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Abstract: Coffee production worldwide is affected by the pathogen Hemileia vastatrix, which causes
the “coffee rust” disease and may be associated with other fungi. Ecuador lacks studies on fungal
diversity associated with coffee rust, which could potentially control or escalate pathogen activity.
Using the ITS-5.8S nrDNA region, we randomly detected a small preliminary fungi diversity related
to coffee rust in Ecuador, which we report here for the first time. Ten coffee farms (four in Loja,
three in Calvas, and three in Quilanga) from the Loja Province were sampled to analyze the genetic
diversity of the pathogen Hemileia vastatrix in rust lesions on coffee leaves. A high number of selected
sequences (Sanger sequencing) showed the presence of 48 OTUs (Operational Taxonomic Units)
or “hypothetical species” of Ascomycetes and Basidiomycetes distributed across all the sampled
farms. The genera Akanthomyces, Ceramothyrium, Cladosporium, Didymella, Fusarium, Mycosphaerella,
Neoceratosperma, and Trichothecium of Ascomycetes, as well as Bulleribasidium, Hannaella, and Meira of
Basidiomycetes, were the most abundant. To avoid taxonomic conflict, some sequences were placed
into Capnodiales (Ascomycetes) and Tremelalles (Basidiomycetes) without a genus definition. A
new phylogenetic group of sequences is considered Incertae Sedis from Basidiomycetes. Additionally,
morphospecies of Akanthomyces (synonymous with some Lecanicillium species) and Colletotrichum
were observed macroscopically and microscopically growing closely with rust. Most of the OTUs
probably correspond to rust mycoparasites, as previously reported in the literature. However, this
study is limited by the number of sequences analyzed phylogenetically, which may hinder the
discovery of significant insights. Future studies are needed to determine whether this preliminary
fungal diversity is associated with the rust fungus or corresponds to ubiquitous airborne fungi.
Furthermore, research into the function of these species may reveal whether they promote rust
pathogenicity or enhance plant responses by activating resistance mechanisms.

Keywords: Ascomycete; Basidiomycete; coffee rust; fungal diversity; mycoparasites; OTUs

1. Introduction

Coffee (Coffea spp.), with its most cultivated species Coffea arabica L. (common name
Arabica coffee) and Coffea canephora Pierre ex A. Froehner (common name Robusta coffee),
is one of the main crops, representing export produce with a high economic value for
Ecuador [1,2]. Moreover, coffee cultivation supports the preservation of flora and fauna
within agroforestry systems [3], while coffee consumption has been linked to the prevention
of certain health issues, such as type 2 diabetes [4] and neurodegenerative diseases [5].
However, coffee production is highly susceptible to attacks by the Basidiomycete fungus
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Hemileia vastatrix Berk. and Broome, which causes the “coffee rust” disease [6–8]. This
pathogenic fungus mainly attacks the coffee leaf stomata, causing premature defoliation, a
reduction in photosynthetic capacity, and low fruit yield [9]. This disease causes economic
losses of up to a billion dollars annually and affects all types of crops, regardless of their
production regime (organic or inorganic) [10].

The rust disease requires adequate control through resistant plant varieties [11] or
intensified fungicide applications [12]. The application of bio-controllers, for example,
fungi belonging to Calcarisporium, Clonostachys, Lecanicillium, Sporothrix, and Simplicillium,
has proven efficient against coffee rust [12,13]. These fungi may also enhance or beneficially
regulate plant resistance [11]. On the other hand, interactions between microorganisms
through metabolite secretion could favor pathogenic activity [14]. In this context, it is cru-
cial to know the microorganism diversity that could be either promoting rust pathogenicity
or enhancing plant functionality by activation of their resistance genes [11,12]. Further-
more, different fungi occupy different ecological niches, such as coffee fruits [15] or coffee
roots [16], and have different functional roles [17,18]. The diversity of these fungi—whether
pathogenic, antagonistic, or decomposers—may decrease or increase when cultivated areas
are abandoned and regenerated [19]. Currently, the ITS-5.8S nrDNA marker, known as
a Universal barcode for fungi, along with next-generation sequencing and metagenomic
techniques, allows for the detection and identification of fungal diversity based on Op-
erational Taxonomic Units (OTUs) [20,21]. Molecular identification is recommended as a
high-throughput quantification tool to address population dynamics, community ecology,
as well as host–microorganism associations [22].

