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Abstract: The main causes of habitat conversion, degradation, and fragmentation—all of which add
to the loss in biodiversity—are human activities, such as urbanization and farmland reclamation. In
order to inform scientific land management and biodiversity conservation strategies and, therefore,
advance sustainable development, it is imperative to evaluate the effects of land-use changes on
biodiversity, especially in areas with high biodiversity. Using data from five future land-use scenarios
under various Shared Socioeconomic Pathways (SSPs) and Representative Concentration Pathways
(RCPs), this study systematically assesses the characteristics of land-use and landscape pattern
changes in southwest China by 2050. This study builds a comprehensive biodiversity index and
forecasts trends in species richness and habitat quality using models like Fragstats and InVEST
to evaluate the overall effects of future land-use changes on biodiversity. The research yielded
the subsequent conclusions: (1) Grasslands and woods will continue to be the primary land uses
in southwest China in the future. But the amount of grassland is expected to decrease by 11,521
to 102,832 km2, and the amounts of wasteland and urban area are expected to increase by 8130 to
16,293 km2 and 4028 to 19,677 km2, respectively. Furthermore, it is anticipated that metropolitan areas
will see an increase in landscape fragmentation and shape complexity, whereas forests and wastelands
will see a decrease in these aspects. (2) In southwest China, there is a synergistic relationship between
species richness and habitat quality, and both are still at relatively high levels. In terms of species
richness and habitat quality, the percentage of regions categorized as outstanding and good range
from 71.63% to 74.33% and 70.13% to 75.83%, respectively. The environmental circumstances for
species survival and habitat quality are expected to worsen in comparison to 2020, notwithstanding
these high levels. Western Sichuan, southern Guizhou, and western Yunnan are home to most of the
high-habitat-quality and species-richness areas, while the western plateau is home to the majority of
the lower scoring areas. (3) The majority of areas (89.84% to 94.29%) are forecast to undergo little
change in the spatial distribution of biodiversity in southwest China, and the general quality of the
ecological environment is predicted to stay favorable. Except in the SSP1-RCP2.6 scenario, however, it
is expected that the region with declining biodiversity will exceed those with increasing biodiversity.
In comparison to 2020, there is a projected decline of 1.0562% to 5.2491% in the comprehensive
biodiversity index. These results underscore the major obstacles to the conservation of biodiversity in
the area, highlighting the need to fortify macro-level land-use management, put into practice efficient
regional conservation plans, and incorporate traditional knowledge in order to save biodiversity.
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1. Introduction

Land-use change reflects the complex interactions between climate change and hu-
man activities and is closely associated with biodiversity [1]. It serves as the most direct
manifestation of human’s impact on the Earth’s surface system. In the 21st century, China’s
urban agglomerations have experienced rapid development, driven by a growing popu-
lation. According to the National Bureau of Statistics of China, the national population
reached 1409.67 million in 2023, with an urbanization rate of the permanent population
at 66.16%. The rapid expansion of urban areas has significantly altered land-use patterns
and land-cover types [2]. These changes affect the spatial structure and ecological balance
of ecosystems, increasing the risk of biodiversity loss and leading to a series of negative
environmental impacts.

Biodiversity encompasses the full range of ecological complexes formed by organisms
and their environments, along with the various ecological processes they entail, including
genetic, species, and ecosystem diversity [3]. It provides stability to ecosystems and sustains
the ecological balance [4]. As a fundamental resource for human survival, biodiversity
also serves as a critical foundation for the formation and evolution of human culture [5].
Land-use change is the biggest direct driver of global biodiversity loss [6]. Irrational
land use has ca sed severe ecosystem degradation and disruption of the balance within
wildlife communities, contributing to global biodiversity loss and posing significant threats
to achieving the Sustainable Development Goals [7,8]. Consequently, research on the
relationship between land-use change and biodiversity in biodiversity hotspots is essential,
as it provides valuable insights and guidance for global biodiversity conservation efforts.

In recent years, scholars globally have extensively investigated the impact of future
land-use changes on biodiversity, with particular emphasis on the effects of agricultural
and urban expansion on species habitats, habitat quality, and species richness [9–11]. Rapid
urbanization and agricultural expansion are recognized as the most significant threats to
terrestrial organisms, primarily due to habitat loss [12,13].

It is predicted that by 2050 the world will require an additional 500 million hectares of
cropland to meet the demands of a growing population [14], resulting in the anticipated loss
of millions of square kilometers of natural ecosystems. Agricultural expansion is projected
to impact approximately 17,409 species of terrestrial birds, amphibians, and mammals
globally, with around 1200 species expected to lose more than 25% of their habitats [15].
Similarly, rapid urban expansion significantly threatens global biodiversity through habitat
conversion, degradation, fragmentation, and species extinction [16]. By 2050, an estimated
280,000 to 490,000 square kilometers of urban land will be developed, directly resulting in
the loss of 110,000 to 190,000 square kilometers of natural habitat [17]. The rapid cultivation
of land and expansion of construction areas have led to the degradation, fragmentation, and
disappearance of habitats, disrupting the balance and stability of the original ecosystems.
This degradation poses serious threats to regional ecological security and may compel
some species to migrate to new areas, thereby increasing the risk of biodiversity loss.

