Assessment of the Impact of Land Use on Biodiversity Based on Multiple Scenarios—A Case Study of Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data Sources
2.3. Research Methods
2.3.1. Landscape Index
2.3.2. Habitat Quality Index
- Habitat quality index formula
- 2.
- Habitat quality index parameters
2.3.3. Biological Richness Index
2.3.4. Composite Biodiversity Index
3. Results
3.1. Characterization of Changes in Land-Use and Landscape Patterns
3.1.1. Land-Use Transfer Matrix
3.1.2. Landscape Pattern
3.2. Impacts of Land-Use Change on Biodiversity in Southwest China
3.2.1. Habitat Quality
3.2.2. Biological Richness
3.2.3. Integrated Biodiversity
4. Discussion
4.1. Future Land Use Change under Different SSP–RCP Scenarios
4.2. Biodiversity Response to Land-Use Change
4.3. Countermeasures and Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, S.; Chen, B.; Yan, J.; Van Zwieten, L.; Wang, H.; Dong, J.; Fu, P.; Song, Z. Potential impacts of land use and land cover change (LUCC) and climate change on evapotranspiration and gross primary productivity in the Haihe River Basin, China. J. Clean. Prod. 2024, 143729. [Google Scholar] [CrossRef]
- Wang, Q.; Bai, X.; Zhang, D.; Wang, H. Spatiotemporal characteristics and multi-scenario simulation of land use change and ecological security in the mountainous area: Implications for supporting sustainable land management and ecological planning. Sustain. Futures 2024, 8, 100286. [Google Scholar] [CrossRef]
- Wang, W.; Feng, C.; Liu, F.; Li, J. Biodiversity conservation in China: A review of recent studies and practices. Environ. Sci. Ecotechnol. 2020, 2, 100025. [Google Scholar] [CrossRef] [PubMed]
- Rands, M.R.W.; Adams, W.M.; Bennun, L.; Butchart, S.H.M.; Clements, A.; Coomes, D.; Entwistle, A.; Hodge, I.; Kapos, V.; Scharlemann, J.P.W. Biodiversity conservation: Challenges beyond 2010. Science 2010, 329, 1298–1303. [Google Scholar] [CrossRef] [PubMed]
- Pei, S. Biodiversity and cultural diversity. Science 2008, 60, 33–36, 45. [Google Scholar]
- Paterson, J.E.; Bortolotti, L.E.; Kowal, P.D.; Pidwerbesky, A.J.; Devries, J.H. Predicting the effects of land cover change on biodiversity in Prairie Canada using species distribution models. Biol. Conserv. 2024, 298, 110754. [Google Scholar] [CrossRef]
- Marques, A.; Martins, I.S.; Kastner, T.; Plutzar, C.; Theurl, M.C.; Eisenmenger, N.; Huijbregts, M.A.J.; Wood, R.; Stadler, K.; Bruckner, M. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 2019, 3, 628–637. [Google Scholar] [CrossRef]
- Pörtner, H.-O.; Scholes, R.J.; Agard, J.; Archer, E.; Arneth, A.; Bai, X.; Barnes, D.; Burrows, M.; Chan, L.; Cheung, W.L.W. Scientific Outcome of the IPBES-IPCC Co-Sponsored Workshop on Biodiversity and Climate Change; IPBES Secretariat: Bonn, Germany, 2021. [Google Scholar]
- Niu, Y.; Ren, G. Patterns of Species Richness and Its Endemism of Beetles in the Beijing–Tianjin–Hebei Region of China. Diversity 2024, 16, 496. [Google Scholar] [CrossRef]
- Bohn, I.C.; Branco, J.O.; Cionek, V.d.M.; Costa, V.S.C.d.; Silva, A.L.L.d.; Ribeiro, E.A.W. Effects of Land Use on the Community Structure of Aquatic Invertebrate in Subtropical Streams. Diversity 2024, 16, 497. [Google Scholar] [CrossRef]
- Li, G.; Fang, C.; Li, Y.; Wang, Z.; Sun, S.; He, S.; Qi, W.; Bao, C.; Ma, H.; Fan, Y. Global impacts of future urban expansion on terrestrial vertebrate diversity. Nat. Commun. 2022, 13, 1628. [Google Scholar] [CrossRef]
- Wang, M.; Qiu, S.; Shi, W. Impacts of future land use change on biodiversity in the Pearl River Delta. Acta Ecol. Sin. 2024, 44, 7183–7197. [Google Scholar]
- McDonald, R.I.; Kareiva, P.; Forman, R.T.T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 2008, 141, 1695–1703. [Google Scholar] [CrossRef]
