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Abstract: A total of 127 specimens of the “Blue Antimora” Antimora rostrata (Günther, 1878) were ob-
tained from 2015 to 2019 as bycatch from the artisanal fishery of the Patagonian toothfish (Dissostichus
eleginoides (Smitt, 1898)) at depths between 1000 and 2200 m in Northern Chile (app. 22◦ S 70◦ W).
All individuals were examined for parasites. A total of seventeen parasite taxa, two Copepoda,
two Monogenea, seven Digenea, three Nematoda, and three Cestoda, were found, and twelve taxa
were found as adults while five taxa were found at the larval stage. Anisakis sp. (Nematoda) and
Trypanorhyncha gen. sp. (Cestoda) were the predominant species with a prevalence of 53.5% and
11.8%, respectively. The high prevalence of Anisakis sp. (>50%) suggests that A. rostrata may play
a significant role in the life cycle of Anisakis sp. in the southeastern Pacific Ocean. The detected
parasite community, consisting predominantly of parasites from pelagic environments rather than
benthopelagic, suggests that A. rostrata may fulfill a crucial role as a predator of pelagic organism
communities. Additionally, it may undertake vertical migrations in the southeastern Pacific Ocean.
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1. Introduction

The deep sea, encompassing depths from 200 to 11,000 m, is the largest biotope on
Earth; yet. it remains largely unexplored [1]. Its biodiversity is still poorly understood,
with many species yet to be discovered. Fishes are a crucial component of these ecosystems,
including members of the family Moridae, which play essential roles in food webs as both
intermediate trophic levels and top predators [2]. This family comprises 19 genera and
over 110 species distributed across shallow coastal areas and deep waters below 3000 m [3].

In the southeastern Pacific Ocean (SEPO herein and after), knowledge of the biology of
deep-sea fishes is scarce. Only 10 species of morids have been recorded [4,5]. In the SEPO,
Antimora rostrata (Günther1878) was caught as bycatch in the fishery of the notothenid
Dissostichus eleginoides, Smitt 1898, the “Patagonian toothfish” [6]. Antimora rostrata has
a nearly cosmopolitan distribution, except in the North Pacific, where it is replaced by
the sister species Antimora micropepis, Bean 1890 [7]. They inhabit depths from 300 to
3000 m and have a generalist diet consisting of benthopelagic fish and invertebrates, such
as Decapoda, Amphipoda, Chaetognatha, and Polychaeta [8].

A comprehensive compilation of parasitological data for A. rostrata was given by
Klimpel et al. [9] and Gordeev et al. [10], with most studies focusing on reports and de-
scriptions of new species, particularly from the North Atlantic. Few studies have examined
the parasite community of A. rostrata [6,11–13]. To date, 57 species of metazoan parasites
have been recorded parasitizing A. rostrata worldwide, distributed across seven taxonomic
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groups: Cestoda (3), Digenea (24), Nematoda (12), Monogenea (5), Acanthocephala (3),
Copepoda (9), and Isopoda (1) (Supplementary Materials Table S1).

This study aims to investigate the community of metazoan parasites and explore their
role as potential tools for understanding the feeding behavior of A. rostrata in the deep
waters of the SEPO.

2. Materials and Methods

One hundred and twenty-seven adult specimens of A. rostrata were obtained, non-
periodically, between 2015 and 2017 as bycatch from the artisanal longline fishery of
D. eleginoides in northern Chile (app. 22◦ S 70◦ W), at depths between 1000 and 2200 m.
The fish were immediately frozen onboard at −18 ◦C and transported to the parasitology
laboratory at the Universidad de Antofagasta for further analysis. After thawing, fish were
measured (total length to nearest cm), weighed, dissected, and examined for metazoan
parasites (both ectoparasites and endoparasites). Parasites were recorded for each fish,
fixed in AFA (alcohol–formalin–acetic acid), and then preserved in 70◦ alcohol. Nematoda
and Acanthocephala were cleared with Amann lactophenol. Digenea, Monogenea, and
Cestoda were stained (Acetic Carmin) and cleared with clove oil (Sigma-Aldrich, Steinheim,
Germany), and then mounted in Eukitts (O. Kindler GmBH, Freiburg, Germany). Parasites
were identified to the lowest taxonomic level possible. The prevalence and mean intensity
of infection were calculated according to Bush et al. [14].