However, land-use change extends beyond agricultural expansion and urban sprawl,
encompassing ecological land uses such as forests, grasslands, and watersheds. Changes in
these land types can also significantly impact biodiversity [18–20].

Over the past 30 years, with the rapid development of geographic information tech-
nology, such as geographic information systems (GIS), remote sensing (RS), and global
positioning systems (GPS), remote sensing satellite data have been widely used in the field
of land use and biodiversity research. Land-use spatial distribution data are generated
through human–computer interactions and interpretations based on Quickbird, IKONOS,
GeoEye, WorldView, and Landsat land satellite image data, providing information on the
status of and pressures on biodiversity at the landscape, regional, ecosystem, continental,
and global spatial scales [21]. However, the combined effects of future land-use changes
and the intensity of human activities on biodiversity remain uncertain [22].

Scenario- and model-based approaches for simulating the impacts of future land-use
changes on biodiversity are increasingly becoming key tools for guiding future land-
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use planning [23,24]. In terms of scenario design, most contemporary studies establish
future land-use targets based on historical land-use change patterns or regional land-
use planning documents. These studies then simulate land-use changes under various
scenarios, including natural development, ecological protection, farmland preservation,
and urban expansion [25,26]. However, these scenarios often overlook the combined effects
of climate policy implementation and socioeconomic development on land-use change,
introducing a degree of uncertainty into the simulation results [27].

Several models are widely used to assess biodiversity responses to land-use change,
including the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model,
Global Biodiversity Modeling Framework (GLOBIO3), Fragstats 4.2 software, and Max-
imum Entropy (MaxEnt) model [28,29]. The InVEST model, in particular, is frequently
employed to simulate the effects of land-use change on ecosystem services. It is known for
its accuracy and suitability in regional-scale studies [30], allowing for the exploration of the
relationships between threat sources and land-use types, as well as the impacts of different
ecosystem types on habitat quality [31], but cannot thoroughly analyze the causes of land
change. WU [32] et al. used the PLUS-InVEST model to simulate dynamic adjustment of
land-use types and the spatio-temporal evolution of carbon storage in Dalian city under
multiple scenarios in 2030 based on land-use type data from 2000 to 2020.

Fragstats 4.2 is software designed to reveal species distribution patterns and calculate
various landscape indices [33]. Landscape pattern indices offer condensed information on
landscape patterns, providing quantitative indicators of their structural composition and
certain aspects of the spatial configuration. Zakariya [34] et al. used Fragstats and ArcGIS
to analyze the influence of landscape patterns and land use on the spatial variation in water
quality in the urbanized watershed of Bentong, Malaysia. However, the Fragstats model
only provides a small number of vector-based indicators, which cannot meet the growing
needs of GIS and landscape design research [35].

Southwest China is recognized as a biodiversity hotspot, harboring approximately
50% of the country’s birds and mammals, as well as over 30% of its higher plant species,
thereby rich in biological resources [36]. In terms of plant species, this region ranks among
the richest in the world for temperate flora. However, recent population growth and accel-
erated urbanization have induced significant alterations in land-use patterns. According
to statistics from the Institute of Geographic Sciences and Natural Resources Research of
the Chinese Academy of Sciences, the grassland area in southwest China decreased from
49.29% in 2000 to 36.48% in 2020, while the proportion of construction land increased from
0.27% to 0.70%, representing an increase of approximately 1,006,845 square kilometers.
These changes pose varying degrees of threat to biodiversity conservation [37]. As a critical
ecological security barrier in China, investigating the relationship between biodiversity and
land-use changes in southwest China provides valuable theoretical support for optimizing
the region’s ecological environment.

This study systematically analyzed the characteristics of land-use and landscape
pattern changes under the SSP–RCP scenarios, utilizing high-resolution future land-use
data. It elucidates the impact of various land-use changes and land-use intensities on
species richness and habitat quality, while also assessing the overall implications of these
land-use changes on biodiversity.

2. Materials and Methods
2.1. Research Area

The southwest region of China (97◦21′ E–110◦11′ E, 21◦08′ N–33◦41′ N) encompasses
Sichuan, Guizhou, Yunnan, Tibet Autonomous Region (TAR), and Chongqing Municipality,
covering an area of approximately 2,341,500 km2 (Figure 1). Situated in the southeastern
part of the Tibetan Plateau, this region constitutes the southwestern border of China and is
classified as one of the country’s seven natural geographic subregions. It exhibits diverse
topographic conditions, including plateaus, hills, mountains, and karst landforms. The area
encompasses the Sichuan Basin, the Yunnan–Guizhou Plateau, and the southern Qinghai–
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Tibet Plateau, resulting in a wide variety of climatic types and a rich array of biological
resources [38].
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Figure 1. Research area.

Due to the uplift of the Qinghai–Tibet Plateau, there are significant differences in
temperature and precipitation from northwest to southeast in the southwestern region.
The annual maximum precipitation can exceed 1600 mm [39], while the annual average
temperature ranges from 3 ◦C to 23 ◦C. In the context of global warming, the southwestern
region exhibits a trend of increasing high temperatures and more frequent drought events,
with numerous instances of extreme heat and drought recorded [40]. In the summer of
2022, the southwestern region, along with the entire Yangtze River basin, experienced a
rare and significant compound event characterized by extreme high temperatures and
drought, setting historical temperature records. Simultaneously, Southwestern China is
recognized as one of the 36 global biodiversity hotspots, housing at least 20,000 species
of higher plants and approximately 2000 species of vertebrates [41]. This region is also
home to several endemic animals, as well as rare and endangered species, including the
golden monkey, snow leopard, white-lipped deer, green-tailed pheasant, and white horse
chicken. The region’s biodiversity plays a crucial role in supplying ecosystem services and
supporting local socioeconomic development while also influencing broader ecological
and socioeconomic dynamics across China and Asia.

