Sex-Based Differences in Multilocus Heterozygosity in Wild Boar from Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. DNA Purification and Genotyping at Microsatellite Markers
2.3. Genetic Analyses
2.4. Statistical Analyses
3. Results
3.1. Genetic Structure and Genetic Diversity at Sampling Points
3.2. Paternity Analysis
3.3. MLH Depending on Sex and Age Class
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scandura, M.; Iacolina, L.; Apollonio, M. Genetic diversity in the European wild boar Sus scrofa: Phylogeography, population structure and wild x domestic hybridization. Mammal Rev. 2011, 41, 125–137. [Google Scholar] [CrossRef]
- Barrios-García, M.N.; Ballari, S.A. Impact of wild boar (Sus scrofa) in its introduced and native range: A review. Biol. Invasions 2012, 14, 2283–2300. [Google Scholar] [CrossRef]
- Bengsen, A.J.; West, P.; Krull, C.R. Feral pigs in Australia and New Zeland: Range, trend, management, and impacts of an invasive species. In Ecology, Conservation and Management of Wild Pigs and Peccaries; Melletti, M., Meijaard, E., Eds.; Cambridge University Press: Cambridge, UK, 2017; pp. 325–338. [Google Scholar]
- VerCauteren, S.T.; Beasley, J.C.; Ditchkoff, S.S.; Mayer, J.J.; Roloff, G.J.; Strickland, B.K. Invasive Wild Pigs in North America: Ecology, Impacts, and Management; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Bueno, C.G.; Barrio, I.C.; García-González, R.; Alados, C.L.; Gómez-García, D. Does wild boar rooting affect livestock grazing areas in alpina grasslands? Eur. J. Wildl. Res. 2010, 56, 765–770. [Google Scholar] [CrossRef]
- Massei, G.; Kindberg, J.; Licoppe, A.; Gacic, D.; Sprem, N.; Kamler, J.; Baubet, E.; Hohmann, U.; Monaco, A.; Ozoliņš, J.; et al. Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest. Manag. Sci. 2015, 71, 492–500. [Google Scholar] [CrossRef]
- Graitson, E.; Barbraud, C.; Bonnet, X. Catastrophic impact of wild boars: Insufficient hunting pressure pushes snakes to the brink. Anim. Conserv. 2019, 22, 165–176. [Google Scholar] [CrossRef]
- Croft, S.; Franzetti, B.; Gill, R.; Massei, G. Too many wild boar? Modelling fertility control and culling to reduce wild boar numbers in isolated populations. PLoS ONE 2020, 15, e0238429. [Google Scholar] [CrossRef]
- Massei, G.; Cowan, D. Fertility control to mitigate human-wildlife conflicts: A review. Wildl. Res. 2014, 41, 1–21. [Google Scholar] [CrossRef]
- Keuling, O.; Baubet, E.; Duscher, A.; Ebert, C.; Fischer, C.; Monaco, A.; Podgórski, T.; Prevot, C.; Ronnenberg, K.; Sodeikat, G.; et al. Mortality rates of wild boar Sus scrofa L. in central Europe. Eur. J. Wildl. Res. 2013, 59, 805–814. [Google Scholar] [CrossRef]
- Frank, B.; Monaco, A.; Bath, A.J. Beyond standard wildlife management: A pathway to encompass human dimension findings in wild boar management. Eur. J. Wildl. Res. 2015, 61, 723–730. [Google Scholar] [CrossRef]
- Mur, L.; Boadella, M.; Martínez-López, B.; Gallardo, C.; Gortazar, C.; Sánchez-Vizcaíno, J.M. Monitoring of African swine fever in the wild boar population of the most recent endemic area of Spain. Transbound. Emerg. Dis. 2012, 59, 526–531. [Google Scholar] [CrossRef]
- Fagiani, S.; Fipaldini, D.; Santarelli, L.; Burrascano, S.; Vico, E.D.; Giarrizzo, E.; Mei, M.; Taglianti, A.V.; Boitani, L.; Mortelliti, A. Monitoring protocols for the evaluation of the impact of wild boar (Sus Scrofa) rooting on plants and animals in forest ecosystems. Hystrix It. J. Mamm. 2014, 25, 31–38. [Google Scholar]
