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Abstract: Investigating the evolution and drivers of multifunctional land use is essential for sustain-
able land management and regional biological conservation. This research focuses on the Hehuang
Valley, where we developed an “ecological-social-production” evaluation system for assessing land
use multifunctionality from the perspective of multifunctional landscape. Leveraging Geographic
Information System technologies, we conducted a quantitative analysis of spatiotemporal variations
in multifunctional land use across the valley in recently twenty years. Correlation coefficients were
employed to identify trade-offs and synergies among various land use functions. Additionally,
geographical detector and grey relational analysis models were utilized to pinpoint the factors in-
fluencing spatiotemporal changes in land use functions during the specified period. The results
showed that: (1) During the period, the overall multifunctionality of land use in the Hehuang Valley
exhibited an increasing trend. The economic production function of the land showed the highest
growth, while the ecological and social functions showed lower growth. (2) In most areas of the
Hehuang Valley, there was a positive correlation between social and economic production functions
and a negative correlation between social and ecological functions, as well as between economic
production and ecological functions. (3) Natural conditions were the main factors of spatial variation
of land use comprehensive functions, but human factors, including land use intensity and the rate
of farmland conversion to non-agricultural uses, were the primary drivers of temporal changes
in multifunctional land use. The findings provide valuable references and scientific support for
policymakers in optimizing land use and multifunctional landscape conservation.

Keywords: multifunctional land use; geographical detector; trade-offs and synergies; Hehuang Valley

1. Introduction

In 2015, the United Nations Sustainable Development Summit endorsed the document
titled “Transforming Our World: The 2030 Agenda for Sustainable Development” [1]. The
document outlines 17 Sustainable Development Goals. Three of these goals are particularly
pertinent to land use, as they encompass the functions that describe how land use systems
contribute to human well-being, which are SDG 11, Sustainable Cities and Communities;
SDG 13, Climate Action; and SDG 15, Life on Land [2]. Land Use Function refers to the
services and goods provided by the land use system resulting from the interactions between
natural, economic, and social factors [3,4]. This includes the most relevant economic, envi-
ronmental, and social issues [5]. The concept of multifunctionality was initially proposed by
the Organization for Economic Co-operation and Development (OECD) in 2001 to describe

Diversity 2024, 16, 618. https://doi.org/10.3390/d16100618 https://www.mdpi.com/journal/diversity

https://doi.org/10.3390/d16100618
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diversity
https://www.mdpi.com
https://orcid.org/0000-0001-6144-0657
https://doi.org/10.3390/d16100618
https://www.mdpi.com/journal/diversity
https://www.mdpi.com/article/10.3390/d16100618?type=check_update&version=2


Diversity 2024, 16, 618 2 of 28

the joint nature of agricultural production, including agricultural goods, environmental,
and social non-commodity or public goods [6]. Although the field of land science in China
has long described land functions, there have been limited comprehensive studies on
multifunctional land use from the perspective of multifunctional landscape [7]. In contrast,
international scholars have extensively classified land use functions. For example, Pérez–
Soba et al. [8] classified land use functions into different aspects, including employment,
recreation, residence, and health. Subsequently, scholars have defined land use functions
based on their ability to provide social, economic, and environmental functions or goods
and services to meet societal needs [9,10]. In this paper, land use function refers to the
various functions of using land to meet different human needs and activities and to provide
different products and services to humans, including an economic production function,
social function, and ecological function.

In recent years, there has been widespread acceptance and application of land classifi-
cation systems for functional indicators and quantitative evaluation methods by scholars,
though Chinese scholars began their research on multifunctional land use later than their
international counterparts. Scholars like Zhen et al. [11] and Xie et al. [12] constructed
scientifically sound evaluation index systems. These systems comprehensively consider
economic, social, and environmental roles, and emphasize the importance of selecting typi-
cal and scientifically feasible indicators. Currently, many Chinese scholars adopt research
perspectives based on “production–life–ecology” and “economic–social–ecological” func-
tion classification systems [13]. For example, Xiang et al. [14] have selected three primary
indicators—living functions, production functions, and ecological functions. These indica-
tors comprise 21 tertiary indicators for evaluating multifunctional land use. The researchers
have empirically tested the influencing factors using an obstacles model. Similarly, Lin
et al. [15] used the concept of “three-living spaces”, selecting 27 indicators to evaluate mul-
tifunctional land use in the Guangxi border region. Since 2001, when the European Union
developed a multifunctional land use analysis framework from a sustainability perspective,
categorizing land use functions into “social, economic, and ecological (environmental)”
functions [6], many international scholars conducted related studies [16–21]. For instance,
Reidsma et al. [16] established a methodological framework based on a multi-criteria analy-
sis and stakeholder impact to assess the impact of land use policies on developing countries.
Plieninger et al. [17] categorized rural area functions in Germany into five main functions,
including residence and agricultural production. Due to varying evaluation objectives and
focal points, no unified or standard evaluation index system for multifunctional land use
has been established. Different scholars have different classifications for land use func-
tions. While many scholars have developed various evaluation index systems at provincial,
county, municipal, township, and grid scales [22], a relatively unified standard has not
been formed due to differing evaluation purposes and focal points.

The evaluation of land use multifunctionality requires a comprehensive assessment
from multiple levels, dimensions, and perspectives. Additionally, it necessitates exploration
of the interrelationships between its sub-functions. Moreover, scholars have increasingly
explored the coupling, co-ordination, trade-offs, and synergies among diverse land use
functions [23–27]. This exploration has elucidated spatial conflicts, co-ordination challenges,
and dominant patterns in land use functions. Researchers have extensively investigated
these interactions through the lens of spatial heterogeneity. For instance, Zhang et al. [27]
utilized spatiotemporal analysis techniques and an enhanced co-ordination degree model
to analyze the evolutionary characteristics and coupling co-ordination degrees of land use
functions. Additionally, Liu et al. [28] and Li et al. [29] assessed land use functions from the
perspective of sustainable utilization, measuring trade-off intensities and synergies among
multifunctional land uses using the trade-off synergy model and production possibility
frontier. In recent years, China’s land use has undergone significant changes, generally
associated with improvements in human well-being and economic development [30–32].
However, these changes have also contributed to serious environmental issues [33,34]. As-
sessing the sustainability impacts of these transformations presents a significant challenge
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to policymakers and the scientific community. As a fundamental aspect of land sustainable
utilization research, evaluating land use multifunctionality and balancing various land
functions to achieve rational and efficient use of limited land resources is crucial for re-
gional sustainable development and is a major focus of academic interest [35,36]. Land
use functions include ecological, social, and economic production functions, and their
sustainable utilization directly affects economic development, the ecological environment,
and social development. Different land use functions interact in various ways, resulting in
trade-offs and synergies. Trade-offs indicate a state of mutual exclusion, whereas synergies
represent a positively reinforcing cycle [37,38]. Analyzing these trade-offs and synergies
helps policymakers better implement land policies and achieve optimal land resource
allocation, especially in resource-scarce regions.