In Mexico, multiple OTUs, referred to as “hypothetical species” within the genera
Cladosporium spp., Lecanicillium spp., or Trichothecium spp. along with “species” from
the order Tremellales, were detected in coffee rust lesions using metagenomics; they are
considered putative mycoparasites of coffee rust [12]. Gómez-De La Cruz et al. [23],
from Veracruz, Mexico, reported the positive in vitro activity of isolates from similar
genera, such as Lecanicillium, Calcarisporium, Sporothrix, and Simplicillium, which act as
mycoparasites against rust. Likewise, Guatimosim et al. [24] reported the biocontrol
capacity of “Mycosphaerella yunnanensis” (currently Neoceratosperma yunnanensis) against
rust. In the Neotropical region (e.g., Peru, Brazil, Colombia, and Ecuador), several studies
have been conducted, mainly targeting rust genetic diversity [18,25,26] or directly assessing
the mycoparasitic activity of fungi against the rust [23,27,28], though studies identifying
the fungal diversity associated with rust are rare [15].

In Ecuador, no research on the fungal diversity, molecularly associated or related
to rust, has been found in the reviewed literature. In this context, the present research
aims to (a) detect, for the first time, preliminary fungal diversity related to rust lesions
in coffee leaves from 10 farms in the Province of Loja using the ITS-5.8S nrDNA region;
(b) investigate how the diversity of fungi detected is distributed across different coffee
varieties and farms. These results are the first step towards describing and understanding
the fungal diversity closely related to coffee rust and its potential functional role in disease
prevention and management.

2. Materials and Methods
2.1. Study Area

This study was carried out in Loja Province across 10 coffee farms (obtaining farmer
consent) located at altitudes between 1642 and 2090 m.a.s.l (Table 1; Figure 1). Four farms
were in the Loja canton, three in the Calvas canton, and three in the Quilanga canton.
Coffee arabica, recognized by its long, oblong fruits, is generally found growing at higher
altitudes (approx. 800 to 2000 m.a.s.l). In the studied area, coffee is usually grown in open
ecosystems, often intercropped with crops such as banana (Musa × paradisiaca L., Sp. Pl.)
and orange (Citrus × aurantium var. sinensis L., Sp. Pl. (Linnaeus)), under the shade of
eucalyptus (Eucalyptus globulus Labill., Voy. Rech. Pérouse) or local plants such as porotillo
(Erythrina smithiana Krukoff, Brittonia) (Figure 2).
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Table 1. Information for the analyzed samples in this study.

Canton Coffee Farms by
Sector

Number of
Samples Plant Varieties Latitude and

Longitude Altitude m.a.s.l

Loja

El Cristal 6 Typica/criolla −4.1206; −79.1993 1973.7
San Pedro de

Vilcabamba. Farm 1 14 Typica/criolla −4.2343; −79.2206 1678.6

San Pedro de
Vilcabamba. Farm 2 4 Typica/criolla −4.2341; −79.2215 1706.7

San Pedro de
Vilcabamba. Farm 3 4 Typica/criolla −4.2342; −79.2225 1730.5

Calvas

Jiropamba 14
Paca, yellow
Bourbon, red

Bourbon,
−4.3556; −79.5789 2090.7

Surunuma 9 Catucai, yellow
Bourbon. −4.2996; −79.7188 2001.6

Cango Bajo 11
Typica/criolla,

yellow Bourbon,
red Bourbon

−4.3448; −79.5789 1908.4

Quilanga

San José. Farm 1 8 Catucai, San
Salvador −4.3743; −79.3948 1582.8

San José. Farm 2 11 criollo, Paca, San
Salvador −4.3719; −79.4031 1706.8

San José. Farm 3 3 caturra −4.3746; −79.3997 1642.4

Total 84

Plant varieties were classified according to the Asociación Nacional del Café ANACAFE and Velásquez [29].