- Iacolina, L.; Penrith, M.L.; Bellini, S.; Chenais, E.; Jori, F.; Montoya, M.; Ståhl, K.; Gavier-Widén, D. Understanding and Combating African Swine Fever: A European Perspective; Wageningen Academic Publishers: Wageningen, The Netherlands, 2021. [Google Scholar]
- Acevedo-Whitehouse, K.; Vicente, J.; Gortazar, C.; Höfle, U.; Fernández-de-Mera, I.G.; Amos, W. Genetic resistance to bovine tuberculosis in the Iberian wild boar. Mol. Ecol. 2005, 14, 3209–3217. [Google Scholar] [CrossRef] [PubMed]
- Pérez-González, J.; Carranza, J.; Martínez, R.; Benítez-Medina, J.M. Host genetic diversity and infectious diseases. Focus on wild boar, red deer and tuberculosis. Animals 2021, 11, 1630. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.B.; Wall, W.A.; Allendorf, F.W. Genetic consequences of hunting: What do we know and what should we do? Wild. Soc. Bull. 2002, 30, 634–643. [Google Scholar]
- Scandura, M.; Iacolina, L.; Cretanello, B.; Pecchioli, E.; Di Benedetto, M.F.; Russo, V.; Davoli, R.; Apollonio, M.; Bertorelle, G. Ancient vs. recent processes as factors shaping the genetic variation of the European wild boar: Are the effects of the last glaciation still detectable? Mol. Ecol. 2008, 17, 1745–1762. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, E.; Souto, L.; Soares, A.M.; Fonseca, C. Genetic structure of the wild boar population in Portugal: Evidence of a recent bottleneck. Mamm. Biol. 2009, 74, 274–285. [Google Scholar] [CrossRef]
- Alves, P.C.; Pinheiro, I.; Godinho, R.; Vicente, J.; Gortazar, C.; Scandura, M. Genetic diversity of wild boar populations and domestic pig breeds (Sus scrofa) in South-western Europe. Bio. J. Linne. Soc. 2010, 101, 797–822. [Google Scholar] [CrossRef]
- Kusza, S.; Podgorski, T.; Scandura, M.; Borowik, T.; Javor, A.; Sidorovich, V.E.; Bunevich, A.N.; Kolesnikov, M.; Jędrzejewska, B. Contemporary genetic structure, phylgeography and past demographic processes of wild boar Sus scrofa population in Central and Eastern Europe. PLoS ONE 2014, 9, e91401. [Google Scholar] [CrossRef]
- Vilaça, S.T.; Biosa, D.; Zachos, F.; Iacolina, L.; Kirschning, J.; Alves, P.C.; Paule, L.; Gortazar, C.; Mamuris, Z.; Jędrzejewska, B.; et al. Mitochondrial phylogeography of the European wild boar: The effect of climate on genetic diversity and spatial lineage sorting across Europe. J. Biogeogr. 2014, 41, 987–998. [Google Scholar] [CrossRef]
- Shafer, A.B.; Wolf, J.B.; Alves, P.C.; Bergström, L.; Bruford, M.W.; Brännstroöm, I.; Colling, G.; Dalén, L.; De Meester, L.; Ekblom, R.; et al. Genomics and the challenging translation into conservation practice. Trends Ecol. Evol. 2015, 30, 78–87. [Google Scholar] [CrossRef]
- Sprem, N.; Safner, T.; Treer, T.; Florijancic, T.; Juric, J.; Cubric-Curik, V.; Frantz, A.C.; Curik, I. Are the dinaric mountains a boundary between continental and mediterranean wild boar populations in Croatia? Eur. J. Wildl. Res. 2016, 62, 167–177. [Google Scholar] [CrossRef]
- Iacolina, L.; Scandura, M.; Goedbloed, D.J.; Alexandri, P.; Crooijmans, R.P.M.A.; Larson, G.; Archibald, A.; Apollonio, M.; Schook, L.B.; Groenen, M.A.M.; et al. Genomic diversity and differentiation of a managed wild boar population. Heredity 2016, 116, 60–67. [Google Scholar] [CrossRef]
- Velickovic, N.; Ferreira, E.; Djan, M.; Ernst, M.; Obreht Vidakovic, D.; Monaco, A.; Fonseca, C. Demographic history, current expansion and future management challenges of wild boar populations in the Balkans and Europe. Heredity 2016, 117, 348–357. [Google Scholar] [CrossRef] [PubMed]