Current research frequently overlooks in-depth examinations of the trade-offs, syn-
ergies, spatial distributions, and driving forces influencing land use functions [36,39–41].
Consequently, there is a critical need for quantitative assessments of land use functions and
exploration of their trade-offs and synergies. Such efforts are crucial for comprehending
the intricate interactions among diverse land use systems to promote regional sustainable
development [36,42]. This study investigates the trade-offs and synergies between land use
functions at a 1km grid scale, providing a reliable basis for accurately identifying land use
conflicts and developmental imbalances, which is crucial for identifying land use issues at
fine scale.

The Hehuang Valley, situated in eastern Qinghai Province, is considered a significant
ecological and climatic “sensitive area” in Asia [43–46]. Against the backdrop of ongoing
urbanization, Qinghai Province is planning to establish the Xining-Haidong metropolitan
area, centered on Xining and Haidong, with the aim of driving economic development.
Given the unique geographical and environmental characteristics of the Hehuang Val-
ley, its future development potential will undeniably impact its ecosystem and ecological
environment. Qinghai Province places ecological protection as its top priority while pro-
moting high-quality development. Achieving this goal necessitates the co-ordination of
land use multifunctionality and optimization of the layout of production, living, and
ecological spaces.

As a result, this study focuses on the multifunctionality of land use in the Hehuang
Valley. It aims to explore the spatiotemporal characteristics and driving factors of land use
functions, with the following three objectives: (i) to establish a grid scale evaluation index
system for land use multifunctionality and identify their spatiotemporal evolution; (ii) to
identify the trade-offs and synergies between land use multifunctionality; (iii) to identify
the influencing factors of land use functions.

2. Materials and Methods
2.1. Study Area

The Hehuang Valley is situated in the fertile triangular region between the Yellow
River and the Huangshui River basins (Figure 1). It is surrounded by the Dabanshan
Mountains to the northwest, the Qinghai-Tibet Plateau to the south, and the Loess Plateau
to the northeast, resulting in a region with higher altitude in the west and lower altitude
in the east. Acting as a transitional zone between the Qinghai-Tibet Plateau and the
Loess Plateau, it covers a total area of approximately 35,273.77 km2. The Hehuang Valley
experiences concentrated precipitation, characterized by simultaneous rain and heat, thus
showing its advantageous agricultural location and resources. It is the oldest and most
intensively developed area in Qinghai Province [47], serving as the largest agricultural
area on the Qinghai-Tibet Plateau. Despite accounting for only 5% of the province’s area, it
contains 72% of the province’s population and 60% of its arable land, thus earning the title
of “feeding three-quarters of Qinghai’s population with one-thirtieth of its land area [48]”.
The Hehuang Valley can be divided into 14 administrative units, and the Xining urban
area was merged from the Chengdong, Chengzhong, Chengxi, and Chengbei districts
because of a smaller land area and similar land use characteristics. As of 2020, the total
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population of the Hehuang Valley was 4.1666 million, with a per capita GDP of 64,537 RMB.
In 2020, the total grain and meat production in the Hehuang Valley were 1.038 million tons
and 271,000 tons, respectively, representing increases of 47.3% and 58.5% compared to the
year 2000.
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Figure 1. Location of the study area (c) in Qinghai Province (b), China (a).

2.2. Data Sources

The data utilized in this study primarily consist of three categories: natural geographic
data, socio-economic statistical data, and land use-related data. For detailed information
regarding the specific data usage and sources, please refer to Table 1.

Table 1. Data sources and their uses.

Data Type Data Name Data Format Data Source Data Use

Natural
geographic data

DEM Elevation Data Raster data with 30 m
resolution

Geospatial Data Cloud
(http://www.gscloud.
cn/search, accessed on

8 June 2022)

Basic parameter input
for soil erosion

equation and wind
erosion model

MOD13Q1 Raster data with 250 m
resolution

NASA website (https:
//www.nasa.gov/,

accessed on
8 June 2023)

Obtain Normalized
Difference Vegetation

Index (NDVI) and
vegetation

coverage data

Soil Moisture Data Raster data with
1000 m resolution

Cold and Arid Regions
Science Data Center

Topsoil moisture factor
(0–10 cm depth range)

Precipitation Data List data

China Meteorological
Data Network

(http://data.cma.cn/,
accessed on 5 July 2022)

Obtain rainfall erosion
factor and annual
average rainfall

raster maps

Temperature,
Precipitation,

Radiation Data
List data

China Meteorological
Data Network

(http://data.cma.cn/,
accessed on 5 July 2022)

Obtain monthly
average temperature,
radiation raster data,
and annual potential

evaporation data

http://www.gscloud.cn/search
http://www.gscloud.cn/search
https://www.nasa.gov/
https://www.nasa.gov/
http://data.cma.cn/
http://data.cma.cn/
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Table 1. Cont.

Data Type Data Name Data Format Data Source Data Use

Socio-economic
statistical data

Annual Meat, Grain
Production, and
Population Data

Statistical data

Qinghai Statistical
Yearbook, China
County Statistical

Yearbook

Obtain grain and meat
production and county

population data

Land use-related
data

Land Use Remote
Sensing Data

Raster data with 30 m
resolution

Resources,
Environment and
Science and Data

Center (http:
//www.resdc.cn/,

accessed
on 2 October 2022)

Basic parameter input
for NPP (Net Primary
Productivity), water

conservation, and soil
erosion models

Global Land Cover
Data (China subset)

Raster data with 100 m
resolution

Cold and Arid Regions
Science Data Center

Obtain vegetation type
data for the study area

Road Network Data Vector data

Resources,
Environment, and
Science and Data

Center (http:
//www.resdc.cn/,

accessed on
2 January 2023)

Obtain road and
railway data for 1995,

2012, and 2020

Night Light Index [49] Raster data with
1000 m resolution

An improved
time–series

DMSP–OLS–like data
(1992–2021) in China by
integrating DMSP–OLS

and SNPP–VIIRS—
Harvard Dataverse

Input for the PLUS
model

2.3. Research Design

By integrating land use ecological-social-production functions, our study attempts to
assess multifunctional level, identify the interrelationships among functions, and analyze
the influencing factors of spatiotemporal variation of land use comprehensive function to
provide policy suggestions in optimizing land use and multifunctional landscape conserva-
tion. The specific execution steps are shown in Figure 2. Moreover, the research units in
this paper include grid-scale units and administrative units. This study adopts grid-scale
evaluation units to assess multifunctional land use. By evaluating at the grid scale, the
study area is divided into 35,273 grids of 1 km2 in size, wherein all indicator calculations
are conducted. The administrative units within the study area include 14 counties and
districts in the Hehuang Valley.

