBAR 1979, 17, 193–284. [Google Scholar]
- Nielsen, A.M.; Eriksen, N.T.; Iversen, J.J.L.; Riisgård, H.U. Feeding, growth and respiration in the polychaetes Nereis diversicolor (facultative filter-feeder) and N. virens (omnivorous)—A comparative study. Mar. Ecol. Prog. Ser. 1995, 125, 149–158. [Google Scholar] [CrossRef]
- Olivier, M.; Desrosiers, G.; Retière, C.; Brêthes, J.-C. Variations spatio-temporelles de l’alimentation du polychète Nereis virens en zone intertidale (Estuaire maritime du saint-Laurent, Québec). Vie Mil. Life Environ. 1993, 43, 1–12. [Google Scholar]
- Olivier, M.; Desrosiers, G.; Caron, A.; Retière, C. Juvenile growth of the polychaete Nereis virens feeding on a range of marine vascular and macroalgal plant sources. Mar. Biol. 1996, 125, 693–699. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Connolly, R.M.; Skillington, A.J.; Gaston, T.F. Can export of organic matter from estuaries support zooplankton in nearshore, marine plumes? Aquat. Ecol. 2009, 43, 383–393. [Google Scholar] [CrossRef]
- Hedges, J.I.; Keil, R.G.; Benner, R. What happens to terrestrial organic matter in the ocean? Org. Geochem. 1997, 27, 195–212. [Google Scholar] [CrossRef]
- Miller, R.J.; Page, H.M. Kelp as a trophic resource for marine suspension feeders: A review of isotope-based evidence. Mar. Biol. 2012, 159, 1391–1402. [Google Scholar] [CrossRef]
- Schaffelke, B.; Lüning, K. A circannual rhythm controls seasonal growth in the kelps Laminaria hyperborea and L. digitata from Helgoland (North Sea). Euro. J. Appl. Phycol. 1994, 29, 49–56. [Google Scholar] [CrossRef]
- Raven, J.A.; Johnston, A.M.; Kübler, J.E.; Korb, R.; McInroy, S.G.; Handley, L.L.; Scrimgeour, C.M.; Walker, D.I.; Beardall, J.; Vanderklift, M. Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses. Funct. Plant Biol. 2002, 29, 355–378. [Google Scholar] [CrossRef] [PubMed]
- Schaal, G.; Riera, P.; Leroux, C. Trophic ecology in a Northern Brittany (Batz Island, France) kelp (Laminaria digitata) forest, as investigated through stable isotopes and chemical assays. J. Sea Res. 2010, 63, 24–35. [Google Scholar] [CrossRef]
- Hepburn, C.D.; Holborow, J.D.; Wing, S.R.; Frew, R.D.; Hurd, C.L. Exposure to waves enhances the growth rate and nitrogen status of the giant kelp Macrocystis pyrifera. Mar. Ecol. Prog. Ser. 2007, 339, 99–108. [Google Scholar] [CrossRef]
- Griffiths, J.R.; Kadin, M.; Nascimento, F.J.A.; Tamelander, T.; Törnroos, A.; Bonaglia, S.; Bonsdorff, E.; Brüchert, V.; Gårdmark, A.; Järnström, M. The importance of benthic–pelagic coupling for marine ecosystem functioning in a changing world. Glob. Change Biol. 2017, 23, 2179–2196. [Google Scholar] [CrossRef]
Phylum/Species | Mean (±SE) Density (Individuals kg−1 Rhodoliths) | |
---|---|---|
South | North | |
Annelida | 75.9 (8.3) | 88.1 (21.5) |
Myxicola spp. | 8.9 (4.7) | 6.7 (3.0) |
Nerididae (including Nereis spp.) | 21.7 (4.7) | 17.8 (4.4) |
Potamilla reniformis | 30.0 (10.3) | 41.0 (13.7) |
Arthropoda | 72.8 (13.1) | 125.8 (19.2) |
Amphipoda | 34.1 (12.4) | 29.7 (9.1) |
Cancer irroratus | 1.8 (1.0) | 4.6 (2.2) |