- Mogollón, J.M.; Bouwman, A.F.; Beusen, A.H.W.; Lassaletta, L.; van Grinsven, H.J.M.; Westhoek, H. More efficient phosphorus use can avoid cropland expansion. Nat. Food 2021, 2, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.R.; Clark, M.; Buchanan, G.M.; Ficetola, G.F.; Rondinini, C.; Tilman, D. Proactive conservation to prevent habitat losses to agricultural expansion. Nat. Sustain. 2021, 4, 314–322. [Google Scholar] [CrossRef]
- Ren, Q.; He, C.; Huang, Q.; Shi, P.; Zhang, D.; Güneralp, B. Impacts of urban expansion on natural habitats in global drylands. Nat. Sustain. 2022, 5, 869–878. [Google Scholar] [CrossRef]
- Ren, Q.; He, C.; Huang, Q.; Zhang, D.; Shi, P.; Lu, W. Impacts of global urban expansion on natural habitats undermine the 2050 vision for biodiversity. Resources. Conserv. Recycl. 2023, 190, 106834. [Google Scholar] [CrossRef]
- Zeng, G.; Ye, M.; Li, M.; Chen, W.; He, Q.; Pan, X.; Zhang, X.; Che, J.; Qian, J.; Lv, Y. The Relationships between Plant Community Stability and Diversity across Different Grassland Types and Their Association with Environmental Factors in the Habahe Forest Area, Xinjiang. Diversity 2024, 16, 499. [Google Scholar] [CrossRef]
- Wilbur, L.; Küpper, F.C.; Louca, V. Analyzing Species Diversity in Rocky Intertidal Communities over Multiple Spatial Scales among Understudied Eastern Pacific Ecoregions. Diversity 2024, 16, 498. [Google Scholar] [CrossRef]
- Sarbu, S.M.; Brad, T.; Băncilă, R.I.; Ştefan, A. Exploring Biodiversity and Food Webs in Sulfur Cave in the Vromoner Canyon on the Greek–Albanian Border. Diversity 2024, 16, 477. [Google Scholar] [CrossRef]
- Pettorelli, N.; Laurance, W.F.; O’Brien, T.G.; Wegmann, M.; Nagendra, H.; Turner, W. Satellite remote sensing for applied ecologists: Opportunities and challenges. J. Appl. Ecol. 2014, 51, 839–848. [Google Scholar] [CrossRef]
- Khan, M.S.; Moallemi, E.A.; Thiruvady, D.; Nazari, A.; Bryan, B.A. Machine learning-based surrogate modelling of a robust, sustainable development goal (SDG)-compliant land-use future for Australia at high spatial resolution. J. Environ. Manag. 2024, 363, 121296. [Google Scholar] [CrossRef] [PubMed]
- Jurchescu, M.; Kucsicsa, G.; Micu, M.; Bălteanu, D.; Sima, M.; Popovici, E.-A. Implications of future land-use/cover pattern change on landslide susceptibility at a national level: A scenario-based analysis in Romania. Catena 2023, 231, 107330. [Google Scholar] [CrossRef]
- Cai, G.; Xiong, J.; Wen, L.; Weng, A.; Lin, Y.; Li, B. Predicting the ecosystem service values and constructing ecological security patterns in future changing land use patterns. Ecol. Indic. 2023, 154, 110787. [Google Scholar] [CrossRef]
- Shi, M.; Wu, H.; Jiang, P.; Zheng, K.; Liu, Z.; Dong, T.; He, P.; Fan, X. Food-water-land-ecosystem nexus in typical Chinese dryland under different future scenarios. Sci. Total Environ. 2023, 880, 163183. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Huang, X.; Yang, H. Scenario-based urban growth simulation by incorporating ecological-agricultural-urban suitability into a Future Land Use Simulation model. Cities 2023, 137, 104334. [Google Scholar] [CrossRef]
- Shen, X.; Bai, X.; Zhao, C.; Tan, Q.; Luo, G.; Li, C.; Ran, C.; Zhang, S.; Xiong, L.; Liao, J. Global response of soil biodiversity to climate and land use changes. J. Clean. Prod. 2024, 471, 143381. [Google Scholar] [CrossRef]
- Alkemade, R.; Van Oorschot, M.; Miles, L.; Nellemann, C.; Bakkenes, M.; Ten Brink, B. GLOBIO3: A framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystems 2009, 12, 374–390. [Google Scholar] [CrossRef]
- Wang, F.; Yuan, X.; Sun, Y.; Liu, Y. Species distribution modeling based on MaxEnt to inform biodiversity conservation in the Central Urban Area of Chongqing Municipality. Ecol. Indic. 2024, 158, 111491. [Google Scholar] [CrossRef]
- Verma, P.; Siddiqui, A.R.; Mourya, N.K.; Devi, A.R. Forest carbon sequestration mapping and economic quantification infusing MLPnn-Markov Chain and InVEST carbon model in askot wildlife sanctuary, Western Himalaya. Ecol. Inform. 2024, 79, 102428. [Google Scholar] [CrossRef]