3. Results

The average sizes of males (range: 36.3–61.6 cm, mean = 48.8 cm) and females (range:
32.7–81.1 cm, mean = 50.8 cm) of A. rostrata did not differ significantly (U test = 6550,
p = 0.2424) for the whole sample. Females were more predominant than males, comprising
81% of the sample.

A total of 241 parasite specimens, belonging to 17 species, were collected, of which
11.8% were Copepoda, 11.8% were Monogenea, 41.2% were Digenea, 17.6% were Cestoda,
and 17.6% were Nematoda (Table 1). Trophically transmitted parasites (TTPs) (Digenea,
Cestoda and Nematoda) represented 76.4% of the parasite richness. Some parasites were not
identified to a species level due to their inherent morphological characteristics, absence of
male (in the case of adult Nematoda), or unreliable identification based on morphological
features (in the case of the larval stages of Cestoda and Nematoda). The prevalence,
intensity, and site of infection for each parasite species are detailed in Table 1.

Table 1. Metazoan parasites of Antimora rostrata from the southeastern Pacific Ocean. Prevalence (P),
mean intensity (MI), development stage, and site of infection (n = 127).

Species Development Stage P (%) MI Site of Infection

Copepoda
Chondracanthidae gen. sp. Adult 0.8 4.0 Gill
Parabrachiella pinguis Adult 0.8 1.0 Gill arch

Monogenea
Cyclocotiloides sp. Adult 0.8 2.0 Gill
Diclidophoridae gen. sp. Adult 4.0 1.2 Gill

Digenea
Glomericirrus macrouri Adult 0.8 1.0 Intestine
Dinosoma sp. Adult 7.9 1.5 Intestine
Gonocerca physidis Adult 0.8 1.0 Intestine
Gonocerca sp. Adult 7.1 2.8 Intestine
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Table 1. Cont.

Species Development Stage P (%) MI Site of Infection

Bathycreadium sp. Adult 1.6 1.5 Intestine
Podocotyle sp. Adult 3.2 3.3 Intestine
Digenea gen. sp. Adult 4.7 1.2 Intestine

Cestoda
Hepatoxylon sp. Larvae 1.6 1.0 Visceral cavity
Trypanorhyncha gen. sp. Larvae 11.8 1.0 Visceral cavity
Cestoda gen. sp. Larvae 0.8 1.0 Visceral cavity

Nematoda
Hysterothylacium sp. Third-stage Larvae 0.8 1.0 Visceral cavity
Anisakis sp. Third-stage Larvae 53.5 2.1 Visceral cavity
Cysticollidae gen. sp. Adult 0.8 1.0 Intestine

The single specimen of the lernaeopodid Parabrachiella pinguis (Wilson, 1915) [15] was a
gravid female attached to the gill arch. Meanwhile, five specimens of Chondracanthidae gen.
sp., also isolated from the gill arch, were gravid females with attached males. Monogenea
of the family Diclidophoridae were found on the gill filaments with low prevalence.

Among the TTP, Digenea were the predominant group of parasites, with seven species
(Table 1). All Digenea were adult stage and located in the digestive tract (stomach and
intestine). The three species of Cestoda were found in the visceral cavity at larval stages;
two belonged to the order Trypanorhyncha, and one specimen (Cestoda gen. sp.) was found
encysted in the liver. Among Nematoda, larvae Anisakis sp. had the highest prevalence,
found in the visceral cavity along with the larval Hysterothylacium sp. Additionally, a single
female specimen of Cystidicolidae gen. sp. was isolated from the intestine.