- de Jong, J.F.; Iacolina, L.; Prins, H.H.; can Hooft, P.; Crooijmans, R.P.; van Wieren, S.E.; Baños, J.V.; Baubet, E.; Cahill, S.; Ferreira, E.; et al. Spatial genetic structure of European wild boar, with inferences on late-Pleistocene and Holocene demographic history. Heredity 2023, 130, 135–144. [Google Scholar] [CrossRef]
- Vernesi, C.; Crestanello, B.; Pecchioli, E.; Tartari, D.; Caramelli, D.; Hauffe, H.; Bertorelle, G. The genetic impact of demographic decline and reintroduction in the wild boar (Sus scrofa): A microsatellite analysys. Mol. Ecol. 2003, 12, 585–595. [Google Scholar] [CrossRef]
- Alexandri, P.; Triantafyllidis, A.; Papakostas, S.; Chatzinikos, E.; Platis, P.; Papageorgiou, N.; Larson, G.; Abatzopoulos, T.J.; Triantaphyllidis, C. The Balkans and the colonization of Europe: The post-glacial range expansion of the wild boar, Sus scrofa. J. Biogeogr. 2012, 39, 713–723. [Google Scholar] [CrossRef]
- Goedbloed, D.J.; Megens, H.J.; Van Hooft, P.; Herrero-Medrano, J.M.; Lutz, W.; Alexandri, P.; Crooijmans, R.P.M.A.; Groenen, M.; Van Wieren, S.E.; Ydenberg, R.C.; et al. Genome-wide single nucleotide polymorphism analysis reveals recent genetic introgression from domestic pigs into Northwest European wild boar populations. Mol. Ecol. 2013, 22, 856–866. [Google Scholar] [CrossRef]
- Iacolina, L.; Pertoldi, C.; Amills, M.; Kusza, S.; Megens, H.J.; Balteanu, V.A.; Bakan, J.; Cubric-Curik, V.; Oja, R.; Saarma, U.; et al. Hotspots of recent hybridization between pigs and wild boars in Europe. Sci. Rep. 2018, 8, 17372. [Google Scholar] [CrossRef]
- Acosta, D.B.; Figueroa, C.E.; Fernández, G.P.; Mac Allister, M.E.; Carpinetti, B.N.; Perez-Gioanmarco, L.; Merino, M.L. Evidence of hybridization between wild boars and feral pigs (Sus scrofa) from Argentina: Implications for the success of the invasion process. Biol. Invasions 2024, 26, 385–398. [Google Scholar] [CrossRef]
- Smyser, T.J.; Pfaffelhuber, P.; Giglio, R.M.; DeSaix, M.G.; Davis, A.J.; Bowden, C.F.; Tabak, M.A.; Manunza, A.; Bâlteanu, V.A.; Amills, M.; et al. Probabilistic genetic identification of wild boar hybridization to support control of invasive wild pigs (Sus scrofa). Ecosphere 2024, 15, e4774. [Google Scholar] [CrossRef]
- Mary, N.; Iannuccelli, N.; Petit, G.; Bonnet, N.; Pinton, A.; Barasc, H.; Faure, A.; Calgaro, A.; Grosbois, V.; Servin, B.; et al. Genome-wide analysis of hybridization in wild boar populations reveals adaptive introgression from domestic pigs. Evol. Appl. 2022, 15, 1115–1128. [Google Scholar] [CrossRef] [PubMed]
- Chesser, R.K. Influence of gene flow and breeding tactics on gene diversity within populations. Genetics 1991, 129, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.B. Sexual Selection; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Briton, J.; Nurthen, R.K.; Briscoe, D.A.; Frankham, R. Modelling problems in conservation genetics using Drosophila: Consequences of harems. Biol. Conserv. 1994, 69, 267–275. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.D. Introduction to Quantitative Geneticsw; Addison Wesley Longman: Harlow, UK, 1996. [Google Scholar]
- Kamieniarz, R.; Jankowiak, L.; Fratczak, M.; Panek, M.; Wojtczak, J.; Tryjanowski, P. The relationship between hunting methods and the sex, age and body mass of wild boar Sus scrofa. Animals 2020, 10, 2345. [Google Scholar] [CrossRef]