Furthermore, the spatial heterogeneity of natural geographic conditions in southwest
China affects the distribution of populations and economic activities within the region [42].
For instance, Sichuan and Chongqing serve as major centers for population, agriculture, and
economic activity, whereas the Tibetan Plateau and its surrounding areas are characterized
by sparse populations and lower levels of economic development.
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2.2. Data Sources

The land-use type data used in this study were obtained from Tianyuan Zhang [43]
et al. “https://doi.org/10.6084/m9.figshare.23542860 (accessed on 7 October 2024)”, with a
spatial resolution of 1 km. This gridded dataset is superior to other future land-use/land-
cover (LULC) products, as it fully integrates the impacts of temporally adjacent simulations
and enhances accuracy by employing future suitability probabilities for land-use projections.

In this study, the Tier-1 base scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5)
from the CMIP6 Scenario Model Intercomparison Programme (ScenarioMIP) were selected
for analysis. Details of these SSP–RCP scenarios are provided in Table 1. Additionally, to
account for potential future land-use changes under varying socioeconomic pathways and
data availability, SSP4-3.4 was included as a supplementary scenario [44].

Table 1. Descriptions of the scenarios in the LUH2 dataset a.

Scenario Description

Tier-1 SSP1-RCP2.6 Combination of low societal vulnerability and a low forcing level, with substantial land-use
change (in particular, increased global forest cover)

SSP2-RCP4.5 Combination of intermediate societal vulnerability and an intermediate forcing level

SSP3-RCP7.0 Combination of relatively high societal vulnerability and a relatively high forcing level, with
substantial land-use change (in particular, decreased global forest cover)

SSP5-RCP8.5 Combination of high societal vulnerability and a high forcing level
Tier-2 SSP4-RCP3.4 Combination of lower-mitigation-challenge scenarios and lower-radiative-forcing scenarios

a SSPx-y denotes a scenario designed with a combination of an SSP level (x) and an RCP level (y).

2.3. Research Methods
2.3.1. Landscape Index

For the analysis, we selected the following three key landscape indices: number of
patches (NP), patch density (PD), and landscape shape index (LSI). These indices are
indicative of landscape fragmentation and the complexity of landscape types. Higher
values of NP, PD, and LSI suggest greater fragmentation, increased irregularity of patches,
and more complex landscape shapes. Definitions of these landscape indices are provided
in Table 2.

Table 2. Selected landscape index and significance.

Landscape Index Significance Formula Unit

Number of Patches (NP)
Landscape fragmentation, NP value is proportional to

landscape fragmentation, reflecting the spatial heterogeneity
of landscape elements

NP = n patch

Patch Density (PD) Landscape fragmentation, the larger the PD value, the more
fragmented the landscape PD = NP/A patch·hm2

Landscape Shape Index (LSI)
Landscape fragmentation, the larger the LSI value, the higher

the degree of patch irregularity, the more complex the
landscape shape

LSI = 25∑m
k=1 eik√
A

2.3.2. Habitat Quality Index

1. Habitat quality index formula

The parameter settings for stressors and weights within the InVEST model, as well
as habitat suitability across different land-use types and their sensitivity to stressors, were
adapted from the research conducted by Xie Yanglin et al. [44]. The calculation formula is
as follows:

Qxj= Hj(1 − (
Dz

xj

Dz
xj + kz ))

https://doi.org/10.6084/m9.figshare.23542860
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where Qxj denotes the quality of the habitat in grid x, Hj denotes the habitat suitability
for land-use category j, Dxj denotes the level of stress to which grid x is subjected, k is the
half-saturation coefficient, which is usually taken as half of the maximum value for Dxj,
and z is the normalization constant, which is usually taken as 2.5.

2. Habitat quality index parameters

This paper reviewed the relevant research and analyzed the results. It is found that
the attribute table compiled by Zhou Liang [45] and Xie Yanglin [46] is more in line with
this paper. The specific threat factor parameters are shown in Table 3.

Table 3. Table of threat factor attributes.

Threat Factor Maximum Distance (km) Weight Degeneration Type

Cropland 2 0.6 linear
Urban 5 1 exponential
Barren 4 0.5 linear

The suitability of habitats for different land-uses/coverages is not the same, and the
sensitivity of each threat factor is also different. Data on cultivated land and urban land
use are used as threat factors to derive the sensitivity of land-use types. The parameters in
this paper are obtained by collating the previous literature. The specific parameters are as
shown in Table 4.

Table 4. Sensitivity to suitability of different habitats and different threat factors.