Diversity 2024, 16, x FOR PEER REVIEW 3 of 15 
 

 

and orange (Citrus × aurantium var. sinensis L., Sp. Pl. (Linnaeus)), under the shade of eu-
calyptus (Eucalyptus globulus Labill., Voy. Rech. Pérouse) or local plants such as porotillo 
(Erythrina smithiana Krukoff, Brittonia) (Figure 2). 

 
Figure 1. Topographic map showing the elevation and geographical location of the coffee farms 
sampled in the cantons of Calvas, Loja, and Quilanga in Loja Province. 

 
Figure 2. General coffee-growing ecosystems from the sampled farms in the different cantons: (A) 
cultivation with bananas and other plants (Calvas: Jiropamba and Cango Bajo; and Loja: El Cristal); 
(B) growing in the shade of eucalyptus (black arrowheads) (Quilanga); (C) growing in more open 
areas (Loja: San Pedro de Vilcabamba); and (D) growing along with “porotillo” plants (black arrow-
head) (Quilanga). 

Figure 1. Topographic map showing the elevation and geographical location of the coffee farms
sampled in the cantons of Calvas, Loja, and Quilanga in Loja Province.



Diversity 2024, 16, 633 4 of 14

Diversity 2024, 16, x FOR PEER REVIEW 3 of 15 
 

 

and orange (Citrus × aurantium var. sinensis L., Sp. Pl. (Linnaeus)), under the shade of eu-
calyptus (Eucalyptus globulus Labill., Voy. Rech. Pérouse) or local plants such as porotillo 
(Erythrina smithiana Krukoff, Brittonia) (Figure 2). 

 
Figure 1. Topographic map showing the elevation and geographical location of the coffee farms 
sampled in the cantons of Calvas, Loja, and Quilanga in Loja Province. 

 
Figure 2. General coffee-growing ecosystems from the sampled farms in the different cantons: (A) 
cultivation with bananas and other plants (Calvas: Jiropamba and Cango Bajo; and Loja: El Cristal); 
(B) growing in the shade of eucalyptus (black arrowheads) (Quilanga); (C) growing in more open 
areas (Loja: San Pedro de Vilcabamba); and (D) growing along with “porotillo” plants (black arrow-
head) (Quilanga). 

Figure 2. General coffee-growing ecosystems from the sampled farms in the different cantons:
(A) cultivation with bananas and other plants (Calvas: Jiropamba and Cango Bajo; and Loja: El
Cristal); (B) growing in the shade of eucalyptus (black arrowheads) (Quilanga); (C) growing in more
open areas (Loja: San Pedro de Vilcabamba); and (D) growing along with “porotillo” plants (black
arrowhead) (Quilanga).

These study areas primarily encompass arid and humid–dry ecosystems, featuring
a rainy season in April and May, followed by a dry season characterized by low rainfall
from June to November/December [30]. Annual temperatures range from 15.6 to 21 ◦C,
while average rainfall varies between 668 and 1149 mm per year [31]. The land cover is
predominantly composed of dry deciduous forests, with maize and coffee production being
the main agricultural activities, along with sparse sugar cane cultivation in the secondary
valleys (e.g., Malacatos and Vilcabamba), as recorded in Ochoa et al. [31].

2.2. Data Collection

In each of the 10 coffee farms (Figure 1), 10 coffee plants were selected; from each
plant, 10 leaves with yellowish to orange “rust-like” lesion symptoms (considered to be
generally caused by H. vastatrix) were collected. A total of 100 samples were generated
(10 leaves per sample). The leaves were stored in plastic bags at room temperature and
analyzed in the laboratory on the same day.