- Braga, C.; Alexandre, N.; Fernández-Llario, P.; Santos, P. Wild boar (Sus scrofa) harvesting using the espera hunting method: Side effects and management implications. Eur. J. Wildl. Res. 2010, 56, 465–469. [Google Scholar] [CrossRef]
- Bieber, C.; Ruf, T. Population dynamics in wild boar Sus scrofa: Ecology, elasticity of growth rate and implications for the management of pulsed resource consumers. J. Appl. Ecol. 2005, 42, 1203–1213. [Google Scholar] [CrossRef]
- Cappa, F.; Bani, L.; Meriggi, A. Factors affecting the crop damage by wild boar (Sus scrofa) and effects of population control in the Ticino and Lake Maggiore Park North-western Italy. Mamm. Biol. 2021, 101, 451–463. [Google Scholar] [CrossRef]
- Gayet, T.; Say, L.; Baubet, E.; Devillard, S. Consistently high multiple paternity rates in five wild boar populations despite varying hunting pressures. Mamm. Biol. 2021, 101, 321–327. [Google Scholar] [CrossRef]
- Pipoly, I.; Duffy, R.; Mészáros, G.; Bókony, V.; Vági, B.; Székely, T.; Liker, A. Multiple paternity is related to adult sex ratio and sex determination system in reptiles. J. Evol. Biol. 2023, 56, 935–944. [Google Scholar] [CrossRef]
- Pérez-González, J.; Costa, V.; Santos, P.; Carranza, J.; Zsolnai, A.; Fernéndez-Llario, P.; Monteiro, N.M.; Anton, I.; Beja-Pereira, A. Heterozygosity decrease in wild boar mating system—A case of outbreeding avoidance? J. Zool. 2017, 302, 40–48. [Google Scholar] [CrossRef]
- Pérez-González, J.; Costa, V.; Santos, P.; Slate, J.; Carranza, J.; Fernéndez-Llario, P.; Zsolnai, A.; Monteiro, N.M.; Anton, I.; Buzgó, J.; et al. Males and females contribute unequally to offspring genetic diversity in the polygynandrous mating system of wild boar. PLoS ONE 2014, 9, e115394. [Google Scholar] [CrossRef] [PubMed]
- Laguna, E.; Barasona, J.A.; Vicente, J.; Keuling, O.; Acevedo, P. Differences in wild boar spatial behaviour among land uses and management scenarios in Mediterranean ecosystems. Sci. Total Environ. 2021, 796, 148966. [Google Scholar] [CrossRef] [PubMed]
- Saïd, S.; Tolon, V.; Brandt, S.; Baubet, E. Sex effect on habitat selection in response to hunting disturbance: The study of wild boar. Eur. J. Wildl. Res. 2012, 58, 107–115. [Google Scholar] [CrossRef]
- Van Oosterhout, C.; Hutchinson, W.F.; Wills, D.P.; Shipley, P. MICROCHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 2004, 4, 535–538. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Belkhir, K. GENETIX, version 4.05; Logiciel sous Windows TM Pour la Génétique des Populations; University of Montperllier II: Montpellier, France, 2004. [Google Scholar]
- Jones, O.R.; Wang, J. COLONY: A program for parentage and sibship inference from multilocus genotype data. Mol. Ecol. Resour. 2010, 10, 551–555. [Google Scholar] [CrossRef]
- Coltman, D.W.; Pilkington, J.G.; Smith, J.A.; Pemberton, J.M. Parasite-mediated selection against inbreed Soay sheep in a free-living island population. Evolution 1999, 53, 1259–1267. [Google Scholar]
- Stoffel, M.A.; Esser, M.; Kardos, M.; Humble, E.; Nicholds, H.; David, P.; Hoffman, J.I. inbreedR: An R package for the analysis of inbreeding based on genetic markers. Methods Ecol. Evol. 2016, 7, 1331–1339. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria; Available online: http://www.R-project.org (accessed on 15 June 2024).
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D. nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-148. 2020. Available online: https://CRAN.R-project.org/package=nlme (accessed on 18 June 2024). R Package Version 3.1-148.
