Terrestrial Aerophytic Cyanobacteria in the Canary Island Laurel-Forest (Laurisilva): Discovery of Brasilonema novocanariensis sp. nov. and Rhizonema melkonianarum sp. nov. from the Laurus Phyllosphere
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Phylogenetic Analyses
3.2. 16S–23S rRNA Internal Transcribed Spacer (ITS) Secondary Structure
3.3. Morphological Examination
3.4. Habitat
3.5. Taxonomic Description
- Class: Cyanophyceae
- Order: Nostocales
- Family: Scytonemataceae
- Class: Cyanophyceae
- Order: Nostocales
- Family: Rhizonemataceae
4. Discussion
4.1. Brasilonema novocanariensis sp. nov.
4.1.1. Taxonomic Insights
4.1.2. Geographic Distribution
4.1.3. Ecological Adaptations
4.2. Rhizonema melkonianarum sp. nov.
4.2.1. Taxonomic Insights
4.2.2. Geographic Distribution
4.2.3. Ecological Adaptations
4.3. Future Research Directions and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strunecký, O.; Ivanova, A.P.; Mareš, J. An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. J. Phycol. 2023, 59, 12–51. [Google Scholar] [CrossRef] [PubMed]
- McGregor, G.B.; Sendall, B.C. Cyanobacterial diversity and taxonomic uncertainty: Polyphasic pathways to improved resolution. In Advances in Phytoplankton Ecology, 1st ed.; Clementson, L., Eriksen, R., Willis, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 7–45. [Google Scholar]
- Singh, P.K.; Kumar, A.; Singh, V.K.; Shrivistava, A.K. (Eds.) Advances in Cyanobacterial Biology, 3rd ed.; Academic Press: London, UK, 2020; pp. 154–196. [Google Scholar]
- Gaysina, L.A.; Saraf, A.; Singh, P. Cyanobacteria in diverse habitats. In Cyanobacteria; Singh, P.K., Kumar, A., Singh, V.K., Shrivistava, A.K., Eds.; Academic Press: London, UK, 2019; pp. 1–28. [Google Scholar]
- Genuário, D.B.; Vaz, M.G.; Santos, S.N.; Kavamura, V.N.; Melo, I.S. Cyanobacteria from Brazilian extreme environments: Toward functional exploitation. In Microbial Diversity in the Genomic Era; Tiquia-Arashiro, S.M., Rodrigues, D.F., Eds.; Academic Press: London, UK, 2019; pp. 265–284. [Google Scholar]
- Dvořák, P.; Poulíčková, A.; Hašler, P.; Belli, M.; Casamatta, D.A.; Papini, A. Species concepts and speciation factors in Cyanobacteria, with connection to the problems of diversity and classification. Biodivers. Conserv. 2015, 24, 739–757. [Google Scholar] [CrossRef]
- Vaccarino, M.A.; Johansen, J.R. Brasilonema angustatum sp. nov. (Nostocales), a new filamentous cyanobacterial species from the Hawaiian islands. J. Phycol. 2012, 48, 1178–1186. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, C.D.; Hašler, P.; Dvořák, P.; Poulíčková, A.; Casamatta, D.A. Brasilonema lichenoides sp. nov. and Chroococcidiopsis lichenoides sp. nov. (Cyanobacteria): Two novel cyanobacterial constituents isolated from a tripartite lichen of headstones. J. Phycol. 2018, 54, 224–233. [Google Scholar] [CrossRef]
- Cordeiro, R.; Luz, R.; Vasconcelos, V.; Gonçalves, V.; Fonseca, A. Cyanobacteria Phylogenetic Studies Reveal Evidence for Polyphyletic Genera from Thermal and Freshwater Habitats. Diversity 2020, 12, 298. [Google Scholar] [CrossRef]
- Mühlsteinová, R.; Hauer, T. Pilot survey of cyanobacterial diversity from the neighborhood of San Gerardo de Rivas, Costa Rica with a brief summary of current knowledge of terrestrial cyanobacteria in Central America. Braz. J. Bot. 2013, 36, 299–307. [Google Scholar] [CrossRef]
- Komárek, J. Modern classification of cyanobacteria. In Cyanobacteria: An Economic Perspective; Sharma, N.K., Rai, A.K., Stal, L.J., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 21–39. [Google Scholar]
- Komárek, J. A polyphasic approach for the taxonomy of cyanobacteria: Principles and applications. Eur. J. Phycol. 2016, 51, 346–353. [Google Scholar] [CrossRef]
- Guiry, M.D.; Guiry, G.M. AlgaeBase. World-Wide Electronic Publication, University of Galway. 2024. Available online: https://www.algaebase.org (accessed on 1 October 2023).