- Terrado, M.; Sabater, S.; Chaplin-Kramer, B.; Mandle, L.; Ziv, G.; Acuña, V. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 2016, 540, 63–70. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, L.; Wang, T.; Ruan, Z.; Du, P. Spatial–temporal evolution analysis of multi-scenario land use and carbon storage based on PLUS-InVEST model: A case study in Dalian, China. Ecol. Indic. 2024, 166, 112448. [Google Scholar] [CrossRef]
- Xu, Z.; Sohn, W. A longitudinal comparison of stormwater runoff mechanisms in growing and shrinking regions: Evaluating impervious composition and green infrastructure connectivity changes. Urban Clim. 2024, 55, 101875. [Google Scholar] [CrossRef]
- Nafi’Shehab, Z.; Jamil, N.R.; Aris, A.Z.; Shafie, N.S. Spatial variation impact of landscape patterns and land use on water quality across an urbanized watershed in Bentong, Malaysia. Ecol. Indic. 2021, 122, 107254. [Google Scholar] [CrossRef]
- Yao, Y.; Cheng, T.; Sun, Z.; Li, L.; Chen, D.; Chen, Z.; Wei, J.; Guan, Q. VecLI: A framework for calculating vector landscape indices considering landscape fragmentation. Environ. Model. Softw. 2022, 149, 105325. [Google Scholar] [CrossRef]
- Chi, C.; Xiao, X.; Jia, B. Modern vegetation-climate relationships for pollen assemblages across the mountainous regions of southwestern China: Implications for palaeoenvironmental reconstruction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2024, 644, 112211. [Google Scholar] [CrossRef]
- Lin, X.; Jiao, X.; Tian, Z.; Sun, Q.; Zhang, Y.; Zhang, P.; Ji, Z.; Chen, L.; Lun, F.; Chang, X. Projecting diversity conflicts of future land system pathways in China under anthropogenic and climate forcing. Earth’s Future 2023, 11, e2022EF003406. [Google Scholar] [CrossRef]
- Ding, W.-N.; Ree, R.H.; Spicer, R.A.; Xing, Y.-W. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science 2020, 369, 578–581. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y. Climatic variation characteristics of precipitation and rainy days in the southwest over the past 48 years. Plateau Meteorol. 2014, 33, 372–383. [Google Scholar]
- Sun, Z.; Zhang, Q.; Sun, R.; Deng, B. Characteristics of the extreme of high temperature and drought and their main impacts in southwestern China of 2022. J. Arid. Meteorol. 2024, 40, 764–770. [Google Scholar]
- IPBES. The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (lPBEs). In The lPBEs Regional Assessment Report on Biodiversity and Ecosystem Services for Asia and the Pacific; IPBES Secretariat: Bonn, Germany, 2019. [Google Scholar]
- Lu, H.; Stringer, L.; Yan, Y.; Wang, C.; Zhao, C.; Rong, Y.; Zhu, J.; Wu, G.; Dallimer, M. Mapping ecosystem service supply and demand: Historical changes and projections under SSP-RCP scenarios. Acta Ecol. Sin. 2023, 43, 1309–1325. [Google Scholar]
- Zhang, T.; Cheng, C.; Wu, X. Mapping the spatial heterogeneity of global land use and land cover from 2020 to 2100 at a 1 km resolution. Sci. Data 2023, 10, 748. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y. A Study of Land Use and Cover Change and Its Impact on the Quality of Ecological Services in the Yunnan-Guizhou Plateau Region. Master’s Thesis, Kunming University of Science and Technology, Kunming, China, 2023. [Google Scholar]
- Zhou, L. Assessment of Carbon Storage and Habitat Quality in the Helan Mountain Land System Based on the InVEST Model. Master’s Thesis, Ningxia University, Yinchuan, China, 2022. [Google Scholar]
- Guo, C.; Zhu, Y.; Sun, W.; Song, J. A dataset of 1 km biological abundance indices in China. J. Glob. Change Data Discov. 2017, 1, 60–65, 183–188. [Google Scholar]
- Mee, P.R.C. Ministry of Ecology and Environment of the People’s Republic of China. 2015. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/stzl/201503/W020150326489785523925.pdf (accessed on 7 October 2024).