2.4. Quantification Method of Multifunctional Land Use Levels

The establishment of a multifunctional land use evaluation index system should be
rooted in scientific theoretical foundations, with each selected evaluation indicator possess-
ing a clear meaning. Given the multitude of direct and indirect factors that influence land
use functions in the study area, it is impractical to select all indicators. Instead, indicators
that reflect the unique characteristics of the study area should be chosen. Furthermore,
consideration must be given to the primary factors influencing land use functions, selecting
representative indicators that directly reflect land use functions to ensure the credibil-
ity and accuracy of the evaluation results. Evaluating multifunctional land use entails
a complex functional system evaluation, which takes into account social, economic, and
ecological factors.

http://www.resdc.cn/
http://www.resdc.cn/
http://www.resdc.cn/
http://www.resdc.cn/
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Multifunctional landscape refers to a design concept and practice that meets multiple
functions and needs within a landscape area. This landscape not only has aesthetic value,
but also covers multiple aspects such as ecological protection, social demand, and economic
development. The theory of “three-living” space refers to the interaction and integration
of “production space”, “living space”, and “ecological space”. This theory emphasizes
the need to co-ordinate the relationship between these three spaces in the planning and
design process to achieve sustainable development. Production space focuses on economic
activities and production efficiency, living space focuses on the quality of life and social
services, and ecological space focuses on environmental protection and ecosystem health.
From a sustainable development perspective, three dimensions—economic production,
social, and ecological—were selected based on the multifunctional landscape and “three-
living” space theory.

For the quantitative indicators’ selection of different land use functions, we followed
the principles of scientific rigor, representativeness, and data availability. The selected
indicators must be related to the corresponding land use function. The selected indicators
must be quantifiable at the grid scale. The data used to calculate the indicators must be
publicly available. Finally, nine indicators were chosen to construct the multifunctional
land use evaluation index system (Table 2). The further explanations were as follows.
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Table 2. Multifunctional land use evaluation index system in Hehuang Valley.

Functions
(Weight)

Indicators (Indicator
Sign)/Weight Indicator Description Calculation Method Formula/Calculation

Description

Ecological
Function

(1/3)

NPP (+)/0.251

NPP can directly reflect
the ability of vegetation
community to produce

organic matter in natural
environment.

NPP was estimated by utilizing
the Carnegie-Ames-Stanford

Approach based on the principle
of light energy utilization. The
detailed model and parameter

selection are based
on Zhu et al. [50].

NPP(x, t) = APAR(x, t) × ε(x, t)

NPP(x, t) represents the net
primary productivity of the
pixel x in month t(g·C·m−2);

APAR(x, t) is the
photosynthetically active
radiation of the pixel x in

month t(MJ·m−2); ε(x, t) is the
actual light-use efficiency of

the pixel x in month
t(g·C·MJ−1).

Water Conservation
(+)/0.484

Water conservation can
provide support for

improving regional water
circulation and rational

utilization of
water resources.

Water conservation was assessed
by the Water Yield module of the
InVEST model [51] based on the

principle of water balance.
WY(x) = (1 − AET(x)

P(x) ) × P(x)

WY(x) is the annual water
yield of a landscape type

(mm); AET(x) is the actual
annual evapotranspiration of
the grid cell (mm); P(x) is the

annual precipitation of the
grid cell (mm).

Soil Erosion (–)/0.265

Soil erosion refers to the
process of soil erosion,

transport and
accumulation, which

affects the stability and
productivity

of ecosystems.

The RUSLE is used to quantify
soil erosion in the Hehuang

Valley. Soil retention is
determined by the difference
between potential soil erosion
and actual soil erosion [52,53].
USLE = R × K × C × LS × P

USLE is the actual soil erosion
amount (t·hm−2·a−1); R is the

rainfall erosivity factor
(MJ·mm·hm−2·h−1·a−1); K is

the soil erodibility factor
(t·hm2·h·MJ−1·mm−1·hm−2);
LS is the topographic factor; C

is the cover management
factor; P is the support

practice factor.

Social Function
(1/3)

Residential Capacity
(+)/0.675

Due to the fixed location
and area of land, it has a
spatial carrying function
and provides space for

human habitation
and activities.

Using the Habitat Index and
population size to quantify

indicators of residential capacity
and the detailed formulas could

be found be in [54,55].
HSIi =

(1−NDVImax)+OLS′

(1−OLS′)+NDVImax+OLS′×NDVImax

Ri = Ui × HSIi ×
POPj

Uj×HSI
j

Ri is the population density of
the grid i; Ui and Uj are the

areas of urban and rural
residential points in grid i and
county j, respectively; Ii and Ij

represent the habitation
indices of grid i and county j,

respectively; POPj is the
population of county j; OLS

and OLSmax are the value and
maximum value of nighttime

lights in grid x; OLS′

represents the normalized
nighttime light value;

NDVImax is the maximum
normalized difference

vegetation index.

Travel Convenience
(+)/0.182

Travel convenience is the
basic support of social
functions. An effective

road system can promote
the overall progress of
society and improve

residents’ sense
of happiness.

Calculating the road network
density of each 1 km grid cell to

quantify the level of
travel security.

Establish a 1 km grid in the
Hehuang Valley, intersect with
road data, calculate the road
length within each grid cell,

summarize by the FID field of
the grid, and obtain the total
road length within each 1 km

grid cell.

Aesthetic Landscape
(+)/0.143

Aesthetic landscapes are a
key component of the

social and life functions of
land, which can improve

quality of life and
psychological well-being,

promote social interaction,
and provide

educational functions.

Measured based on the value
equivalent method [56] and

appropriately adjusted using the
local grown grains.

Ea = 1
7 × AOV

S

Ea is the ecosystem service
value per unit equivalent

factor in the Hehuang Valley
(yuan/hectare); AOV is the

average agricultural
production value over the

years in the Hehuang Valley
(yuan); S is the average grain

planting area over the years in
the Hehuang Valley (hectares).
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Table 2. Cont.

Functions
(Weight)

Indicators (Indicator
Sign)/Weight Indicator Description Calculation Method Formula/Calculation

Description

Economic
Production

Function
(1/3)

Grain Output (+)/0.217

The Hehuang Valley is the
most important

grain-producing area in
Qinghai Province and

plays an important role in
the land

economic production.

Spatialization of statistical grain
output data based on the

significant linear correlation
between cropland NDVI and
crop product yields [57,58].

Gi = Gsum × NDVIi
NDVIsum

Gi is the grain output in grid i
(t); Gsum is the total grain

output in the Hehuang Valley
(t); NDVIi is the NDVI value of

cultivated land in grid i;
NDVIsum is the sum of NDVI

values of cultivated land in the
study area.

Livestock Product Supply
(+)/0.115

The Hehuang Valley has a
large amount of temperate

grassland suitable for
grazing, and livestock

products are an
indispensable daily

necessity for
local residents.

Spatialization of statistical
livestock production data based

on the significant linear
correlation between grassland
NDVI and livestock product

yields [57,58].
Li = Lsum × NDVIi

NDVIsum

Li is the meat output in grid i
(t); Lsum is the total meat

output in the Hehuang Valley
(t); NDVIi is the NDVI value of
grassland in grid i; NDVIsum is

the sum of NDVI values of
grassland in the study area.

GDP (+)/0.668

GDP represents the
economic development
level of a region and is

also an important
indicator of regional land

economic output.

GDP is spatialized by the GDP
statistical value of the

county-level administrative, the
land use type, and nighttime
light brightness et al. [22,59].

GDPij = GDP × Qij
Q

GDPij is the raster unit value
after spatialization; GDP is the

GDP statistical value of the
county-level administrative
unit where the raster unit is

located; Qij is the total weight
of land use type, nighttime

light brightness, and
residential point density in the

raster unit; Q is the total
weight of land use type,

nighttime light brightness, and
residential point density in the

county-level administrative
unit where the raster unit

is located.