2.3. Microscopic Examination of the Samples

All samples were examined using a stereomicroscope (Stemi Carl Zeiss AG;
Oberkochen; Germany) and a microscope (Axiostar Plus, Carl Zeiss AG; Oberkochen;
Germany) by scraping the rust sporulation area (about 5 mm2). The slide preparations
included a drop of 10% KOH or H2O for observation under light microscopy to 40× and
100× magnification. This method allowed us to rule out samples corresponding to other
infections. Different structures, such as uredospores and teliospores, were recorded.
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2.4. DNA Extraction and PCR

The selected samples mostly consisted of rust uredospores (approximately 4 mg)
scraped from the rust lesion area of each sample. Total DNA was extracted and amplified
using PCR (Polymerase Chain Reaction) following the protocol established in the Phire
Plant Direct PCR kit (Thermo Scientific, Waltham, MA, USA), as previously described by
Apolo et al. [32].

The ITS-5.8S region of nrDNA was amplified with the primer combination ITS1F
5′-CTTGGTCATTTAGAGGAAGTAA-3′/ITS4 3′-TCCTCCGCTTATTGATATATGC-5′ [33].
The PCR parameters for 20 µL (final reaction volume) were as follows: initial denaturation
at 98 ◦C for 5 min, followed by 40 cycles. Each cycle consisted of a denaturation step at
98 ◦C (30 s), annealing at 55 ◦C (30 s), and a final extension at 72 ◦C (30 s). PCR results were
analyzed via electrophoresis, combining 2 µL of the PCR product with 1 µL of bromophenol
blue (Sigma-Aldrich, St. Louis, MO, USA), and run on a 1% agarose gel in 1× GelRed™
Safe Nucleic Acid Gel Stain solution (Biotium, Hayward, CA, USA). Positive and negative
controls were included in the PCR process.

Positive PCR products were purified using the PureLink PCR Purification Kit following
the manufacturer’s protocol (Invitrogen, Thermo Scientific, MA, USA). The amplicons were
sequenced (Sanger sequencing) using the same set of PCR primers at Macrogen (Teheran-ro,
Gangnam-gu, Seoul, Republic of Korea).

2.5. Phylogenetic Analysis and OTUs Placement

The resulting ITS-5.8S sequences (randomly detected) were visualized for quality
control and edited using the software CodonCode Aligner 5.1.4 (CodonCode Corporation,
Centerville, MA, USA). The edited sequences were compared in GenBank Blast [34], down-
loading the sequences with the highest similarity percentages, preferably with taxonomic
identities (assigned species names). Subsequently, the resulting sequence sets for each taxo-
nomic group (Ascomycetes and Basidiomycetes) were aligned using the MAFFT Version 7
software [35], using the G-INS-i strategy.

Each alignment (Ascomycetes and Basidiomycetes, respectively) was subjected to Op-
erational Taxonomic Unit (OTU) analysis using OPTSIL [36], with a threshold of 3% [37,38]
sequence difference and a 0.5 linkage fraction.

Four phylogenetic trees were constructed—two for Ascomycetes and two for
Basidiomycetes—using the Neighbor-Joining and Maximum Likelihood algorithms [39],
respectively. The Kimura-2 parameter model and G+I nucleotide substitution rate were
applied, followed by 1000 Bootstrap replicates using MEGA X software [40]. OTUs and
genotypes were positioned within the phylogeny.

The resulting Neighbor-Joining topologies for Ascomycetes and Basidiomycetes are
shown in results, respectively.

3. Results

After microscopic examination, it was determined that 84 of the 100 samples corre-
sponded with coffee rust characteristics (Table 1), so further analysis was carried out on
these samples only.

3.1. Rust Lesions: Macroscopic and Microscopic Analysis

The 84 leaves that were examined macroscopically and microscopically showed symp-
toms and structures consistent with coffee rust infection (Figure 3A–D). The presence of
hyphae that do not match rust infection was also detected (Figure 3E,F).
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nizing the mealybug Planococcus lilacinus Risso (grey arrowhead) found next to a rust lesion. Bars in 
Figures (B–F) = 20 µm. 

3.2. Phylogenetic Analysis and OTU Placement 
From the 84 analyzed samples, 56 sequences (good quality chromatograms) that do 

not correspond to Hemileia vastatrix were randomly obtained: 38 sequences of Ascomy-
cetes (Figure 4) and 18 sequences of Basidiomycetes (Figure 5). Only one sequence corre-
sponding to coffee rust (H. vastatrix) was included in this analysis. Other twenty-eight 
sequences were eliminated because of their low quality (chromatograms with double 
peaks). 