LULC NAME HABITAT Cropland Urban Barren

1 Cropland 0.3 0 0.7 0.4
2 Forest 1 0.5 0.8 0.2
3 Grassland 0.8 0.4 0.7 0.6
4 Urban 0 0 0 0.1
5 Barren 0 0 0 0
6 Water 0.7 0.6 0.8 0.2

2.3.3. Biological Richness Index

Using the biological richness index calculation model, we first computed the index for
the two time periods before normalization, utilizing the Raster Calculator tool in ArcGIS
based on land-cover data. The normalized biological richness index was subsequently ob-
tained through additional raster calculations by the normalization coefficient formula [46].
This study adheres to the standards outlined in the Technical Specification for Evaluation
of Ecological Environmental Conditions (HJ 192-2015) [47], issued by the former State
Environmental Protection Administration.

Biological richness index = Abio × (0.35 × Forest + 0.21 × Grassland + 0.28 ×
Water + 0.11 × Cropland + 0.04 × Urban + 0.01 × Barren)/Area size

where Abio denotes the normalization factor of the habitat quality index with a reference
value of 511.2642131067.

2.3.4. Composite Biodiversity Index

To quantify the overall impact of land-use change on biodiversity, this study employs
the calculation method for the biodiversity index (BI), as outlined in the Biodiversity
Evaluation Criteria, issued by the Ministry of Environmental Protection. We construct
the composite biodiversity index (CBI) by integrating the species richness and habitat
quality [12].

CBI = S × ω1 + Q × ω2
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where CBI denotes the composite biodiversity index; S and Q denote the normalized species
richness and habitat quality, respectively; ω1 and ω2 denote the weights of the species
richness and habitat quality indicators, respectively, and both of them were taken as 0.5 in
this study.

3. Results
3.1. Characterization of Changes in Land-Use and Landscape Patterns
3.1.1. Land-Use Transfer Matrix

The land-use transfer matrix quantifies the relationships among different land-cover
types over multiple time periods, illustrating how land types transition from one category
to another. This matrix provides a detailed quantification of changes in the areas of various
land-cover types, specifically outlining the inflows and outflows of each land-use category
within the region. Consequently, it reliably assesses land-cover changes, habitat diversity,
richness, and heterogeneity [48].

In 2020, land-use types in the southwest region were predominantly grasslands and
forests, covering 44.49% and 29.97% of the total area, respectively. Urban and cropland
areas accounted for 14.51% and 9.13%, respectively. By 2050, under the five SSP–RCP
scenarios, the areas designated for forest, urban, barren, and water are projected to increase
by 1441–29,486 km2, 4028–19,677 km2, 8130–16,293 km2, and 1085–1146 km2, respectively
(Figure 2). In contrast, grassland is projected to decrease by 11,521–102,832 km2 across the
future scenarios. The area of cultivated land is expected to decline by 1382–18,616 km2 in
all scenarios, except for the SSP2-RCP4.5 scenario, where it is anticipated to increase by
82,237 km2.
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The spatial distribution of land-use changes (Figure 3) reveals notable similarities
across the five SSP–RCP scenarios. Barren and grassland areas are predominantly located in
Tibet, with 93,824 km2 of grassland projected to convert to cropland under the SSP2-RCP4.5
scenario. Forest cover is most extensive in Yunnan, where forests constitute the dominant
land type. Cropland is primarily concentrated in the eastern regions, such as Guizhou and
Chongqing, and under the SSP2-RCP4.5 scenario, a significant portion of other land types
is expected to convert to cropland.
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3.1.2. Landscape Pattern

Landscape pattern refers to the spatial arrangement resulting from both natural factors
and human activities [35]. The analysis of landscape patterns was conducted at both the
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landscape and type levels, leveraging previous research and correlations among landscape
indices [49].

As illustrated in Figure 4a,b, cropland exhibited the highest values for number of
patches (NP), patch density (PD), and landscape shape index (LSI) in 2020, followed
by forests. This indicates that these land-use types experience relatively high levels of
fragmentation and spatial pattern complexity. In contrast, water and urban areas display
lower NP and PD values, suggesting simpler patch shapes and reduced fragmentation.
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SSP–RCP scenarios: (a) variation in the number of patches; (b) variation in patch density; (c) variation
in landscape shape indices.

Compared to 2020, the number of patches (NP), patch density (PD), and landscape
shape index (LSI) for forests decreased under all five scenarios, indicating reduced fragmen-
tation and simpler landscape shapes for forests in southwest China. Similarly, the trends in
the barren landscape pattern indices (LSIs) mirrored those of forests. Specifically, the NP
of barren areas decreased by 1713 to 2536, while the PD decreased by 0.0006 to 0.0008 per
hectare. This suggests that barren areas are expected to become more concentrated and less
fragmented as a result of human activities and climate change in the future.

Under the SSP5-8.5 scenario (Table 5), the number of patches (NP) and patch density
(PD) of cropland increased from 38,744 and 0.0125 in 2020 to 40,064 and 0.0129, respectively.
This increase can be attributed to rapid urban expansion under the SSP5 scenario, which
has led to the conversion of cropland and grassland into urban areas. Consequently, this
conversion has resulted in a higher number of landscape patches in cropland, increased
land-use fragmentation, and greater spatial heterogeneity. In the multiscenario simulations,
the LSI of grassland decreased, indicating a trend toward simpler landscape structures and
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more homogeneous vegetation types. Additionally, the NP, PD, and LSI of urban areas
increased, reflecting the ongoing trend of urban expansion in China.