- Antwi, E.K.; Krawczynski, R.; Wiegleb, G. Detecting the effect of disturbance on habitat diversity and land cover change in a post-mining area using GIS. Landsc. Urban Plan. 2008, 87, 22–32. [Google Scholar] [CrossRef]
- Mi, Q.; Bian, Y.; Zhen, L.; Pang, D.; Wang, L.; Cheng, W.; Li, J. The impact of land use structure and landscape pattern on the water quality of the Li River. J. Hydroecol. 2024, 45, 78–85. [Google Scholar]
- Wei, Q.; Abudureheman, M.; Halike, A.; Yao, K.; Yao, L.; Tang, H.; Tuheti, B. Temporal and spatial variation analysis of habitat quality on the PLUS-InVEST model for Ebinur Lake Basin, China. Ecol. Indic. 2022, 145, 109632. [Google Scholar] [CrossRef]
- Chen, S.; Liu, X. Spatio-temporal variations of habitat quality and its driving factors in the Yangtze River Delta region of China. Glob. Ecol. Conserv. 2024, 52, e02978. [Google Scholar] [CrossRef]
- Liu, T.; Liu, H.; Wang, Y.; Xi, H.; Yang, Y. Assessing the diversity and distribution pattern of the speciose genus Lycocerus (Coleoptera: Cantharidae) by the global-scale data. Front. Ecol. Evol. 2022, 10, 794750. [Google Scholar] [CrossRef]
- Xu, J.; Ling, Y.; Sun, Y.; Jiang, Y.; Shen, R.; Wang, Y. How do different processes of habitat fragmentation affect habitat quality?–Evidence from China. Ecol. Indic. 2024, 160, 111880. [Google Scholar] [CrossRef]
- Jaureguiberry, P.; Titeux, N.; Wiemers, M.; Bowler, D.E.; Coscieme, L.; Golden, A.S.; Guerra, C.A.; Jacob, U.; Takahashi, Y.; Settele, J. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 2022, 8, eabm9982. [Google Scholar] [CrossRef]
- Hu, Y.; Linsheng, Z.; Qi, W. Identification and analysis of conservation gap of national nature reserves in China. Ecol. Indic. 2024, 158, 111525. [Google Scholar] [CrossRef]
- Yang, L.; Li, Y.; Yu, L.; Chen, M.; Yu, M.; Zhang, Y. Theory and case of land use transition promoting ecological restoration in karst mountain areas of Southwest China. Ecol. Indic. 2024, 158, 111393. [Google Scholar] [CrossRef]
- Huang, Q.; Kuang, Y.; Zhou, H.; Li, X.; Yin, L. Biodiversity Conservation in Xishuangbanna, China: Diversity Analysis of Traditional Knowledge Related to Biodiversity and Conservation Progress and Achievement Evaluation. Diversity 2024, 16, 260. [Google Scholar] [CrossRef]
- Alves-Pinto, H.; Geldmann, J.; Jonas, H.; Maioli, V.; Balmford, A.; Latawiec, A.E.; Crouzeilles, R.; Strassburg, B. Opportunities and challenges of other effective area-based conservation measures (OECMs) for biodiversity conservation. Perspect. Ecol. Conserv. 2021, 19, 115–120. [Google Scholar] [CrossRef]
- Liu, C.; Yang, J.; Yin, L. Progress, achievements and prospects of biodiversity protection in Yunnan Province. Biodivers. Sci. 2021, 29, 200. [Google Scholar] [CrossRef]
- Hao, Z.; Lun, Y. Using traditional knowledge to reduce disaster risk-A case of Tibetans in Deqen County, Yunnan Province. Int. J. Disaster Risk Reduct. 2024, 108, 104492. [Google Scholar] [CrossRef]
- Lun, Y. Ethnoecological customary law and biodiversity conservation: Theories, values and approaches. J. Ethn. Cult. 2022, 14, 15–28, 153. [Google Scholar]