Pandalus borealis | 36.9 (7.5) | 91.5 (16.3) |
Echinodermata | 452.7 (47.0) | 603.1 (97.4) |
Asterias rubens | 19.7 (4.1) | 10.8 (4.2) |
Ophiopholis aculeata | 336.7 (30.8) | 381.7 (68.9) |
Ophiura robusta | 72.7 (13.8) | 193.5 (37.7) |
Strongylocentrotus droebachiensis | 22.8 (3.7) | 17.2 (6.2) |
Mollusca | 427.6 (39.6) | 603.7 (78.2) |
Hiatella arctica | 152.8 (23.2) | 171.0 (26.6) |
Lacuna vincta | 1.8 (1.0) | 2.6 (1.5) |
Margarites costalis | 15.8 (3.6) | 33.9 (4.8) |
Modiolus modiolus | 14.7 (3.5) | 22.1 (5.4) |
Moelleria costulata | 8.6 (3.0) | 11.0 (3.6) |
Puncturella noachina | 21.2 (5.4) | 51.3 (9.1) |
Tonicella marmorea / T. rubra | 191.6 (27.2) | 260.9 (36.2) |
Turbonilla spp. | 3.4 (2.3) | 5.6 (2.9) |
Velutina velutina | 2.4 (1.5) | 3.5 (1.5) |
Nemertea | 19.3 (5.5) | 19.5 (4.7) |
Sipuncula | 5.8 (5.3) | 6.9 (3.6) |
FA | Factor | F Value | p Value |
---|---|---|---|
14:1 | Month | 3.24 | 0.036 |
i15:0 | Month | 3.46 | 0.035 |
15:0 | Month | 6.84 | <0.010 |
ai17:0 | Month | 9.02 | <0.010 |
17:0 | Month | 3.90 | 0.023 |
17:1 | Month | 12.87 | <0.010 |
16:4ω3 | Month | 18.33 | <0.010 |
20:3ω6 | Month | 4.80 | 0.010 |
20:4ω3 | Month | 3.30 | 0.032 |
FA | Component | Factor | F Value | p Value |
---|---|---|---|---|
16:1ω7 | Tonicella spp. | Month | 51.96 | <0.010 |
16:1ω7 | H. arctica | Month | 50.22 | <0.010 |
16:1ω7 | S. droebachiensis | Month | 10.60 | 0.003 |
16:1ω7 | A. rubens | Month | 6.31 | 0.015 |
18:0 | Tonicella spp. | Month | 8.60 | <0.010 |
18:0 | H. arctica | Month | 49.64 | <0.010 |
18:0 | A. rubens | Month | 12.84 | <0.010 |
18:0 | Seawater | Month | 12.82 | <0.010 |
18:1ω9 | S. droebachiensis | Month | 4.77 | 0.035 |
18:1ω7 | H. arctica | Month | 19.62 | <0.010 |
18:1ω7 | A. rubens | Month | 9.75 | <0.010 |
18:1ω7 | Sediment | Month | 17.27 | <0.010 |
20:1ω11 | Tonicella spp. | Month | 10.31 | <0.010 |
20:1ω11 | H. arctica | Month | 12.26 | <0.010 |
20:1ω11 | Nereis spp. | Month | 14.10 | <0.010 |
20:1ω11 | S. droebachiensis | Month | 35.5 | <0.010 |
20:1ω11 | Sediment | Month | 12.55 | <0.010 |
20:5ω3 | Tonicella spp. | Month | 12.21 | <0.010 |
20:5ω3 | H. arctica | Month | 16.80 | <0.010 |
20:5ω3 | Nereis spp. | Month | 5.15 | 0.029 |
20:5ω3 | S. droebachiensis | Month | 12.99 | <0.010 |
20:5ω3 | A. rubens | Month | 18.68 | <0.010 |
20:5ω3 | Seawater | Month | 35.86 | <0.010 |
20:5ω3 | Sediment | Month | 8.64 | 0.010 |
20:4ω6 | Tonicella spp. | Month | 13.55 | <0.010 |
20:4ω6 | H. arctica | Month | 12.41 | <0.010 |
20:4ω6 | Nereis spp. | Month | 7.44 | 0.010 |
20:4ω6 | S. droebachiensis | Month | 29.14 | <0.010 |
20:4ω6 | L. digitata | Month | 13.31 | 0.017 |
Component | Group | Sub-Group | (δ13C) Tukey HSD | (δ15N) Tukey HSD |
---|---|---|---|---|
L. digitata | 1 | - | C | D |
Seawater | 2 | a | A | B |
Seawater | b | |||
Seawater, Nereis spp. | 3 | a | B | C |
Seawater, Sediment | b | |||
Seawater, Nereis spp. | c | |||
Sediment | d | |||
H. arctica | 4 | a | C | B, C |
L. glaciale | b | |||
A. rubens, Nereis spp., O. aculeata, Tonicella spp. | 5 | a | C | A |
Nereis spp., O. aculeata | b | |||