Land ecological function refers to the ecological products and services provided by
land ecosystems. The ecological function corresponds to the environmental dimension,
and excellent ecological function is also the objective of sustainable land development. By
considering the special characteristics and ecological sensitivity of the Hehuang Valley,
three indicators—water conservation, soil erosion, and NPP—were selected to quantify the
land’s ecological function. The Hehuang Valley is located in an arid and semi-arid area
with complex terrain, and its ecosystem is sensitive to climate change. Therefore, the above
three indicators were selected to quantify the ecological functions of the land.

Land social function refers to the role of land in social life, including its impact
on social activities, quality of life, and public services, which supports the stability and
development of social structure, and promotes social welfare. In this paper, land social
function also involves living function and cultural function. The healthy development
of social functions is closely related to the fundamental human needs for land use. To
comprehensively reflect the impact of regional land resources on social functions, three
indicators—residential capacity, travel convenience, and aesthetic landscape—were selected
to quantify the social function. The description of residential capacity, travel convenience,
and aesthetic landscape indicators supporting land social function is show in Table 2.

Land economic production function refers to the direct or indirect economic value gen-
erated by land use activities. Given the typical and unique characteristics of the Hehuang
Valley, GDP, grain production, and livestock product supply were selected to quantify the
region’s economic production function. The Hehuang Valley is the important agricultural
and livestock area, and the core economic development area in Qinghai Province. Therefore,
the above three indicators were selected to quantify the economic production functions of
the land.

The specific steps for quantifying the multifunctional level of land use in the Hehuang
Valley were divided into three steps. Firstly, each indicator was normalized to between 0
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and 1. Secondly, the weight of each indicator at different levels was calculated. For the
three land use ecological-social-production functions, this paper considered them to be of
equal weight. The explanations were as follows. The Hehuang Valley is the most important
agricultural area and the core economic and social development area in Qinghai Province.
Moreover, the area is located in an arid and semi-arid area, and the ecosystem is relatively
sensitive to climate change. The three land use ecological-social-production functions were
the indispensable products and services provided by land use in the Hehuang Valley, and
as an important component of land use functions, they play an equally positive role, so
they have equal weight. For the indicators of each function, the weight was calculated
by the entropy method. The entropy method is an objective method of property rights
confirmation and is not subject to subjective influence. Thirdly, each land use function level
and the comprehensive land use function level were calculated by the weighting method.

2.5. Identification Method of Influencing Factors

The study quantified the spatial and temporal variations of the multifunctional level
of land use in the Hehuang Valley. For the spatial variation, the study selected geographic
detectors to identify the influencing factors of multifunctional land use levels. For the
temporal variation, the study selected grey correlation analysis to identify its influencing
factors. Determining the indicators of influencing factors is the prerequisite for identifying
influencing factors.

2.5.1. Selection of Influencing Factors

Land use involves a wide range of fields and complex systems. The multifunctionality
of land use is affected by many factors. These factors are diverse because land plays
multiple roles in social and natural systems, and is closely related to different environmental,
economic, social and policy conditions. Based on the existing literature [15,23,39,42,54],
considering the geographical characteristics and data availability of the Hehuang Valley,
we selected three types of influencing factors—natural conditions, accessibility, and human
factors—comprising a total of nine indicators to investigate the driving factors affecting
the land use function in the Hehuang Valley (Table 3). Land use is affected by natural
factors, which vary in space, resulting in different applicable functions for each piece of
land. The Hehuang Valley is located in an arid and semi-arid area with complex landforms,
and is sensitive to climate change, so elevation, slope, temperature, and precipitation
were selected as the indicators of natural conditions affecting multifunctional land use.
Areas with high accessibility usually attract more types of land use because convenient
transportation and good infrastructure make the combination of different land use functions
more feasible. Good accessibility can promote the multifunctional development of land
because it promotes the mixing and optimization of different land uses. According to the
existing literature [23,54] and the study area characteristics, accessibility considered the
distance to the county center and the distance to the city center. Human factors also have
an important impact on the level of multifunctional land use. According to the existing
literature [23,54], the data availability, and the study area characteristics, the farmland
non-agricultural rate, land use intensity, and human activity intensity were selected as the
indicators of human factors affecting multifunctional land use. The specific calculations of
the driving factors are presented in Table 3.
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Table 3. Multifunctional drivers of land use in the Hehuang Valley.

Type Factors Specific Calculation Code

Natural conditions

Elevation DEM X1
Slope Extracted from DEM X2

Temperature Average annual temperature over five periods X3
Precipitation Average annual precipitation over five periods X4

Accessibility
Distance to County ArcGIS tool: Euclidean distance (County

locations in 2020) X5

Distance to City ArcGIS tool: Euclidean distance (City locations
in 2020) X6

Human Factors

Farmland
Non-agricultural Rate

Proportion of construction land per 1 km2 unit,
annual average

X7

Land Use Intensity Assigned based on different land types, annual
average X8

Human Activity Intensity Annual average nighttime light index X9

The calculation of land use intensity is divided into two steps. In the first step, a
specific intensity value is assigned to each land use type. We utilized previous studies
that categorized land use intensity into four levels [60] (Table 4). In the second step, the
weighted average of the intensities of different land use types in each 1 km2 grid cell was
calculated as the land use intensity value.

Table 4. Land use intensity grading standards in the Hehuang Valley.

Type Unused Land Forest, Grassland,
Water Land Agricultural Land Construction Land

Land Use Type
Unused land,

Permanent ice and
snow

Forest land, Grassland,
Lakes

Arable land, Reservoirs,
Ponds, and River

channels

Beach land, Urban and
rural land, Industrial

and mining land,
Residential land

Classification Index 1 2 3 4

2.5.2. Geographical Detector

In this study, we utilized the geographical detector [61] to assess the explanatory power
of internal indicators within the land use multifunctionality index system. Geographical
Detector is a statistical method that detects spatial differentiation and studies the drivers
that influence this differentiation. It works with both qualitative and quantitative data,
and can be used to explore interactions between two factors. Its development principle is
based on the spatial differentiation of geographical features. Geographical Detector can
detect the relationship between a certain geographical attribute and its explanatory factors,
and can also be used to explore the differences and influencing factors of geographical
spatial elements in the study area. Compared with traditional statistical analysis methods,
Geographical Detector has significant advantages in that it does not require too many
assumptions and takes into account the geospatial location of variables, so is it widely used
and is especially suitable for the Hehuang Valley, which has complex geomorphic units.
The specific model formula is calculated as follows:

PX,Y = 1 − 1
nδ2 ∑m

i=1nXi δ
2
Xi

(1)

where PX,Y represents the explanatory power of influence indicator X in Table 3 on the
comprehensive land use function level Y, and n and δ2 denote the total number of samples
and variance for a specific function in the study area, respectively. m represents the number
of categories of the indicator, while nXi and δ2

Xi
are the number of samples and variance

of indicator X in category i, respectively. P ranges from 0 to 1; a higher P value indicates
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stronger explanatory power. The impact of each factor in Table 3 on the comprehensive land
function Y was examined based on the explanatory strength of the factors. Additionally,
the driving factors X1–X9 were organized into five classes using the natural breaks method
in ArcGIS and subsequently calculated in GeoDetector.