Table 5. Landscape configuration indexes in southwest China under different Shared Socioeconomic
Pathways (SSPs) and Representative Concentration Pathways (RCPs), and their changes compared to
the year 2020.

Scenario NP Change (%) PD Change (%) LSI Change (%)

2020 115,085 0.037 194.4393
SSP1-RCP2.6 105,118 −8.66 0.0338 −8.65 187.6363 −3.50
SSP2-RCP4.5 108,973 −5.31 0.0351 3.85 192.5969 2.64
SSP3-RCP7.0 104,505 −9.19 0.0336 −4.27 186.5817 −3.12
SSP4-RCP3.4 110,489 −3.99 0.0356 5.95 190.0201 1.84
SSP5-RCP8.5 112,366 −2.36 0.0362 1.69 193.4749 1.82

3.2. Impacts of Land-Use Change on Biodiversity in Southwest China
3.2.1. Habitat Quality

Habitat quality refers to the environmental conditions that support the survival of
species within a specific spatial and temporal context, serving as an indicator of biodiversity
status in a given region [50]. In the model, the habitat quality index ranges continuously
from 0 to 1 on the raster layer, with values closer to 1 indicating higher habitat quality.
This suggests that the habitat is relatively intact and supports the necessary structures
and functions required for maintaining biodiversity [51]. Generally, increased land-use
intensity correlates with a rise in the number and intensity of threat sources, which in turn
degrades the quality of nearby habitats.

To compare and illustrate the effects of land-use changes on habitat quality within the
study area, the habitat quality index results for the five periods were categorized into the
following four intervals: 0–0.3, 0.3–0.7, 0.7–0.8, and 0.8–1. This classification utilized the
natural breakpoints method. Consequently, habitat quality was classified into the following
four grades: low, medium, good, and excellent. The percentage of habitats within each
grade was subsequently calculated.

Under the multiscenario simulations (Figure 5), the habitat quality index in southwest
China is projected to be generally high in 2050, with areas classified as having excellent
and good habitat quality indexes comprising approximately 30.03–31.23% and 40.1–44%,
respectively. However, compared to 2020, there will be a decrease in the proportion of areas
classified as good, alongside an increase in the proportions of areas with poor and excellent
habitat quality indexes. This indicates that ecological and environmental protection in
southwest China will face significant challenges related to polarization.

In terms of spatial patterns (Figure 5), Sichuan, Yunnan, and Guizhou exhibited a
higher concentration of habitats with scores above 0.7, indicating relatively good habitat
quality. In contrast, Tibet and Chongqing show poorer habitat quality overall. Notably,
the border region between Sichuan and Chongqing experiences significantly low habitat
quality, with many areas scoring below 0.3. This region, primarily located within the
economically developed Sichuan Basin, faces high levels of human activity. The intensive
land use and development in this area have resulted in substantial ecological degradation,
contributing to the observed decline in habitat quality.

In terms of temporal patterns (Figure 6), the scenarios SSP1-RCP2.6, SSP3-RCP7.0, and
SSP5-RCP8.5 exhibited more stable changes in habitat quality, with the spatial distribution
of changes being more dispersed. Conversely, under the SSP2-RCP4.5 scenario, the Tibet
region experienced the most significant alterations in habitat quality, with a substantial
area undergoing a decline.
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The mean value of the habitat quality index in southwest China decreased under all
five scenarios (Figure 7). Compared to the habitat quality index in 2020, the most significant
decline occurred under the SSP2-RCP4.5 scenario, with the Tibet Autonomous Region
experiencing the largest reduction of 0.04664 in its habitat quality index. Notably, Yunnan
Province recorded the highest mean habitat quality index, while Chongqing exhibited the
lowest average habitat quality index at 0.55972 under the SSP5-RCP8.5 scenario. In the
future land-use multiscenario simulation, both Yunnan and Sichuan maintained average
habitat quality indices higher than the regional average, indicating that these provinces
exhibited the best habitat integrity in southwest China.
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3.2.2. Biological Richness

The biological richness index quantifies the variation in species richness across differ-
ent ecosystem types per unit area, thereby indirectly reflecting the abundance of organisms
within the assessed region [52]. To compare and illustrate the effects of land-use changes
on habitat quality in the protected area, the biological richness index results from the five
periods were categorized into the following four intervals: 0–0.09, 0.09–0.29, 0.29–0.59, and
0.59–1. Consequently, the habitat quality index was segmented into the following four
categories: low, medium, good, and excellent, with the proportion of each habitat type
subsequently calculated.

Under the multiscenario simulations (Figure 8), the biological abundance in southwest
China was relatively high, with the areas rated as good or excellent accounting for 40.1% to
44.49% and 31.42% to 32.73%, respectively. Overall, the proportion of the areas with good
biological abundance is expected to decrease, while the proportions of low and excellent
categories are projected to increase. The trend of polarization in the biological abundance
is anticipated to intensify by the year 2050.