- Barasona, J.A.; Latham, M.C.; Acevedo, P.; Armenteros, J.A.; Latham, A.D.M.; Gortazar, C.; Carro, F.; Soriguer, R.C.; Vicente, J. Spatiotemporal interactions between wild boar and cattle: Implications for cross-species disease transmission. Vet. Res. 2014, 45, 1–11. [Google Scholar] [CrossRef]
- Jerina, K.; Polorny, B.; Stergar, M. First evidence of long-distance dispersal of adult female wild boar (Sus scrofa) with piglets. Eur. J. Wildl. Res. 2014, 60, 367–370. [Google Scholar] [CrossRef]
- Choi, S.K.; Lee, J.E.; Kim, Y.J.; Min, M.S.; Voloshina, I.; Myslenkov, A.; Oh, J.G.; Kim, T.-H.; Markov, N.; Seryodkin, I.; et al. Genetic structure of wild boar (Sus scrofa) populations from East Asia based on microsatellite loci analyses. BMC Genet. 2014, 15, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Nikolov, I.S.; Gum, B.; Markov, G.; Kuehn, R. Population genetic structure of wild boar Sus scrofa in Bulgaria as revealed by microsatellite analysis. Acta Theriol. 2009, 54, 193–205. [Google Scholar] [CrossRef]
- Rodrigáñez, J.; Barragán, C.; Alves, E.; Gortazar, C.; Toro, M.A.; Silió, L. Genetic diversity and allelic richness in Spanish wild boar and domestic pig population estimated from microsatellite markers. Span. J. Agric. Res. 2008, 6, 107–115. [Google Scholar] [CrossRef]
- Gayet, T.; Devillard, S.; Gamelon, M.; Brandt, S.; Say, L.; Baubet, E. On the evolutionary consequences of increasing litter size with multiple paternity in wild boar (Sus scrofa). Evolution 2016, 70, 1386–1397. [Google Scholar] [CrossRef]
- Müller, B.; Keuling, O.; Glensk, C.; Brün, J. Mothers’ baby, fathers’ maybe: The occurrence and frequency of multiple paternity in the European wild boar. Evol. Ecol. Res. 2018, 71, 492–500. [Google Scholar]
- Delagado-Acevedo, J.; Zamorano, A.; DeYoung, R.W.; Campbell, T.T.; Hewitt, D.G.; Long, D.B. Promiscuous mating in feral pigs (Sus scrofa) from Texas, USA. Wildl. Res. 2010, 37, 539–546. [Google Scholar] [CrossRef]
- Delagado, R.; Fernández-Llario, O.; Azevedo, M.; Beja-Pereira, A.; Santos, P. Paternity assessment in free-ranging wild boar (Sus scrofa)—Are littermates full-sibs? Mamm. Biol. 2008, 73, 169–176. [Google Scholar] [CrossRef]
- Poteaux, C.; Baubet, E.; Kaminski, G.; Brandt, S.; Bobson, S.; Baudoin, C. Sociogenetic structure and mating system of a wild boar population. J. Zool. 2009, 278, 116–125. [Google Scholar] [CrossRef]
- Ellegren, H.; Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet 2016, 17, 422–433. [Google Scholar] [CrossRef]
- Fitzsimmons, N.N.; Buskirk, S.W.; Smith, M.H. Population history, genetic variability, and horn growth in bighorn sheep. Conserv. Biol. 1995, 9, 314–323. [Google Scholar] [CrossRef]
- Hartl, G.B.; Lang, G.; Klein, F.; Willing, R. Relationships between allozymes, heterozygosity and morphological characters in red deer (Cervus elaphus), and the influence of selective hunting on allele frequency distributions. Heredity 1991, 66, 343–350. [Google Scholar] [CrossRef]
- Sabeti, P.C.; Reich, D.E.; Higgins, J.M.; Levine, H.Z.P.; Richter, D.J.; Schaffner, S.F.; Gabriel, S.B.; Platko, J.V.; Patterson, N.J.; McDonald, G.J.; et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 2002, 419, 832–837. [Google Scholar] [CrossRef] [PubMed]