- Willame, R.; Boutte, C.; Grubisic, S.; Wilmotte, A.; Komárek, J.; Hoffmann, L. Morphological and molecular characterization of planktonic cyanobacteria from Belgium and Luxembourg. J. Phycol. 2006, 42, 1312–1332. [Google Scholar] [CrossRef]
- Rajaniemi, P.; Hrouzek, P.; Kaštovska, K.; Willame, R.; Rantala, A.; Hoffmann, L.; Sivonen, K. Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). Int. J. Syst. Evol. Microbiol. 2005, 55, 11–26. [Google Scholar] [CrossRef]
- Whitton, B.A. (Ed.) Ecology of Cyanobacteria II: Their Diversity in Space and Time; Springer Science & Business Media: Dordrecht, The Netherlands, 2012; 760p. [Google Scholar] [CrossRef]
- Turland, N.J.; Wiersema, J.H.; Barrie, F.R.; Greuter, W.; Hawksworth, D.L.; Herendeen, P.S.; Smith, G. International Code of Nomenclature for Algae, Fungi, and Plants (Shenzhen Code), Proceedings of the Nineteenth International Botanical Congress Shenzhen, China, 29 July 2017; Koeltz Botanical Books: Oberreifenberg, Germany, 2018. [Google Scholar] [CrossRef]
- Álvarez, C.; Jiménez-Ríos, L.; Iniesta-Pallarés, M.; Jurado-Flores, A.; Molina-Heredia, F.P.; Ng, C.K.Y.; Mariscal, V. Symbiosis between cyanobacteria and plants: From molecular studies to agronomic applications. J. Exp. Bot. 2023, 74, 6145–6157. [Google Scholar] [CrossRef]
- Aguiar, R.; Fiore, M.F.; Franco, M.W.; Ventrella, M.C.; Lorenzi, A.S.; Vanetti, C.A.; Alfenas, A.C. A novel epiphytic cyanobacterial species from the genus Brasilonema causing damage to Eucalyptus leaves. J. Phycol. 2008, 44, 1322–1334. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, M.; Berthold, D.E.; Lefler, F.W.; Laughinghouse, H.D., IV. Diversity of the genus Brasilonema (Nostocales, Cyanobacteria) in plant nurseries of central Florida (USA) with the description of three new species: B. fioreae sp. nov., B. santannae sp. nov. and B. wernerae sp. nov. Fottea 2021, 21, 82–99. [Google Scholar] [CrossRef]
- Fiore, M.F.; Sant’Anna, C.L.; Azevedo, M.T.P.; Komárek, J.; Kaštovský, J.; Sulek, J.; Lorenzi, A.S. The cyanobacterial genus Brasilonema, gen. nov., a molecular and phenotypic evaluation. J. Phycol. 2007, 43, 789–798. [Google Scholar] [CrossRef]
- Rodarte, B.; Becerra-Absalon, I.; Montejano, G.A.; Osorio-Santos, K.; Alba-Lois, L.; Leon-Tejera, H.; Segal-Kischinevzky, C. Morphological and molecular characterization of Brasilonema roberti-lamii (Cyanophyceae, Nostocales, Scytonemataceae), from Central Mexico. Phytotaxa 2014, 164, 255–264. [Google Scholar] [CrossRef]
- Sant’Anna, C.L.; Azevedo, M.P.; Fiore, M.D.F.; Lorenzi, A.S.; Kaštovský, J.; Komárek, J. Subgeneric diversity of Brasilonema (Cyanobacteria, Scytonemataceae). Braz. J. Bot. 2011, 34, 51–62. [Google Scholar] [CrossRef]
- Bohunická, M.; Johansen, J.R.; Villanueva, C.D.; Mareš, J.; Štenclová, L.; Becerra-Absalón, I.; Hauer, T.; Kaštovský, J. Revision of the pantropical genus Brasilonema (Nostocales, Cyanobacteria), with the description of 24 species new to science. Fottea 2024, 24, 137–184. [Google Scholar] [CrossRef]