In terms of temporal patterns (Figure 9), the three scenarios SSP1-RCP2.6, SSP3-
RCP7.0, and SSP5-RCP8.5 showed more stable changes in biological richness, and the
spatial distribution of the areas of change was more dispersed. Under these five scenarios,
biological richness change in Sichuan was the most stable, while biological richness change
in the Tibet region was the most drastic. Under the SSP2-RCP4.5 scenario, changes in the
western part of the southwest region of China are very drastic, with a significant decline.
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3.2.3. Integrated Biodiversity

The composite biodiversity index (CBI) serves as an indicator of the overall status of
biodiversity. As illustrated in Figure 10, the average CBI values for Yunnan and Sichuan
were relatively high, exceeding the average value for the southwest region. This trend
is attributable to the predominant distribution of forest land and grassland in these two
provinces. Conversely, the average CBI values in areas with lower forest and grassland
coverages, such as Guizhou and Tibet, are comparatively low. Under the SSP5-RCP8.5
scenario, the CBI values across the five provinces exhibited a decline. Except for the SSP1-
RCP2.6 scenario, the CBI in the Tibet Autonomous Region (TAR) experienced varying
degrees of decrease, with the most significant reduction of 6.3105% occurring under the
SSP2-RCP4.5 scenario. In contrast, the CBI in Yunnan predominantly increased in the
multiscenario simulations of future land use, with the largest rise of 0.6841% noted under
the SSP3-RCP7.0 scenario.
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various Shared Socioeconomic Pathways (SSPs) and Representative Concentration Pathways (RCPs).

To more clearly illustrate the spatial changes in biodiversity across southwest China,
this study calculated the variations in CBI under different SSP–RCP scenarios relative to
the baseline period and represented them in a hierarchical manner (Figure 10). Areas with
changes of ±0.1 were defined as essentially unchanged. Other classifications included
severe decline (<−0.5), moderate decline (−0.5 to −0.3), mild decline (−0.3 to −0.1), mild
increase (0.1 to 0.3), moderate increase (0.3 to 0.5), and large increase (>0.5).

The results (Figure 11) indicate that the majority of areas (89.84–94.29%) remained
essentially unchanged across all scenarios. Among the regions exhibiting change, severe
decreases in the composite biodiversity index (CBI) are predominant, ranging from 1.88%
to 2.43%, with the total area of declining regions constituting 3.44–7.29%. In contrast, the
area of regions showing an increase in CBI accounted for 2.27–4.24%. With the exception
of the SSP1-RCP2.6 scenario, the area of decline exceeded the area of increase across
all scenarios.

The change of vast grassland and woodland areas into cultivated land and urban
areas was a major factor in the declines in CBI in the Southwest. In the SSP2-RCP4.5
scenario, 93,824 km2 of grassland were converted to cultivated land, demonstrating this
tendency in especially. The conversion of cropland and grassland into woodland is the
main cause of the observed increase in CBI in the northeastern portion of the region, with
grassland conversion accounting for a considerable portion of this increase. The conversion
of grassland to woodland is another factor contributing to the minor increase in CBI in the
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northwest. However, the primary cause of the CBI reduction in the middle southwest is
the severe urbanization of grassland encroachment.
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4. Discussion
4.1. Future Land Use Change under Different SSP–RCP Scenarios

The major cause of the worldwide decline in biodiversity is the widespread loss
and fragmentation of natural ecosystems [53]. Using datasets for Chinese land-use types
under different SSP–RCP scenarios, we investigated the future features of land-use pat-
tern changes in southwest China. According to the findings, through 2050, urban areas
(+38.3% to +187.08%) and forested regions (+0.21% to +4.2%) will show increasing trends
across all scenarios, whereas grassland areas (−1.1% to −9.87%) will show falling trends.
These tendencies are mostly associated with the various SSP–RCP scenarios’ parameters
and presumptions.

Among the several SSP–RCP scenarios, SSP1 represents a sustainable development
model that emphasizes environmentally beneficial behaviors. Under this scenario, global
forest cover expands dramatically, improving ecological quality. Furthermore, middle- and
high-income countries are shifting to plant-based or vegetarian diets for health reasons,
resulting in lower meat consumption and a consequent reduction in grassland area. The
SSP1-RCP2.6 scenario, in example, shows the greatest increase in forest area in south-
west China, owing largely to the adoption of reforestation initiatives, whereas farmland
expansion is very limited.

In the SSP2 scenario, natural land-use changes result in a moderate expansion of
both cropland and urban areas, both of which exhibit increasing trends. The SSP2-RCP4.5
scenario amplifies this effect, driven by escalating demands for food and subsistence. This
scenario leads to significant increases in cropland (+24.2%) and urban areas (+70.02%),
culminating in the substantial erosion of grassland, which aligns with the development
objectives of the scenario.

The SSP3-RCP7.0 scenario embodies a regional competition model characterized by
intensified inter-country rivalry that prioritizes food and energy security. This shift results
in the expansion of agricultural land, leading to increases in both cropland and grassland,
a reduction in barren land, and a significant decline in forest cover due to heightened
deforestation rates. However, in China, forest area is projected to increase by 0.57%, likely
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reflecting the impact of policies such as afforestation, with forest cover demonstrating a
notable growth trend.

In the SSP4 scenario, despite a significant development gap among areas, there is
a worldwide consensus on climate policy at the same time that low-carbon energy tech-
nologies are advancing quickly. Less developed regions still use conventional fuels like
wood and animal manure. Policy interventions, such as the strategic placement of the
national ecological security barrier, limit the rate of ecosystem extension and urbanization
in southwest China (+53.45%) under the SSP4-RCP4.5 scenario. This region deviates from
the overall trend of land-use change by experiencing an increase in forest area (+0.35%)
and a smaller decline in grassland conversion (−2.06%).