2.5.3. Grey Relational Model

Grey relational analysis was employed to establish numerical relationships among
influencing factors within a system by assessing the similarity in the geometric shapes of the
reference and comparison sequences [62]. The Hehuang Valley’s ecological environment is
fragile, and its land use functions are influenced by various natural, social, and economic
factors. Considering the uncertainty of these factors, the land use functions in the study
area form a grey system. Therefore, we applied the grey relational evaluation model to
calculate the correlation coefficients of various indicators and further explore the driving
factors of land use functions over time. The specific calculation formula is as follows:

ξ
(
Uij, gj

)
=

min
i

min
j

∣∣Uij − gj
∣∣+ ρmax

i
max

j

∣∣Uij − gj
∣∣∣∣Uij − gj

∣∣+ ρmax
i

max
j

∣∣Uij − gj
∣∣ (2)

where ξ
(
Uij, gj

)
represents the correlation coefficient between the j-th evaluation index of

the i-th evaluation area and the standard sequence G; min
i

min
j

∣∣Uij − gj
∣∣ and max

i
max

j

∣∣Uij − gj
∣∣

are the minimum and maximum differences of the two levels of samples, respectively. ρ
is the resolution coefficient. The smaller the ρ value, the greater the resolution. When
ρ ≤ 0.563, the resolution is best, usually ρ = 0.5.

2.6. Identification Method of Trade-Offs/Synergies in Land Use Multifunctionality

This study utilized long-term sequence data from 2000, 2005, 2010, 2015, and 2020 to
conduct trade-off and synergy analyses of land use functions. For measurement purposes,
Pearson correlation analysis and P-value tests were employed at a 1 km grid scale [63].
These analyses assess the trade-offs and synergies among ecological, social, and economic
production functions of the land at the grid scale. Additionally, to account for potential
correlations among different land use functions and a confounding variable related to land
use multifunctionality, partial correlation analysis was employed to minimize the impact
on the results [64,65]. The calculation formula is as follows:

r =
∑n

t=1 (p xt − pt)(qxt − qt)√
∑n

t=1 (p xt − pt)
2∑n

t=1(qxt − qt)
2

(3)

where r represents the correlation coefficient among the land use production, social, and
ecological function indices at grid point x, pxt stands for the level of land use function at
year t for grid x, pt refers to the mean level of land use function at year t for grid x, qxt
stands for the level of land use function at year t for grid x, qt signifies the mean level of
land use function at year t for grid x.

Using the correlation coefficient r obtained from the above formula, we calculated the
partial correlation coefficient:

rij,h =
rij − rih × rjh√

(1 − rih
2)× (1 − rjh

2)
(4)

where rij,h stands for the partial correlation coefficient between two land use functions
while controlling for another land use function, and rij, rih, and rjh refer to the Pearson
correlation coefficients between each pair of land use functions. The partial correlation
coefficient rij,h ranges from [−1, 1]. A negative partial correlation coefficient signifies a
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trade-off between land use functions, whereas a positive correlation indicates synergy
between them [66].

3. Results
3.1. Spatiotemporal Evolution of Land Use Multifunctionality in the Hehuang Valley
3.1.1. Spatiotemporal Evolution of Land Ecological Function

Over the period from 2000 to 2020, the land ecological function in the Hehuang Valley
exhibited an overall increasing trend (Figure 3). The land ecological function index rose
from 0.481 to 0.503, indicating a growth of 4.5%. Notably, the most significant increase
occurred between 2000 and 2005, with a growth rate of 10.19%.
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Figure 3. Temporal changes of land use functions of Hehuang Valley.

Regarding spatial distribution, the pattern of the land ecological function index re-
mained largely consistent from 2000 to 2020, with only minor variations (Figure 4). High-
value areas predominantly clustered in the southern, northern, and central-southern regions
of the Hehuang Valley. In contrast, low-value areas were concentrated in the central and
central-southern regions. Generally, the spatial distribution of the land ecological function
index closely mirrored the elevation profile of our site, with lower values in lower-elevation
areas and higher values in higher-elevation areas.

Areas with an increasing land ecological function index were mainly found in the
central and southern parts of the Hehuang Valley, indicating a gradual upward trend.
Conversely, areas with a declining land ecological function index were primarily located
in the northern part of the valley. Specifically, 70.90% of the study units exhibited varying
degrees of increase, while 29.10% demonstrated varying degrees of decrease. The maximum
increase recorded in the land ecological function index was 0.2, whereas the maximum
decrease was 0.16. The decrease in ecological function observed in the northern region
from 2000 to 2020 can be attributed to the reduction in high-value areas pertaining to water
conservation and NPP in 2020 compared to 2000.
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3.1.2. Spatiotemporal Evolution of Land Social Function

Between 2000 and 2020, the land social function in the Hehuang Valley exhibited a
modest overall increase. The land social function index rose from 0.444 to 0.448, represent-
ing a 0.90% increment. Overall, the land social function index experienced a slight decline
from 2000 to 2010, followed by a gradual increase from 2010 to 2020, reaching its zenith in
2020 (Figure 3). This trend primarily stemmed from the dominant influence exerted by the
residential capacity indicator and the relatively sluggish population growth in the Hehuang
Valley from 2000 to 2020. Furthermore, the travel assurance and aesthetic landscape indi-
cators also demonstrated varying degrees of increase, although their contributions were
not decisive.

Spatially, significant changes were observed between 2000 and 2005, with both low-
value and high-value areas undergoing shifts (Figure 5). High-value areas expanded
notably in the central region, centered around Xining City, radiating outward. Conversely,
low-value areas expanded in the central-western and northwestern regions of the study
area. Despite the conspicuous spatial expansion of high-value areas, the overall land social
function value exhibited a relative decline compared to 2000, owing to the simultaneous
expansion of low-value areas and the conversion of certain higher-value areas into medium-
low value regions. Between 2005 and 2020, the spatial distribution of the land social
function index showed overall stability, with specific regions experiencing changes. High-
value areas were concentrated in the central and central-northern parts of the area studied,
while low-value areas were found in the northernmost and southernmost regions. There
was a gradual expansion of low-value areas in the northern region, while high-value areas
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remained consistent. In the southwestern Hehuang Valley, certain medium-low value
regions decreased in size over time, being replaced by medium-value areas. The map of
changes in the land social function index from 2000 to 2020 indicates no significant spatial
pattern for areas of increase and decrease, which are scattered and interspersed throughout
the study area. Specifically, 51.84% of the study units showed varying degrees of increase,
while 48.16% showed varying degrees of decrease. The maximum increase in the land
social function index was 0.25, and the maximum decrease was 0.23.
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3.1.3. Spatiotemporal Evolution of Land Economic Production Function

From 2000 to 2020, the land economic production function in the Hehuang Valley
showed an overall increasing trend (Figure 3). The land economic production function
index rose from 0.171 to 0.338, representing a growth of 97.66%. The index values for the
years 2000, 2005, 2010, 2015, and 2020 were 0.171, 0.239, 0.293, 0.318, and 0.338, respectively.
Furthermore, the land economic production index displayed a continuous upward trend
throughout this period, with its peak recorded in 2020.