- Shibabi, M.; Lukic, B.; Cubric-Curik, V.; Brajkovic, V.; Orsanic, M.; Ugarkovic, D.; Vostry, L.; Curik, I. Identification of selection signals on the X-chromosome in east Adriatic sheep: A new complementary approach. Fron. Genet. 2022, 13, 887582. [Google Scholar] [CrossRef] [PubMed]
- Hansson, B.; Westerberg, L. On the correlation between heterozygosity and fitness in natural populations. Mol. Ecol. 2002, 11, 2467–2474. [Google Scholar] [CrossRef] [PubMed]
- Lieutenant-Gosselin, M.; Bernatchez, L. Local heterozygosity-fitness correlations with global positive effects on fitness in three spine stickleback. Evolution 2006, 796, 148966. [Google Scholar]
- Przesmycka, K.; Herdegen-Radwan, M.; Phillips, K.P.; Mohamed, R.S.; Rodwan, J. The quest for good genes: Epigamic traits, fitness, MHC and multilocus heterozygosity in the guppy. Mol. Ecol. 2023, 32, 5055–5070. [Google Scholar] [CrossRef]
- Amos, W.; Acevedo-Whitehouse, K. A new test for genotype-fitness associations reveals a single microsatellite allele that strongly predicts the nature of tuberculosis infections in wild boar. Mol. Ecol. Resour. 2009, 9, 1102–1111. [Google Scholar] [CrossRef]
- Queirós, J.; Alves, P.C.; Vicente, J.; Gortázar, C.; de la Fuente, J. Genome-wide associations identify novel candidate loci associated with genetic susceptibility to tuberculosis in wild boar. Sci. Rep. 2018, 8, 1980. [Google Scholar] [CrossRef] [PubMed]
- Bérénos, C.; Ellis, P.A.; Pilkinton, J.G.; Lee, S.H.; Gratten, J.; Pemberton, J.M. Heterogeneity of genetic architecture of body size traits in a free-living population. Mol. Ecol. 2015, 24, 1810–1830. [Google Scholar] [CrossRef]
- Peters, L.; Huisman, J.; Kruuk, L.E.; Pemberton, J.M.; Johnston, S.E. Genomic analysis reveals a polygenic architecture of antler morphology in wild red deer (Cervus elaphus). Mol. Ecol. 2022, 31, 1281–1298. [Google Scholar] [CrossRef]
- Pujol, B.; Blanchet, S.; Charmantier, A.; Danchin, E.; Facon, B.; Marrot, P.; Roux, F.; Scotti, I.; Teplitsky, C.; Thomson, C.E.; et al. The missing response to selection in the wild. Trends Ecol. Evol. 2018, 33, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Cotton, S.; Fowler, K.; Pomiankowski, A. Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis? Proc. Roy. Soc. London, Ser. V Biol. Sci. 2004, 271, 771–783. [Google Scholar] [CrossRef]
- Amos, W.; Worthington Wilmer, J.; Fullard, K.; Burg, T.M.; Croxal, J.P.; Bloch, D.; Coulson, T. The influence of parental relatedness on reproductive success. Proc. Roy. Soc. London, Ser. V Biol. Sci. 2001, 268, 2021–2027. [Google Scholar] [CrossRef]
- Mays, H.L.; Hill, G.E. Choosing mates: Good genes versos genes that are a good fit. Trends Ecol. Evol. 2004, 19, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Carranza, J.; Pérez-González, J.; Mateos, C.; Fernández-García, J.L. Parents’ genetic dissimilarity and offspring sex in a polygynous mammal. Mol. Ecol. 2009, 18, 4964–4973. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Llario, P.; Carranza, J.; Mateos-Quesada, P. Sex allocation in a polygynous mammal with large litters: The wild boar. Anim. Behav. 2004, 19, 554–559. [Google Scholar] [CrossRef]
- Servanty, S.; Gaillard, J.M.; Allainé, D.; Brandt, S.; Baubet, E. Litter size and fetal sex ratio adjustment in a highly polytocous species: The wild boar. Behav. Ecol. 2007, 18, 427–432. [Google Scholar] [CrossRef]
- Slate, J.; David, P.; Dodds, K.G.; Veenvliet, B.A.; Glass, B.C.; Broad, T.E.; McEwan, J.C. Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: Theoretical expectations and empirical data. Heredity 2004, 93, 255–265. [Google Scholar] [CrossRef]