Under the SSP5 scenario, the global economy experiences rapid growth, accompanied
by a faster rate of urban expansion compared to other scenarios, with the highest rate of
urban expansion observed in southwest China (+187.08%). By 2050, the global population is
projected to reach 10 billion, driving a substantial increase in human demand for food and
living materials which, in turn, results in significant growth in cropland area [53]. However,
in southwest China, cropland (−4.94%) and grassland (−2.21%) areas decline, while forest
and barren land expand by 0.39% and 7.62%, respectively—indicating a divergence from
global land-use change patterns under this scenario.

Additionally, under various SSP–RCP scenarios, the landscape pattern indices in
southwest China declined to varying degrees, indicating a reduction in landscape fragmen-
tation. This suggests that patch irregularity would decrease and landscape shapes would
become simpler. Under the SSP3 scenario, intensified regional competition diminishes
global attention toward environmental concerns, leading to severe ecological degradation
in certain areas and further simplification of landscape patterns. Consequently, the number
of patches (NP), patch density (PD), and landscape shape index (LSI) reached their lowest
values under the relatively high social vulnerability (SSP3) and high radiative forcing
(RCP7.0) simulations.

4.2. Biodiversity Response to Land-Use Change

Land-use types and changes are inextricably linked to biodiversity [54]. In Yunnan,
where forest and grassland predominantly characterize land use within the southwest
region, there exists a high level of species richness and habitat quality. In contrast, areas
exhibiting significantly low biodiversity are primarily found in barren regions, such as
western Tibet, which demonstrate low species richness and poor habitat quality. Similar
patterns are observed in the primary cropland areas along the perimeter, where biodiversity
and habitat quality are notably diminished.

This study reveals that land-use changes across all scenarios, with the exception
of SSP1-RCP2.6, contributed to varying degrees of biodiversity loss in southwest China
(Figure 12).

The SSP1-RCP2.6 scenario, characterized by sustainable development, exerts a pos-
itive influence on biodiversity conservation due to policies that promote the return of
farmland to forests and an enhanced focus on environmental protection. These measures
resulted in an increase in ecological land use (+4.43%) and a reduction in agricultural land
use (−5.48%). Consequently, the comprehensive biodiversity index in southwest China
increased by 0.1708%.

A continuation of past development trends, the SSP2-RCP4.5 scenario is defined
by moderate rates of urbanization and population increase. In comparison to the SSP1-
RCP2.6 scenario, agricultural development (+24.2%) is noticeably higher, while ecologically
sustainable land usage (−6.31%) is noticeably lower. As a result, southwest China’s
biodiversity is on the decline (−2.86%). In this scenario, the amount of land experiencing
a moderate reduction was the largest, mostly concentrated in the Tibet region, with the
exception of areas where biodiversity remained reasonably steady (Figure 9).
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Under the SSP3-RCP7.0 scenario, increased international rivalry causes global CO2
emissions to nearly double from their current levels. The greenhouse effect causes a 0.3071%
drop in biodiversity, a 0.57% decrease in grassland area, and an expansion of 38.3% and
3.8%, respectively, in urban and barren regions in southwest China. Ecosystem health is
significantly impacted by these changes in land use.

Large tracts of forest (18,294 km2) and grassland (4975 km2) are turned into agriculture
in the SSP4-RCP3.4 scenario in order to meet the biomass needed for China’s climate
mitigation efforts. The change in land use causes the composite biodiversity index to
decrease by 2.3305%.

Similar to the SSP5-RCP8.5 scenario, increased urbanization and fast economic growth
lead to a major loss of grassland (23,063 km2) and a disregard for ecological sustainability,
which significantly degrades biodiversity (−1.0675%).

Furthermore, Tibet is expected to see the largest rise in desert area in the future in
terms of spatial patterns. The primary targets of this expansion are grasslands with high
species richness and excellent habitat quality, which lowers the composite biodiversity
index. The primary causes of this transformation are the unjustified uses of grasslands,
such as overgrazing and unauthorized encroachment. The number and variety of animals
and plants will decline as grasslands deteriorate, and rodent infestations will rise along
with the likelihood of sandstorms and other natural disasters. These effects will have
a significant negative impact on local production activities and biodiversity security. In
contrast, Guizhou shows the most favorable trend among southwest regions, with species
richness and habitat quality improving, and the composite biodiversity index increasing by
0.9416% to 3.002%.

Furthermore, the landscape pattern index shows that the southwest region is being
impacted by both high-intensity human activities and considerable land-use changes. These
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variables contribute to the increasingly complicated processes of ecosystem degradation,
such as changes in habitat quality and spatial patterns. These findings highlight the crucial
importance of comprehensive land-use planning in southwest China, notably in balancing
economic development and environmental conservation. Effective land management and
conservation strategies will not only assist in maintaining the region’s biodiversity but will
also create the groundwork for future sustainable development.

4.3. Countermeasures and Recommendations

The study’s findings demonstrate that species richness, habitat quality, and total biodi-
versity in southwest China are diminishing under most development scenarios, notably in
the Tibet region. In contrast, western Sichuan and south-central Yunnan see either a smaller
reduction or a tiny increase in biodiversity. As a result, it is critical for southwest China to
take effective steps to maintain and increase biodiversity in the future.