A. rubens, S. droebachiensis | c | |||
Tonicella spp., S. droebachiensis | d | |||
A. rubens | 6 | - | D | A |
Tonicella spp. | 7 | a | D | B, C |
L. digitata | b |
FA | TMF | m (±SE) | b (±SE) | r | p-Value |
---|---|---|---|---|---|
20:3ω3 | 2.76 | 1.0 (0.3) | 8.1 (0.2) | 0.3 | <0.001 |
20:1ω9 | 2.65 | 1.0 (0.1) | 7.3 (0.2) | 0.6 | <0.001 |
18:3ω6 | 2.58 | 0.9 (0.4) | 8.0 (0.2) | 0.3 | 0.015 |
20:2ω6 | 2.50 | 0.9 (0.2) | 7.3 (0.2) | 0.4 | <0.001 |
20:2a | 2.11 | 0.7 (0.1) | 7.7 (0.2) | 0.6 | <0.001 |
16:4ω3 | 1.41 | 0.3 (0) | 7.6 (0.2) | 0.5 | <0.001 |
17:1 | 1.33 | 0.3 (0.1) | 8.1 (0.2) | 0.1 | <0.001 |
20:1ω11 | 1.32 | 0.3 (0) | 7.4 (0.1) | 0.7 | <0.001 |
18:1ω11 | 1.24 | 0.2 (0.1) | 8.2 (0) | 0.4 | 0.023 |
22:4ω6 | 1.21 | 0.2 (0.1) | 8.2 (0.2) | 0.1 | 0.020 |
20:4ω6 | 1.17 | 0.2 (0) | 7.4 (0.2) | 0.6 | <0.001 |
20:5ω3 | 1.14 | 0.1 (0) | 6.2 (0.2) | 0.6 | <0.001 |
18:1ω9 | 0.95 | −0.1 (0) | 8.7 (0.2) | −0.4 | 0.002 |
22:6ω3 | 0.94 | −0.1 (0) | 8.6 (0.2) | 0.0 | 0.044 |
16:0 | 0.87 | −0.1 (0) | 10.2 (0.2) | −0.7 | <0.001 |
16:1ω7 | 0.87 | −0.1 (0) | 9.2 (0.2) | −0.4 | <0.001 |
14:0 | 0.85 | −0.2 (0.1) | 8.9 (0.3) | −0.2 | 0.032 |
i15:0 | 0.85 | −0.2 (0.2) | 9.1 (0.2) | −0.5 | <0.001 |
18:4ω3 | 0.76 | −0.3 (0.1) | 8.9 (0.2) | −0.3 | <0.001 |
21:5ω3 | 0.71 | −0.3 (0.1) | 8.6 (0.2) | −0.2 | 0.011 |
16:1ω11 | 0.64 | −0.5 (0.1) | 8.6 (0.2) | −0.4 | 0.001 |
18:4ω1 | 0.58 | −0.6 (0.2) | 8.6 (0.2) | −0.2 | 0.028 |
18:3ω3 | 0.57 | −0.6 (0.1) | 8.8 (0.2) | −0.3 | <0.001 |
ai15:0 | 0.51 | −0.7 (0.1) | 8.8 (0.2) | −0.3 | <0.001 |
16:3ω3 | 0.50 | −0.7 (0.3) | 8.5 (0.2) | −0.4 | 0.035 |
16:3ω4 | 0.48 | −0.7 (0.2) | 8.7 (0.2) | −0.3 | 0.001 |
i16:0 | 0.34 | −1.1 (0.4) | 8.7 (0.2) | −0.2 | 0.005 |
15:0 | 0.32 | −1.1 (0.4) | 9.0 (0.2) | −0.1 | 0.004 |
16:2ω4 | 0.22 | −1.5 (0.4) | 9.1 (0.3) | −0.3 | 0.001 |
16:1ω5 | 0.16 | −1.8 (0.3) | 9.1 (0.2) | −0.4 | <0.001 |
16:1ω9 | 0.13 | −2.1 (0.5) | 8.9 (0.2) | −0.4 | <0.001 |
14:1 | 0.07 | −2.6 (1.0) | 8.6 (0.2) | −0.2 | 0.011 |
i17:0 | 0.07 | −2.7 (0.3) | 9.4 (0.2) | −0.5 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hacker Teper, S.; Parrish, C.C.; Gagnon, P. Multi-Biomarker Analysis Uncovers High Spatio-Temporal Stability of a Subarctic Rhodolith (Lithothamnion glaciale) Bed Food Web. Diversity 2024, 16, 597. https://doi.org/10.3390/d16100597
Hacker Teper S, Parrish CC, Gagnon P. Multi-Biomarker Analysis Uncovers High Spatio-Temporal Stability of a Subarctic Rhodolith (Lithothamnion glaciale) Bed Food Web. Diversity. 2024; 16(10):597. https://doi.org/10.3390/d16100597
Chicago/Turabian StyleHacker Teper, Sean, Christopher C. Parrish, and Patrick Gagnon. 2024. "Multi-Biomarker Analysis Uncovers High Spatio-Temporal Stability of a Subarctic Rhodolith (Lithothamnion glaciale) Bed Food Web" Diversity 16, no. 10: 597. https://doi.org/10.3390/d16100597
APA StyleHacker Teper, S., Parrish, C. C., & Gagnon, P. (2024). Multi-Biomarker Analysis Uncovers High Spatio-Temporal Stability of a Subarctic Rhodolith (Lithothamnion glaciale) Bed Food Web. Diversity, 16(10), 597. https://doi.org/10.3390/d16100597