The phylogenetic trees indicated that the Ascomycetes included four orders (Capno-
diales, Chaetothyriales, Pleosporales, and Hypocreales) within the subphylum Pezizomy-
cotina and two orders of Basidiomycetes (Tremellales and Exobasidiales) within the sub-
phyla Agaricomycotina and Ustilaginomycotina. 

According to the OTUs identified as “hypothetical species” obtained by applying the 
threshold (3% sequence difference), the Ascomycetes included 22 OTUs (Figure 4), while 
the Basidiomycetes included 10 OTUs (Figure 5). According to the analyzed sequences 
(Figures 4 and 5) and the 3% threshold, more genotypes were encountered in the Calvas 
canton (i.e., 13 OTUs corresponding to Ascomycetes and Basidiomycetes) than in the Loja 
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Figure 3. (A) Leaf of Coffea arabica L. ‘red Bourbon’ with foliar symptoms (yellow spots caused by
rust). Bar = 1 cm; (B) uredospores generating germinating hyphae (black arrowhead) along leaf cells
and stomata (grey arrowheads); (C) group of uredospores with thickened and warty upper walls
(black arrowheads), with internal granules of orange–yellow carotenoid lipids (grey arrowheads);
(D) mass of uredospores (blue arrowheads) close to hyphae and pigmented conidia belonging to
other fungi (black arrowhead); (E) conidia and hyphae of Cladosporium spp. (black arrowheads)
next to a rust lesion (orange zone); (F) conidia and hyphae of Cladosporium spp. (black arrowhead)
colonizing the mealybug Planococcus lilacinus Risso (grey arrowhead) found next to a rust lesion. Bars
in Figures (B–F) = 20 µm.

3.2. Phylogenetic Analysis and OTU Placement

From the 84 analyzed samples, 56 sequences (good quality chromatograms) that do
not correspond to Hemileia vastatrix were randomly obtained: 38 sequences of Ascomycetes
(Figure 4) and 18 sequences of Basidiomycetes (Figure 5). Only one sequence corresponding
to coffee rust (H. vastatrix) was included in this analysis. Other twenty-eight sequences
were eliminated because of their low quality (chromatograms with double peaks).
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Figure 4. Neighbor-Joining phylogenetic tree for Ascomycetes, with bootstrap values ≥ 50 corre-
sponding to Neighbor-Joining and Maximum Likelihood bootstrap, respectively. The tree is rooted
with the outgroup Hemileia vastatrix. Here, 3% represents the applied threshold. OTU numbers
are listed under the percentages. Colored circles show the origin of the samples: Calvas = green,
Quilanga = blue, and Loja = red.
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with the outgroup Mycosphaerella yunnanensis. Here, 3% represents the applied threshold. OTU num-
bers are listed under the percentages. Colored circles show the origin of the samples: Calvas = green,
Quilanga = blue, and Loja = red.

The phylogenetic trees indicated that the Ascomycetes included four orders (Capn-
odiales, Chaetothyriales, Pleosporales, and Hypocreales) within the subphylum Pezi-
zomycotina and two orders of Basidiomycetes (Tremellales and Exobasidiales) within the
subphyla Agaricomycotina and Ustilaginomycotina.

According to the OTUs identified as “hypothetical species” obtained by applying the
threshold (3% sequence difference), the Ascomycetes included 22 OTUs (Figure 4), while
the Basidiomycetes included 10 OTUs (Figure 5). According to the analyzed sequences
(Figures 4 and 5) and the 3% threshold, more genotypes were encountered in the Calvas
canton (i.e., 13 OTUs corresponding to Ascomycetes and Basidiomycetes) than in the Loja
and Quilanga cantons, with 10 to 11 OTUs, respectively (Table 2).
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Table 2. Frequency of sequences randomly detected that are related to rust fungi in coffee leaves.

Loja Calvas Quilanga

Fungi OTU
Number

El
Cristal

San Pedro de
Vilcabamba. Farm 1

San Pedro de
Vilcabamba. Farm 2

San Pedro de
Vilcabamba. Farm 3 Jiropamba Surunuma Cango Bajo San José.