- Texeira, J.C.; Huber, C.D. The inflated significance of neutral genetic diversity in conservation genetics. Proc. Natl. Acad. Sci. USA 2021, 118, e2015096118. [Google Scholar] [CrossRef]
- Forstmeier, W.; Schielzeth, H.; Mueller, J.C.; Ellegren, H.; Kempeaers, B. Heterozygosity-fitness correlations in zebra finches: Microsatellite markers can be better than their reputation. Mol. Ecol. 2012, 21, 3237–3249. [Google Scholar] [CrossRef]
- Alcala, N.; Streit, D.; Goudet, J.; Vuilleumier, S. Peak and persistent excess of genetic diversity following an abrupt migration increase. Genetics 2013, 193, 953–971. [Google Scholar] [CrossRef] [PubMed]
- Hague, M.T.; Routman, E.J. Does population size affect genetic diversity? A test with sympatric lizard species. Heredity 2016, 116, 92–98. [Google Scholar] [CrossRef] [PubMed]
Sam. Point | N | N Females | Adult Males | Pregnant Females | N Fetuses | MP Females | Rep. Males | MLH (Mean) | MLH (sd) |
---|---|---|---|---|---|---|---|---|---|
CN | 5 | 2 | 2 | 1 | 5 | 0 | 1 | 1.072 | 0.182 |
JA | 12 | 6 | 4 | 4 | 16 | 0 | 2 | 0.926 | 0.206 |
MO | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0.877 | 0.000 |
CC1 | 5 | 4 | 1 | 0 | 0 | 0 | 0 | 1.174 | 0.259 |
CC2 | 21 | 13 | 3 | 5 | 22 | 0 | 3 | 0.989 | 0.180 |
SF | 12 | 8 | 2 | 6 | 26 | 1 | 4 | 0.983 | 0.134 |
TO | 7 | 4 | 2 | 3 | 10 | 0 | 1 | 1.002 | 0.175 |
ALI | 5 | 3 | 2 | 2 | 6 | 1 | 0 | 0.936 | 0.111 |
MC | 5 | 4 | 1 | 0 | 0 | 0 | 0 | 0.974 | 0.182 |
CL | 17 | 9 | 4 | 3 | 14 | 0 | 2 | 1.066 | 0.160 |
ALC | 27 | 16 | 5 | 11 | 47 | 2 | 5 | 1.025 | 0.197 |
TR | 20 | 12 | 3 | 0 | 0 | 0 | 0 | 0.970 | 0.172 |
OM | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 1.040 | 0.148 |
Total | 142 | 84 | 30 | 35 | 146 | 4 | 18 |
Value | Standard Error | DF | t | p | ||
---|---|---|---|---|---|---|
(A) | Intercept | 1.040 | 0.031 | 79 | 33.341 | <0.001 |
Female fetuses vs. male fetuses | Sex (Male) | −0.044 | 0.031 | 79 | −1.421 | 0.159 |
(B) | Intercept | 1.025 | 0.020 | 128 | 52.061 | <0.001 |
Females vs. males | Sex (Male) | −0.053 | 0.030 | 128 | −1.741 | 0.084 |
(C) | Intercept | 1.025 | 0.019 | 100 | 52.683 | <0.001 |
Females vs. adult males | Sex (Male) | −0.078 | 0.038 | 100 | −2.068 | 0.041 |
(D) | Intercept | 1.025 | 0.019 | 88 | 52.825 | <0.001 |
Females vs. sires | Sex (Male) | −0.147 | 0.045 | 88 | -3.236 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-González, J.; Hidalgo de Trucios, S.J.; Hidalgo Toledo, S.P. Sex-Based Differences in Multilocus Heterozygosity in Wild Boar from Spain. Diversity 2024, 16, 610. https://doi.org/10.3390/d16100610
Pérez-González J, Hidalgo de Trucios SJ, Hidalgo Toledo SP. Sex-Based Differences in Multilocus Heterozygosity in Wild Boar from Spain. Diversity. 2024; 16(10):610. https://doi.org/10.3390/d16100610
Chicago/Turabian StylePérez-González, Javier, Sebastián J. Hidalgo de Trucios, and Sebastián P. Hidalgo Toledo. 2024. "Sex-Based Differences in Multilocus Heterozygosity in Wild Boar from Spain" Diversity 16, no. 10: 610. https://doi.org/10.3390/d16100610
APA StylePérez-González, J., Hidalgo de Trucios, S. J., & Hidalgo Toledo, S. P. (2024). Sex-Based Differences in Multilocus Heterozygosity in Wild Boar from Spain. Diversity, 16(10), 610. https://doi.org/10.3390/d16100610