Regarding spatial distribution, significant changes occurred between 2000 and 2005
(Figure 6). There was an increase in high-value areas in the central-northern region, while
low-value areas in the central-southern region experienced a decrease. From 2005 to
2020, the spatial distribution characteristics remained relatively consistent, with high-
value areas expanding consistently. The spatial distribution pattern of the land economic
production function aligns with that of the land social function and GDP. High-value areas
are concentrated in the central basin regions, while low-value areas are observed in the
northern, southern, and southwestern regions of our site. The map illustrating changes
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in the land economic production function index for the period from 2000 to 2020 shows
that areas with increased economic production function dominate the study area. On the
other hand, areas with decreased economic production function are confined mainly to
the northern region, appearing as small patches. Specifically, 94.99% of the study units
exhibited varying degrees of increase, while 5.01% displayed varying degrees of decrease.
The maximum increase in the land economic production function index was 0.51, and the
maximum decrease was 0.33.
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3.1.4. Spatiotemporal Evolution of Land Comprehensive Function

From 2000 to 2020, the overall land comprehensive function in the Hehuang Valley
showed an increasing trend (Figure 3). The land comprehensive function index improved
from 0.366 to 0.431, reflecting a growth rate of 17.76%. The comprehensive land function
index values for the years 2000, 2005, 2010, 2015, and 2020 were 0.366, 0.405, 0.415, 0.417, and
0.431, respectively. Similar to the land economic production function, the comprehensive
land function index exhibited a continuous upward trend from 2000 to 2020, reaching its
peak in 2020.

Spatially, the distribution of the land comprehensive function index remained sta-
ble from 2000 to 2020 (Figure 7). High-value areas were predominantly concentrated in
the central and central-northern parts of the Hehuang Valley, whereas low-value areas
were concentrated in the northern, central-southern, and southern regions. Throughout
this period, the high-value and medium-high-value areas in the central-northern regions
continued to expand, while low-value areas in the northern and southern regions grad-



Diversity 2024, 16, 618 16 of 28

ually decreased. The map depicting changes in the land comprehensive function index
from 2000 to 2020 reveals that regions experiencing increased comprehensive function
were primarily concentrated in the central and southern parts of the Hehuang Valley,
occupying a significant portion of the area. Conversely, regions experiencing decreased
comprehensive function were mostly situated in the northern part of the valley, appearing
as isolated patches. Specifically, 95.08% of the study units exhibited varying degrees of
increase, while 4.92% showed varying degrees of decrease. The maximum increase in the
land comprehensive function index was 0.18, and the maximum decrease was 0.12.
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3.2. Trade-Offs and Synergies in Land Use Multifunctionality in the Hehuang Valley
3.2.1. Pearson Correlation Coefficients of Land Use Multifunctionality

A pairwise correlation analysis of the multifunctional levels of land use for each
year revealed that from 2000 to 2020 (Figure 8), the Pearson coefficient between the social
and economic production functions of land in the Hehuang Valley consistently remained
above 0.43, reaching its peak of 0.55 in 2010. This implies a relatively strong positive
correlation overall. During the same period, the Pearson coefficient between the social and
ecological production functions of land remained below −0.39, with the lowest value of
−0.46 observed in 2010, indicating a relatively strong negative correlation. The Pearson
coefficient between the economic and ecological production functions of land also remained
below −0.18, with a minimum value of −0.22 in 2010, indicating a weak negative correlation
overall.
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3.2.2. Partial Correlation Coefficients of Land Use Multifunctionality

Figure 9 depicts the partial correlation coefficients between the ecological and social
functions, social and economic production functions, and ecological and economic pro-
duction functions of land spanning from 2000 to 2020. Overall, the correlation between
the economic production function and the ecological function of land tends to be negative.
Spatially, areas exhibiting negative partial correlation coefficients are predominantly clus-
tered in the northern section of the study area, whereas those with positive coefficients
are primarily found in the southern and central regions. In general, the partial correlation
coefficient between the economic production function and the social function of land is
positive in most regions. Spatially, there is no clear distribution pattern as research units
with negative partial correlation coefficients and those with positive coefficients are inter-
spersed. Similarly, the partial correlation coefficient between the ecological function and
the social function of land is negative in most regions. The spatial distribution of units with
negative and positive partial correlation coefficients for ecological and social functions is
interwoven, similar to the spatial distribution pattern of economic production and social
functions, without a clear distribution feature. We conducted an analysis of the partial
correlation coefficients between land use functions for the 14 counties and cities within
the Hehuang Valley. The results were visualized using average values to show the spatial
distribution. The partial correlation coefficient between the economic production function
and the ecological function of land ranges from −0.33 to 0.46 for each county, increasing
progressively from the northern counties (Menyuan County, Datong County, and Huzhu
County) to the southern counties (Tongren County, Jianzha County, and Guide County).
The partial correlation coefficient between the economic production function and the social
function of land ranges from −0.20 to 0.31, with Menyuan County and Ping’an District
showing a stronger trade-off. The partial correlation coefficient between the ecological
function and the social function of land ranges from −0.22 to 0.1, with Ledou District and
Ping’an District showing weaker synergies.
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Figure 9. Partial correlation coefficient between land economic production function and ecological
function at grid scale (a) and county scale (d), between land economic production function and social
function at grid scale (b) and county scale (e), and between ecological function and social function
at grid scale (c) and county scale (f). Note: HY: Huangyuan County; HZT: Huzhu County; HZ:
Huangzhou County; XN: Xining Urban Area; PA: Ping’an District; LD: Ledu District; MH: Minhe
County; HL: Hualong County; JZ: Jiazha County; GD: Guide County; XH: Xunhua County; TR:
Tongren County.

To further explore the trade-offs and synergies between land use functions in each
county, we classified the synergies into four types (Table 5). These include synergy (+++)
and trade-off (——), which indicate that all three land use functions exhibit a synergy or
trade-off within the same county, and synergy (++–) and trade-off (—-+), which indicate
that two of the three land use functions show a synergy or trade-off within the same county.
The detailed results can be found in Table 5. Guide County and Jianzha County are the
counties with the strongest synergies between land use functions, whereas Huangyuan
County, Menyuan County, and Huangzhong County have the strongest trade-offs.



Diversity 2024, 16, 618 19 of 28

Table 5. Trade-offs and synergistic types between land economic production functions, ecological
functions, and social functions in counties and cities in Hehuang Valley.