- Lücking, R.; Barrie, F.R.; Genney, D. Dictyonema coppinsii, a new name for the European species known as Dictyonemainterruptum (Basidiomycota: Agaricales: Hygrophoraceae), with a validation of its photobiont Rhizonema (Cyanoprokaryota: Nostocales: Rhizonemataceae). Lichenologist 2014, 46, 261–267. [Google Scholar] [CrossRef]
- Nogué, S.; de Nascimento, L.; Fernández-Palacios, J.M.; Whittaker, R.J.; Willis, K.J. The ancient forests of La Gomera, Canary Islands, and their sensitivity to environmental change. J. Ecol. 2013, 101, 368–377. [Google Scholar] [CrossRef]
- del Arco Aguilar, M.J.; Rodríguez Delgado, O.; del Arco Aguilar, M.J.; Rodríguez Delgado, O. Vegetation of the Canary Islands; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 83–319. [Google Scholar] [CrossRef]
- Stanier, R.Y.; Kunisawa, R.; Mandel, M.C.B.G.; Cohen-Bazire, G. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 1971, 35, 171–205. [Google Scholar] [CrossRef]
- Surek, B.; Melkonian, M. CCAC Culture Collection of Algae at the University of Cologne: A new collection of axenic algae with emphasis on flagellates. Nova Hedwig. 2004, 79, 77–92. [Google Scholar] [CrossRef]
- Marin, B.; Nowack, E.C.; Melkonian, M. A plastid in the making: Evidence for a second primary endosymbiosis. Protist 2005, 156, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Maddison, W.P.; Maddison, D.R. Mesquite: A Modular System for Evolutionary Analysis. Version 3.81. Available online: http://www.mesquiteproject.org (accessed on 16 May 2024).
- Gouy, M.; Tannier, E.; Comte, N.; Parsons, D.P. Seaview Version 5: A Multiplatform Software for Multiple Sequence Alignment, Molecular Phylogenetic Analyses, and Tree Reconciliation; Methods in Molecular Biology; Humana: New York, NY, USA, 2021; Volume 2231, pp. 241–260. [Google Scholar] [CrossRef]
- Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Posada, D.; Crandall, K.A. Felsenstein Phylogenetic Likelihood. J. Mol. Evol. 2021, 89, 134–145. [Google Scholar] [CrossRef]
- Dal Forno, M.; Lawrey, J.D.; Sikaroodi, M.; Gillevet, P.M.; Schuettpelz, E.; Lücking, R. Extensive photobiont sharing in a rapidly radiating cyanolichen clade. Mol. Ecol. 2021, 30, 1755–1776. [Google Scholar] [CrossRef]
- Masumoto, H.; Sanders, W.B. The lichen photobiont genus Rhizonema (Cyanobacteria) exhibits diverse modes of branching, both false and true. J. Phycol. 2022, 58, 612–625. [Google Scholar] [CrossRef] [PubMed]
- Becerra-Absalon, I.; Rodarte, B.; Osorio, K.; Alba-Lois, L.; Segal-Kischinevzky, C.; Montejano, G. A new species of Brasilonema (Scytonemataceae, Cyanoprokaryota) from Tolantongo, Hidalgo, Central Mexico. Fottea Olomouc. 2013, 13, 25–38. [Google Scholar] [CrossRef]
- Miscoe, L.H.; Johansen, J.R.; Vaccarino, M.A.; Pietrasiak, N.; Sherwood, A.R. II. Novel cyanobacteria from caves on Kauai, Hawaii. The Diatom Flora and Cyanobacteria from Caves on Kauai, Hawaii Bibliotheca Phycologica. 2016, Volume 123, 75–152. [Google Scholar]
- Büdel, B.; Kauff, F. Prokaryotic Algae, Blue-green Algae. In Syllabus of Plant Families, 13th ed.; Frey, W., Ed.; Borntraeger: Stuttgart, Germany, 2012; Part 1/1; pp. 5–40. [Google Scholar]