Farm 1
San José.
Farm 2

San José.
Farm 3

ASCOMYCETES
Akanthomyces sp. 1 3 2 6
Akanthomyces sp. 2 1
Akanthomyces sp. 3 1
Akanthomyces sp. 4 2
Hypocreales 5 1
Hypocreales 6 1
Hypocreales 7 1
Simplicillium sp. 8 1
Trichothecium sp. 9 1
Hypocreales 10 1
Fusarium sp. 11 1
Capnodiales 12 1 1
Neoceratosperma
yunnanensis 13 1

Capnodiales 14 1
Cladosporium sp. 15 1 1
Cladosporium sp. 16 1
Capnodiales 17 1
Capnodiales 18 1
Capnodiales 19 2 2
Capnodiales 20 1
Ceramothyrium sp. 21 1
Didymella sp. 22 1
BASIDIOMYCETES
Hannaella oryzae 1 1 3 1
Tremellales 2 1
Tremellales 3 1
Tremellales 4 1
Bulleribasidium sp. 5 1
Basidiomycete 6 1
Basidiomycete 7 1 3
Basidiomycete 8 2
Hemileia vastatrix 9 1
Meira sp. 10 1
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4. Discussion

This study is the first record of fungal diversity probably related to coffee rust in
Ecuador, randomly detected through the molecular ITS-5.8S marker. The small portions
of preliminary fungal diversity correspond to genotypes designated as OTUs, applying
a 3% threshold. The number of OTUs may vary when applying a different threshold
[e.g., 5% (Figures S1 and S2)], as previously discussed by Vrålstad [41]. In this analy-
sis, a 3% sequence difference was used as a reference value because it is considered the
universal barcoding threshold [42]. Ascomycetes, with 22 OTUs across four orders (Capn-
odiales, Chaetothyriales, Pleosporales, and Hypocreales), exhibited greater preliminary
diversity compared to Basidiomycetes, which had 10 OTUs in two orders (Tremellales and
Exobasiales) and one Incertae Sedis group. This diversity could be further explored using
metagenomic techniques such as next-generation sequencing [20,21], a high-throughput
tool recommended for quantifying population dynamics, community ecology, and host–
microorganism interactions [22], though it was not applied here due to budget constraints.

The samples collected from farms in the Calvas canton were the most diverse, con-
taining 13 OTUs of Ascomycetes and Basidiomycetes associated with rust. In contrast,
the farms in Loja and Quilanga had 10 and 11 OTUs, respectively. This fungal diversity
probably corresponds to ubiquitous airborne fungi [43,44] and may be higher depending
on the type of coffee cultivation; for example, Calvas (Jiropamba) and Loja (El Cristal) use
a combined cultivation system that includes fruit trees such as banana or orange. This
observation supports the application of “Conservation Agriculture”, which promotes the
cultivation of coffee in forest ecosystems that host a higher diversity of microorganisms [45].
Similarly, Tomao et al. [46] indicate a positive correlation between fungal diversity and tree
species diversity. This is probably also the case in our study since samples from open and
shaded farms (e.g., Loja: San Pedro de Vilcabamba; all Quilanga farms) produced fewer
sequences and OTUs (Table 2) for Ascomycetes or Basidiomycetes, respectively. The small
portions of fungal molecular diversity reported in this study evidently do not encompass
the whole diversity of fungi or other microorganisms that may be related to coffee rust.
Some metagenomic studies report high levels of fungi diversity associated with coffee
rust [20] and with fermentative processes in coffee fruits [47]. Some genera detected here
within Capnodiales and Tremellaceae are similar to those reported by Kurtzman et al. [47]
and James et al. [20] using metagenomic technique.