Firstly, macro-level land-use management in southwest China must be improved in
order to eliminate landscape fragmentation and diversify landscape structures via optimum
land-use planning [55]. In Tibet, where the biodiversity index is extremely low, efforts
should be directed at reducing ecological land fragmentation. This can be accomplished
by taking steps such as converting cropland back to grassland to counteract the negative
effects of land-use changes on biodiversity. These initiatives will help in maintaining the
local biodiversity and promote the long-term growth of both ecology and the economy [56].

Secondly, other effective conservation measures (OECMs) should be undertaken
in areas with good natural ecological conditions and existing conservation frameworks,
such as western Sichuan and south-central Yunnan [57]. OECMs have the potential to
significantly enhance protected land and sea areas, hence complementing the objectives of
the post-2020 global biodiversity framework [58]. Expanding effective conservation areas
within well-defined geographic regions, outside current nature reserves, aids in bridging
conservation gaps and improving long-term biodiversity results [59].

Furthermore, local traditional biodiversity knowledge should be actively researched
and implemented at the community level to counteract the effects of climate change and
human activities on biodiversity [60]. Southwest China, which has the biggest population
of ethnic minorities in China, is also a biodiversity hotspot and cultural hub [61]. Local
communities have gained considerable traditional knowledge via their interactions with
nature over time, which has greatly aided in the conservation of the local ecology and
biodiversity [62].

5. Conclusions

The land-use pattern changes predicted for 2050 under the SSP1-2.6, SSP2-4.5, SSP3-7.0,
SSP4-3.4, and SSP5-8.5 scenarios were examined in this study, which was centered on the
southwest. By creating a composite biodiversity index, it assessed the effects of these
land-use changes on habitat quality and species richness and examined their combined
effects on biodiversity.

This research, in contrast to other studies, offers a thorough evaluation of the effects
of land-use changes on biodiversity that go beyond simple urbanization or agricultural
development. Furthermore, rather than using a conventional land-use planning model, this
study is based on land-use simulations under SSP–RCP scenarios. Because it completely
takes into account how different socioeconomic hypotheses and policies aimed at mitigating
climate change would affect future changes in land use, the research findings have more
immediate applications.

To summarize, the application of Fragstats and InVEST models in combination with
high-resolution future land-use data under different SSP–RCP scenarios allows for the
precise and thorough assessment of biodiversity indicators, including species richness,
habitat quality, and landscape patterns. This method can support the peaceful coexis-
tence of humans and nature in southwest China, thoroughly investigate the combined
effects of land-use change on biodiversity, aid in the development of scientific land man-
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agement policies and conservation measures, and offer insightful information for the
creation of successful biodiversity conservation policies and strategies. The following are
the primary conclusions:

(1) Land-use change types and patterns of landscape change in the southwest region
by 2050 will exhibit some similarities among the various SSP–RCP scenarios. It is antici-
pated that the region’s primary land-use types will continue to be forests and grasslands.
Multiscenario simulations show that while urban and desolate areas will mostly rise, the
acreage of grassland will decline to variable degrees. In contrast to urban areas, forests
and arid regions will see a decline in the degrees of landscape fragmentation and shape
complexity. Multiscenario modeling shows that grassland area will decrease to varying
degrees, while urban and wasteland areas will mainly increase, which will lead to an
increase in the number of sandstorms, an enhancement of the heat island effect, and an
impact on the development of animal husbandry.

Afforestation and the construction of a robust ecological security barrier in southwest
China are two initiatives that have influenced the region’s land-use types and changes in
landscape patterns, which deviate from global trends and more closely follow domestic
ones. SSP1 and SSP2 scenarios are examples of worldwide trends. In order to guarantee
sustainable land use and conservation, it is essential to take a number of elements into
account while creating land-use planning and management strategies in southwest China,
including legislation, population increase, and economic development.

(2) In southwest China, there is a comparable regional pattern change and a syner-
gistic relationship between species richness and habitat quality. The total quality of the
environment that is favorable for species habitat and survival is predicted to decline in
comparison to current conditions in 2050, even if species richness and habitat quality are
predicted to stay high across all SSP–RCP scenarios.

The regions with the highest concentrations of forests include Yunnan, eastern Guizhou,
and western Sichuan. These areas are also home to high-value and enhancement zones.
In contrast, because of the ongoing encroachment on grasslands, low-value and decline
zones are more common in the western plateau region. As a result, it is critical to improve
monitoring in regions like the Tibet Autonomous Region that are seeing a decline in species
richness and habitat quality. Creating protected areas, regulating livestock husbandry on
a reasonable scale, and reverting farmland to grassland are some ways to preserve the
biodiversity of the area.

(3) Under different SSP–RCP scenarios, integrated biodiversity in the southwest is
predicted to stay mostly constant by 2050, with overall environmental quality doing well.
On the other hand, the area with folding is smaller than the area experiencing a reduction
in integrated biodiversity under scenarios other than SSP1-RCP2.6, with the top portion of
the regions seeing a reduction in the integrated biodiversity.

There will be several obstacles along the way for the southwest region’s integrated
biodiversity conservation in the future. To effectively protect biodiversity in the region, it is
imperative to employ other effective conservation measures (OECMs), improve macro-level
land-use management, and incorporate traditional knowledge.
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