County Trade-off and Synergy Types

Ledu District Synergy (++–)
Tongren County Synergy (++–)
Guide County Synergy (+++)
Minhe County Synergy (++–)
Ping’an District Synergy (++–)

Huangyuan County Trade-off (——)
Menyuan County Trade-off (——)

Huzhu County Trade-off (—-+)
Jainca County Synergy (+++)

Huangzhong County Trade-off (——)
Xunhua County Synergy (++–)
Datong County Trade-off (—-+)

Xining Urban Area Trade-off (—-+)
Hualong County Trade-off (—-+)

3.3. Influencing Factors of Spatiotemporal Changes in Land Use Function Levels in the
Hehuang Valley
3.3.1. Influencing Factors of the Spatial Distribution of Land Use Functions

A geographical detector was utilized to analyze the driving factors of the spatial
distribution of comprehensive land use functions in the Hehuang Valley. The results of
the factor detection indicate the explanatory power of nine factors on the spatial variation
of comprehensive functions. The factors, ranked in order of their explanatory power on
changes in comprehensive land function (Y), are as follows: precipitation (X4) > temperature
(X3) > land use intensity (X8) > elevation (X1) > distance to county (X5) > farmland non-
agricultural rate (X7) > human activity intensity (X9) > slope (X2) > distance to city (X6).
Precipitation, land use intensity, temperature, elevation, and distance to county have the
highest q-values (Figure 10).
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The results of the interaction detection (Figure 11) indicate that the interactions be-
tween factors exhibit both two-factor enhancement and non-linear enhancement relation-
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ships, suggesting that the comprehensive land use function is a result of the combined
effects of multiple influencing factors. The highest interaction explanatory q-value is 0.323,
for the interaction between temperature and distance to city (X3∩X6), which demonstrates
the strongest explanatory power for the comprehensive land function. The q-values for the
interactions between precipitation and distance to county (X4∩X5), precipitation and dis-
tance to city (X4∩X6), precipitation and land use intensity (X4∩X8), distance to county and
land use intensity (X5∩X8), and elevation and distance to city (X1∩X6) are all above 0.31,
indicating a very strong explanatory power for the spatial distribution of comprehensive
land use functions.
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3.3.2. Temporal Changes in Land Use Function Drivers in the Hehuang Valley

A geographical detector method was used to conduct a spatial analysis of the driving
factors for land use functions, resulting in the identification of key factors. Factors with
minimal temporal variation were excluded, and factors X3, X4, X7, X8, and X9 were selected
for further analysis. However, the geographical detector method can only explore driving
factors spatially and not temporally. Thus, a grey relational model was employed to inves-
tigate the association between land use multifunctionality and driving factors over time.
This model identified the main factors influencing changes in land use multifunctionality,
with land use intensity, farmland non-agriculturalization rate, temperature, precipitation,
and human activity intensity ranking as the primary influences (Figure 12). Specifically,
land use intensity (X8) and farmland non-agriculturalization rate (X7) were found to be the
main driving factors for the temporal variation in land use multifunctionality.
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4. Discussion
4.1. Understanding the Changes and Interactions of Multifunctional Land Use

The results show that the spatial variation of land use multifunctionality in the
Hehuang Valley presents a certain regularity. High-value regions in the spatial distri-
bution of land use multifunctionality are predominantly clustered in the central and north-
central sections of the study area, contrasting with low-value areas concentrated in the
northern, south-central, and southern parts of the Hehuang Valley. On a spatial scale,
precipitation (X4) primarily influences regional climate and water resource supply, thus
affecting the overall level and interactions of land use multifunctions [67]. Areas with
higher precipitation may experience greater crop yields and attract more human activities,
thereby enhancing the region’s land economic production function and land social function.
As for the temperature (X3) indicator, the significant variation in daily temperatures in
the Hehuang Valley, with high daytime temperatures promoting robust photosynthesis,
contributes to crop growth [68,69]. Additionally, suitable temperatures and cultivation
environments favor human habitation, providing a high interaction explanatory power for
production and living functions. The spatial distribution of land use multifunctionality is
primarily influenced by regional background conditions because of the complex landforms
and the climate of the Hehuang Valley. Located on the Qinghai-Tibet Plateau, the area
has high overall elevation, with population and economic activity concentrated in lower-
elevation basins, while higher-elevation areas remain uninhabited and unused. Elevation
plays a crucial role in determining the land use structure in the valley, as it also influences
temperature and precipitation changes. Although precipitation and temperature explain
the spatial distribution of land use multifunctionality, elevation fundamentally determines
the distribution of comprehensive land functions. The combined effects of multiple factors
contribute to the complexity of factors influencing the spatial variation of comprehensive
land functions.

Figure 3 shows that the comprehensive land use function level in the Hehuang Val-
ley has increased from 2000 to 2020. Land use intensity (X8) and agricultural land non-
agriculturalization rate (X7) are the main driving factors affecting the temporal changes
in the comprehensive functions of land use. Land use intensity reflects changes in land
use structure, which have been continuously increasing in the Hehuang Valley from 2000
to 2020. This rise can be attributed to the expansion of agricultural land, construction
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land, forest, grassland, and water areas. However, this intensifying land use presents chal-
lenges to the sustainability of agricultural production due to non-agriculturalization [70].
Additionally, the farmland non-agriculturalization rate also increased during this period,
reflecting the continuous expansion of construction land and socioeconomic development.
Thus, land use intensity and the farmland non-agriculturalization rate are the primary
drivers of the temporal changes in land use multifunctionality. High-intensity human
activities can have a negative impact on climate, soil, and biodiversity [71,72], increasing
the trade-offs between production and living functions, as well as between living and
ecological functions. The results of the interactive detection reveal that the interaction
between human activity intensity and slope (X9∩X2), the distance to the city (X9∩X6),
and the farmland non-agriculturalization rate (X9∩X7) are relatively weak, with values
of 0.106, 0.084, and 0.128, respectively. This suggests that human activity intensity signifi-
cantly affects the interaction between production and living functions, while its impact on
interactions among other factors is minimal, consistent with previous research findings [23].

Maintaining a balance and synergy between the economic production function, eco-
logical function, and living function of land is crucial for effective land resource manage-
ment [73–75]. Research conducted in the Hehuang Valley reveals a trade-off between the
economic production function and ecological function of land, which agrees with previ-
ous studies [73,74]. There is also a trade-off between the ecological function and living
function of land. Human activities and behaviors can affect the ecological function of
land. Uncontrolled urbanization, excessive industrialization, and unsustainable agricul-
tural practices can result in soil degradation, water pollution, and loss of biodiversity,
consequently impacting the quality of human life [76,77]. Therefore, it becomes essential
to consider the balance and co-ordination of these three functions in policy-making and
decision-making processes.

4.2. Policy Implications

Rational land planning and management can play a crucial role in protecting the
ecological environment, improving the quality of human life, and promoting economic
development [78]. Different areas within the Hehuang Valley exhibit varied land use
characteristics, necessitating tailored strategies.