- Xue, D.; Guo, L. On concepts and protection of traditional knowledge. Biodivers. Sci. 2009, 17, 135. [Google Scholar]
Scenario | Description | |
---|---|---|
Tier-1 | SSP1-RCP2.6 | Combination of low societal vulnerability and a low forcing level, with substantial land-use change (in particular, increased global forest cover) |
SSP2-RCP4.5 | Combination of intermediate societal vulnerability and an intermediate forcing level | |
SSP3-RCP7.0 | Combination of relatively high societal vulnerability and a relatively high forcing level, with substantial land-use change (in particular, decreased global forest cover) | |
SSP5-RCP8.5 | Combination of high societal vulnerability and a high forcing level | |
Tier-2 | SSP4-RCP3.4 | Combination of lower-mitigation-challenge scenarios and lower-radiative-forcing scenarios |
Landscape Index | Significance | Formula | Unit |
---|---|---|---|
Number of Patches (NP) | Landscape fragmentation, NP value is proportional to landscape fragmentation, reflecting the spatial heterogeneity of landscape elements | NP = n | patch |
Patch Density (PD) | Landscape fragmentation, the larger the PD value, the more fragmented the landscape | PD = NP/A | patch·hm2 |
Landscape Shape Index (LSI) | Landscape fragmentation, the larger the LSI value, the higher the degree of patch irregularity, the more complex the landscape shape | LSI = |
Threat Factor | Maximum Distance (km) | Weight | Degeneration Type |
---|---|---|---|
Cropland | 2 | 0.6 | linear |
Urban | 5 | 1 | exponential |
Barren | 4 | 0.5 | linear |
LULC | NAME | HABITAT | Cropland | Urban | Barren |
---|---|---|---|---|---|
1 | Cropland | 0.3 | 0 | 0.7 | 0.4 |
2 | Forest | 1 | 0.5 | 0.8 | 0.2 |
3 | Grassland | 0.8 | 0.4 | 0.7 | 0.6 |
4 | Urban | 0 | 0 | 0 | 0.1 |
5 | Barren | 0 | 0 | 0 | 0 |
6 | Water | 0.7 | 0.6 | 0.8 | 0.2 |
Scenario | NP | Change (%) | PD | Change (%) | LSI | Change (%) |
---|---|---|---|---|---|---|
2020 | 115,085 | 0.037 | 194.4393 | |||
SSP1-RCP2.6 | 105,118 | −8.66 | 0.0338 | −8.65 | 187.6363 | −3.50 |
SSP2-RCP4.5 | 108,973 | −5.31 | 0.0351 | 3.85 | 192.5969 | 2.64 |
SSP3-RCP7.0 | 104,505 | −9.19 | 0.0336 | −4.27 | 186.5817 | −3.12 |
SSP4-RCP3.4 | 110,489 | −3.99 | 0.0356 | 5.95 | 190.0201 | 1.84 |
SSP5-RCP8.5 | 112,366 | −2.36 | 0.0362 | 1.69 | 193.4749 | 1.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuang, Y.; Zhou, H.; Yin, L. Assessment of the Impact of Land Use on Biodiversity Based on Multiple Scenarios—A Case Study of Southwest China. Diversity 2024, 16, 630. https://doi.org/10.3390/d16100630
Kuang Y, Zhou H, Yin L. Assessment of the Impact of Land Use on Biodiversity Based on Multiple Scenarios—A Case Study of Southwest China. Diversity. 2024; 16(10):630. https://doi.org/10.3390/d16100630
Chicago/Turabian StyleKuang, Yingzhi, Hao Zhou, and Lun Yin. 2024. "Assessment of the Impact of Land Use on Biodiversity Based on Multiple Scenarios—A Case Study of Southwest China" Diversity 16, no. 10: 630. https://doi.org/10.3390/d16100630
APA StyleKuang, Y., Zhou, H., & Yin, L. (2024). Assessment of the Impact of Land Use on Biodiversity Based on Multiple Scenarios—A Case Study of Southwest China. Diversity, 16(10), 630. https://doi.org/10.3390/d16100630