The portion of fungi diversity detected in our study includes species from several
genera, such as Ceramothyrium, Cladosporium, Didymella, Fusarium, and Mycosphaerella,
which are considered endophytes or parasites related to coffee lesions [48–51], or mycopar-
asites of rust [23]. Other less common fungi probably correspond to ubiquitous airborne
fungi [43,44]; however, fungi such as “Mycosphaerella yunnanensis”, currently known as
Neoceratosperma yunnanensis [24], or Trichothecium sp., have also been reported from coffee
leaves by James et al. [20], who speculated on their mycoparasitic activity against coffee
rust. In the samples for Calvas, most sequences belonged to the genus Akanthomyces, which,
according to the Index Fungorum, includes several species of Lecanicillium, known as
natural rust controllers [28].

On the other hand, Cladosporium spp. and pigmented hyphae of Dotidiomycetes,
which are very similar to those generated by Colletotrichum spp., were associated with rust;
both these genera are considered endophytes of coffee plants and potentially mycoparasites
of rust [51,52]. The DNA from these or other fungi was not detected, probably indicating
that the use of specific primers, as suggested by Mosca et al. [53], is needed.

Another important group of detected fungal species was Basidiomycota, which, con-
trary to the study by Silva et al. [54], was less diverse in our study. However, among the
encountered Basidiomycetes, there were several yeast species within the genera Bullerib-
asidium, Meira, and Hannaella, known to be plant pathogens of other crops such as rice,
sugar cane, Japanese pear pepper, and others [55–57]. Employing metagenomics, James
et al. [20] found some genera of fungi (e.g., Bullera) within the order Tremellales, which are
closely related to Bulleribasidium and Hannaella oryzae found here. In another study, yeasts
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from the family Tremellaceae were detected at a certain stage of coffee fermentation by De
Oliveira et al. [15], which they attributed to possible external contamination. Species of
yeast belonging to Tremellales appear to be related to coffee rust [20] and coffee fermenta-
tion processes [15], although further detailed taxonomic studies are needed to establish the
functional implications of this relationship [45].

Molecular analyses need to be expanded by including metagenomics in order to fur-
ther detect the diversity of fungi beyond the small portion presented here. This tool is
highly applicable for the detection of plant pathogens [58] or for researching population
dynamics, community ecology, and host–microorganism associations, as indicated by Ted-
ersoo et al. [22]. The fungal species detected here could have various ecological roles, such
as controlling coffee rust or other pathogens [48–51], activating plant defense genes [59],
or regulating post-harvest fermentation processes called “coffee processing” [45]. An in-
depth integrative study is needed to understand whether this fungal diversity is a mere
coincidence or is really associated with rust fungus. In addition, studies on the antagonistic
activity of fungal diversity (e.g., endophytes or fungi associated with rust) against Hemileia
vastatrix (coffee rust) should be conducted, as described in Poma-Angamaraca et al. [60].

5. Conclusions

The conclusions of the present study are as follows: (a) various Ascomycetes and
Basidiomycetes species were detected from Coffea arabica leaves infected by rust, but their
functional roles remain to be defined; (b) among the identified species, the genus Akan-
thomyces, along with some synonymous species in Lecanicillium, is considered a natural
controller of the rust pathogen and requires attention in future pest control studies; (c) the
detected yeasts Bulleribasidium and Hannaella (from the Tremellaceae family) are closely
related to those act in the fermentation process of the coffee fruit; future studies are required
to identify this diversity and its effects.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/d16100633/s1, Figure S1: Neighbor-Joining phylogenetic
tree for Ascomycetes, with bootstrap values ≥ 50 corresponding to Neighbor-Joining and Maximum
Likelihood bootstrap, respectively. The tree is rooted with the outgroup Hemileia vastatrix. Here, 3%
and 5% represents the applied threshold. OTU numbers are listed under the percentages. Colored
circles show the origin of the samples: Calvas = green, Quilanga = blue, and Loja = red.; Figure S2:
Neighbor-Joining phylogenetic tree for Basidiomycetes, with bootstrap values > 50 corresponding
to Neighbor-Joining and Maximum Likelihood bootstrap, respectively. The tree is rooted with the
outgroup Mycosphaerella yunnanensis. Here, 3% and 5% represents the applied threshold. OTU num-
bers are listed under the percentages. Colored circles show the origin of the samples: Calvas = green,
Quilanga = blue, and Loja = red.
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