- Silva-Pando, F.J. Eucalyptus in South Europe: Searching for the Promised Land–Introduction and Dissemination of Eucalyptus in Southwestern Europe. In Invasive Alien Species: Observations and Issues from Around the World; Wiley: Hoboken, NJ, USA, 2021; Volume 3, pp. 278–316. [Google Scholar]
- Arevalo, J.R.; Delgado, J.D.; Fernández-Palacios, J.M. Regeneration of potential laurel-forest under a native canopy vs. exotic canopy, Tenerife (Canary Islands). For. Syst. 2011, 20, 255–265. [Google Scholar] [CrossRef]
B. novocanariensis sp. nov. | B. bambusae | B. palmarum | B. calcareum | B. octagenarum | |
---|---|---|---|---|---|
Filament width (µm) | 17–19 | 10–22 | 11–19 | 13–23 | 9.8–18.5 |
Trichome diameter (µm) | 10–17 | (7) 10–17 (21) | 11–19 | 8–20 | 9.5–14.9–18.4 |
Cells colors | Brownish to violet to grayish green | Gray–brown; (pale) blue–green; (pale) brown; dull purple; olive-brown or olive-green; green; yellow–green or gray | Brown; gray–purple; olive-green; gray–green | Olive-green, gray–green or green | Brownish, olive-green, rarely violet |
Cell shape | Lenticular to sublenticular | Cylindrical to disk-like | Cylindrical | Cylindrical to disk-like | Cylindrical |
Cell length (µm) | 5–9 | 2–20 | 2–12 | 2–17 (20) | 1.5–13.3 |
Thallus form | Heteropolar rarely isopolar free filaments | N.A. | N.A. | N.A. | Isopolar |
Thallus color | Brownish-violet | Black, brown, to olive-green | Olive-black | Black; brown–black; black-green | Dirty-green, brownish or blackish-green |
Heterocytes form | Terminal: Spherical to subspherical; Intercalar: lenticular to sublenticular | Terminal: N.A. Intercalar: cylindrical | Terminal: N.A. Intercalar: cylindrical rounded | Terminal: hemispherical Intercalar: cylindrical rounded | Discoid or +/− cylindrical |
Heterocytes (wide × long µm) | 7–10 × 7–9 | 10–16 × 5–15 | 7–16 × 6–12 | 7–20 × 3–14 | 5.4–15.6 × 10–17.6 |
Young trichomes shape | Straight | N.A. | N.A. | N.A. | Lightly curved |
Hormogonia development | Subcubic cells without constriction at the cross wall, movement without heterocyst | Cylindrical cells, narrowing towards the growing tips | Short cells | Cylindrical cells, often with terminal heterocytes | Present |
Ecology | Subaerophytic, epiphytic on living leaves of Laurus novocanariensis | Subaerophytic, forming black mat on bamboo trunks in bamboo grove | Subaerophytic, on a Palm leaf | Subaerophytic, on limestones | Epiphytic on damaged leaves, stems, and buds of Eucalyptus grandis |
Type locality | Spain, Canary Islands (Tenerife laurel forest) | Costa Rica, Puntarenas (Costa Ballena) | Costa Rica, Puntarenas (Costa Ballena) | Costa Rica, Guanacaste (Barra Honda) | Brazil (MG), Timoteo |
Acc. Number | PP409594/PP409596 | KY365504; OR210228 | OR210292 | OR210241; OR228883; OR210243 | |
Reference | This publication | [24] | [24] | [24] | [19] |
Rhizonema melkonianarum sp. nov | Rhizonema interruptum | Rhizonema andinum | Rhizonema neotropicum | |
---|---|---|---|---|
Filament width (µm) | 9–12 | 15–20 | 10–12 | 10–15 |
Trichome diameter (µm) | 10–14 | N.A. | N.A. | N.A. |
Sheath morphology | Thin, firm, closed at one end of the filament | Thin | N.A. | N.A. |
Sheaths color | Hyaline | Hyaline | N.A. | N.A. |