In areas with relatively low comprehensive land use functions, like Menyuan County,
Tongren County, Guide County, and Jianzha County, the primary constraints are low levels
of economic production and social functions. These regions should prioritize enhancing
these two aspects. Leveraging their favorable agricultural production conditions, these
areas can maximize the economic production functions of the land by focusing on livestock
products, wheat, and barley while also incorporating industrial, service, and ecological
products. However, it is crucial to restrict large-scale, high-intensity industrial development
to preserve and enhance the agricultural production capacity of the region. The land use
strategy should mainly revolve around arable and grassland, protecting and integrating
high-quality arable and grassland through stringent protection policies. Strengthening
agricultural infrastructure, ensuring stability in grain and livestock production, and en-
hancing comprehensive agricultural production capacity are of the utmost importance
for ensuring a steady supply of primary agricultural and livestock products for the entire
province. To address China’s shortage of arable land reserves, the mechanisms of “occupy-
ing and replenishing balance” and “in-out balance” should be reasonably promoted and
strictly implemented. The “occupying and replenishing balance” mechanism allows for
the restoration of orchards and forest land to arable land, as outlined in the 2022 Arable
Land Occupying and Replenishing Balance Management Measures. On the other hand,
the essence of the “in-out balance” system is to co-ordinate the conversion relationships
between arable land and other agricultural land, striking a balance between land protection
and efficient use of other agricultural land to fulfill diverse land use demands. These
mechanisms provide flexibility for economic development in the Hehuang Valley, aiding
the development of regions with lower land function levels.
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In areas such as Xining City and Huangzhong County, where land use multifunc-
tionality is relatively high, there exist trade-offs between different functions. The primary
objective in these areas is to protect and restore the ecological environment, with specific
attention given to the human–land relationship. It is crucial to guide population concen-
tration in urban areas in alignment with the capacity of resources and the environment
to ensure sustainable urban development. Emphasis should be placed on the protection
of natural resources through large-scale afforestation projects. Additionally, strict policies
such as mountain closure and forest and grassland cultivation should be implemented.
The construction of soil and water conservation forests as well as artificial grasslands
can help reduce the destruction of mountain vegetation. To rebuild and restore damaged
ecosystems, comprehensive land consolidation policies that involve slope conversion to
terraces and slope water system construction should be adopted. Overgrazing must be
strictly prohibited, and control measures should be implemented to manage livestock
carrying capacity. Industries that are compatible with available resources, such as specialty
agriculture, forestry, animal husbandry, and agricultural and livestock product processing,
should be developed in order to enhance the level of animal husbandry development.
To enhance co-ordination between different land functions and minimize trade-offs, it is
essential to strengthen land planning and management. Comprehensive land use plan-
ning and management policies should clearly define the boundaries and proportions of
economic, ecological, and residential land. Planning should consider the multifunctionality
and sustainability of land use, avoiding excessive development and resource wastage.
Efficient land use and resource utilization can promote co-ordinated development between
economic production and ecological functions. The adoption of modern agricultural tech-
nologies and production methods can increase farmland yield and value. Encouraging
a circular economy and low-carbon development can reduce resource consumption and
environmental pollution. The increased supervision of land development and utilization
is necessary to prevent illegal land use and environmental damage. Establishing a robust
land management system and monitoring network is important to promptly monitor land
use conditions and environmental changes.

4.3. Limitations and Future Prospects

The multifunctional land use was evaluated on a grid scale, and an evaluation index
system for multifunctional land use was established to identify the change characteristics
from 2000 to 2020 in time and space in the Hehuang Valley. However, the evaluation
index system for multifunctional land use, as presented in this paper, requires further
refinement. Due to the limitations of spatializing data to a 1km raster scale, only nine
indicators for land use functions were selected based on principles of indicator selection.
It should be noted that these indicators need to be further improved to fully capture the
multifunctionality of land use in the future. Some indicators that are closely related to the
social function of land use, such as education and medical care, can be spatialized using
big data methods. Adding indicators such as education, medical care, and employment
to the social function assessment of land can provide a more complete and adequate
assessment of the land social function. As the evaluation index system for multifunctional
land use and the methods for spatializing indicators continue to improve, there will be
opportunities to enhance the land use evaluation index system for the Hehuang Valley. The
partial correlation coefficient between land use functions is calculated based on 1km grid
data, resulting in a low overall average level, and only an overall relative analysis can be
performed. The geographic detector and the grey correlation model are used to analyze
the driving factors of spatial and temporal changes in the multifunctional level of land use,
respectively, which is an innovation. In the future, the two methods can be integrated to
jointly identify the spatiotemporal coupling relationship between land use functions and
influencing factors. Moreover, about the selection of influencing factors, this paper selected
nine influencing indicators from nature conditions, accessibility, and human factors based
on existing research and the characteristics of the study area. Also, due to the limitations



Diversity 2024, 16, 618 24 of 28

of spatializing data to a 1km raster scale, some more detailed indicators, like soil fertility,
were not included. These limitations need to be improved further in the future.

5. Conclusions

This study used a 1 km raster scale as the research unit in the Hehuang Valley. By
utilizing natural geographic data, socioeconomic statistical data, and land use-related
data, we established a multifunctional land use evaluation index system for the Hehuang
Valley. This system quantitatively assessed the ecological, social, economic production,
and comprehensive functions of land use at a 1 km raster scale from 2000 to 2020. Further
analysis was conducted on the spatiotemporal variations, interactions, and influencing
factors of multifunctional land use levels in the Hehuang Valley. The findings of this study
provide valuable theoretical references for the territorial spatial planning regarding land
use in the Hehuang Valley, with the aim of enhancing land use efficiency and sustainability.
The main conclusions are as follows:

(1) The comprehensive land use function index in the Hehuang Valley showed a steady
increase from 2000 to 2020, reaching its highest value in 2020. Spatially, the areas with high
and moderately high comprehensive function indices expanded in the central and northern
regions from 2000 to 2020, while low-value areas in the northern and southern regions
continuously decreased.

(2) In the factor detection analysis, the variables with the highest q-values were
precipitation, land use intensity, temperature, elevation, and distance to the county seat,
indicating that they had the greatest explanatory power for the spatial distribution of
comprehensive land use functions. In the interaction detection analysis, the q-values for
the following pairs of variables were above 0.31, suggesting that their interactions strongly
explained the comprehensive land use functions: temperature and distance to the city
(X3∩X6), precipitation and distance to the county seat (X4∩X5), precipitation and distance
to the city (X4∩X6), precipitation and land use intensity (X4∩X8), distance to the county
seat and land use intensity (X5∩X8), and elevation and distance to the city (X1∩X6). Using
a grey relational model, the main driving factors influencing the comprehensive land use
function in the Hehuang Valley over time were identified as land use intensity (X8) and the
rate of farmland conversion to non-agricultural uses (X7).

(3) Among the counties analyzed, Guinan County and Jianzha County exhibited the
strongest synergistic relationships among land use functions, whereas Hualong County,
Menyuan County, and Huangzhong County showed the strongest trade-offs among land
use functions.

According to the assessment results of multifunctional land use and their interrelation-
ships in Hehuang Valley, differentiated land use planning measures should be implemented
in areas with different land characteristics, such as the areas with relatively low comprehen-
sive land use functions and the areas with high comprehensive land use functions but with
trade-offs between different functions. In the process of policy formulation and decision-
making, it is necessary to consider the balance and co-ordination of land ecology, economic
production, and living functions, and adopt comprehensive measures and strategies to
promote sustainable development.

In this study, due to the limitation of data spatialization to grid scale, the selected
indicators were limited, which cannot fully represent the multifunctional land use and
the influencing factors. With the improvement of the multifunctional land use evaluation
system and the further development of the indicator spatialization method, the multifunc-
tional land use evaluation system of the Hehuang Valley can be further improved in the
future. This is conducive to the more accurate identification of land use function levels at a
finer scale and provides more accurate scientific support for national space planning and
ecological conservation.
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