Cells colors | Green | Blue–green | Olive to blue–green | Yellowish green |
Cell shape | Lenticular to sublenticular | Low rectangular | Flattened rectangular | Flattened rectangular |
Cell length (µm) | 6–13 | 5–10 | 5–10 | 5–10 |
Thallus form | Heteropolar and isopolar | Isopolar | Isopolar filamentous to chroococcoid | Isopolar filamentous to chroococcoid |
Thallus color | Green to rare red coloration | Blue–green | Olive to blue–green | Yellowish green |
Heterocytes form | Terminal: spherical to subspherical; Intercalar: lenticular to sublenticular | N.A. | N.A. | N.A. |
Heterocytes (wide × long µm) | 9–12 × 6–13 | 12–18 × 3–7 | 8–10 × 4–6 | 8–12 × 4–7 |
Heterocytes positions | Terminal and intercalar | Intercalar | Intercalar | Intercalar |
False branching type | Double or single | N.A. | N.A. | N.A. |
True branching type | N.A. | Rare | Rare | Rare |
Young trichomes shape | Not constricted at the cross wall | N.A. | N.A. | N.A. |
Trichomes | Slightly curved | N.A. | N.A. | N.A. |
Tapering | Slightly tapering | N.A. | N.A. | N.A. |
Hormogonia development | Subcubic cells without constriction at the cross–wall | Rare | Not observed | Not observed |
Ecology | Subaerophytic, epiphytic on living leaves of Laurus novocanariensis (free-living) | Lichen–forming by Dictyonema spp. | Lichen—forming by Dictyonema huaorani; Acantholichen sorediatus and Cora elephas | Lichen—forming by Dictyonema sericeum; D. haptiferum; Corella ap. |
Type locality | Spain, Canary Islands (Tenerife; laurel—forest) | Killarney, Turk Cascade (Ireland) | Ecuador, Costa Rica, Colombia | Guatemala, Bolivia; Colombia |
Acc. Number | PP409595 | N.A. | MT987440 (Ecuador); MT987460 (Costa Rica); MT987398 (Colombia) | MT987477 (Guatemala); MT987478 (Bolivia); MT987494 (Colombia) |
Reference | This publication | [24] | [36] | [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rancel-Rodríguez, N.M.; Vieira, C.; Sansón, M. Terrestrial Aerophytic Cyanobacteria in the Canary Island Laurel-Forest (Laurisilva): Discovery of Brasilonema novocanariensis sp. nov. and Rhizonema melkonianarum sp. nov. from the Laurus Phyllosphere. Diversity 2024, 16, 625. https://doi.org/10.3390/d16100625
Rancel-Rodríguez NM, Vieira C, Sansón M. Terrestrial Aerophytic Cyanobacteria in the Canary Island Laurel-Forest (Laurisilva): Discovery of Brasilonema novocanariensis sp. nov. and Rhizonema melkonianarum sp. nov. from the Laurus Phyllosphere. Diversity. 2024; 16(10):625. https://doi.org/10.3390/d16100625
Chicago/Turabian StyleRancel-Rodríguez, Nereida M., Christophe Vieira, and Marta Sansón. 2024. "Terrestrial Aerophytic Cyanobacteria in the Canary Island Laurel-Forest (Laurisilva): Discovery of Brasilonema novocanariensis sp. nov. and Rhizonema melkonianarum sp. nov. from the Laurus Phyllosphere" Diversity 16, no. 10: 625. https://doi.org/10.3390/d16100625
APA StyleRancel-Rodríguez, N. M., Vieira, C., & Sansón, M. (2024). Terrestrial Aerophytic Cyanobacteria in the Canary Island Laurel-Forest (Laurisilva): Discovery of Brasilonema novocanariensis sp. nov. and Rhizonema melkonianarum sp. nov. from the Laurus Phyllosphere. Diversity, 16(10), 625. https://doi.org/10.3390/d16100625