4. Discussion

A total of 241 parasites, belonging to 17 species, were collected, of which 11.8% were
Copepoda, 11.8% were Monogenea, 41.2% were Digenea, 17.6% were Cestoda, and 17.6%
were Nematoda (Table 1).

Four studies have reported quantitative aspects and parasite richness of A. rostrata.
Three of these studies are from the North Atlantic [11,13,16], and one is from the SEPO [6].
Both Campbell et al. [11] and Chambers [16] examined large sample sizes (124 and
432 specimens, respectively) at depths of 400–2967 m, resulting in high parasite richness
(18 and 22 species, respectively). Meanwhile, Gordeev et al. [13] examined 26 specimens
from depths of 809–2089 m, finding 14 species. For the SEPO, Ñacari and Oliva [6] ex-
amined 39 specimens off the northern coast of Chile at depths of 1000–2000 m, finding
only eight parasite species There is not a significant correlation between sample size and
parasites richness (Spearman rho = 0.844; p = 0.072). Digenea was the predominant group,
and it explained 41.2% of the richness. Higher values were found by Chambers [16] and
Ñacari and Oliva [6] (Table 2).

Table 2. Richness obtained from quantitative survey of metazoan parasites of Antimora rostrata.

Reference [11] [16] [13] [6] This Study

Locality North Atlantic North Atlantic North Atlantic Southern Pacific Southern Pacific

Copepoda 5 3 2 2
Monogenea 2 2 2 2
Digenea 5 11 4 4 7
Cestoda 1 1 1 3
Nematoda 5 3 7 1 3
Acanthocephala 2 1
Species richness 18 22 14 8 17



Diversity 2024, 16, 636 4 of 7

This pattern has also been observed in other deep-sea fishes in the SEPO, such
as M. holotrachys (Gadiformes: Macrouridae), for which 44% of the richness was explained
by Digenea [6].

The helminth parasites now reported for A. rostrata have unknown life cycles. Digenea,
Nematoda, and Cestoda exhibit complex life cycles, whereas vertebrates and invertebrates
from both pelagic and benthic environments can act as intermediate hosts. Understanding
the life cycles of deep-sea parasites is challenging due to the difficulty in accessing the
larval stages of parasites and their intermediate hosts. However, it is possible to extrapolate
their potential life cycles following the suggestions of Bray [17] and Ñacari et al. [18], who
use knowledge of the life cycles of shallow-water parasite taxa.

It is well known that feeding habits are a critical factor that explains the abundance
and diversity of parasites [18,19]. In our research, over 90% of the specimens showed
everted stomachs, with only cephalopod beaks being observed, preventing stomach content
analysis. However, previous studies have indicated that A. rostrata is a generalist predator,
consuming copepods, amphipods, decapods, polychaeta, cephalopods, and fish [16,20,21],
which can explain the high richness of TTPs.

All records with available parasitological data on A. rostrata show that three groups of
parasites can be found (Supplementary Materials Table S1), reflecting the role of A. rostrata
as an intermediate host and its habitat: pelagic, benthic, or benthopelagic [22].

Digenea have a complex life cycle, including mollusks as obligatory first hosts, pelagic
or benthic invertebrates as second hosts, and teleost as intermediate or definitive hosts,
particularly in deep-sea environments [17]. In A. rostrata, Digenea was the most predomi-
nant, represented by members of the families Opecoelidae, Hemiuridae, and Gonocercidae.
Opecoelidae are benthopelagic parasites, with amphipods and decapods as their second
intermediate hosts [23], whereas Hemiuridae are known to have pelagic intermediate hosts,
such as copepods and chaetognaths [24]. Unfortunately, the life cycle of Gonocercidae
remains unknown, but it is likely similar to that of the Hemiuridae [17].

Members of the order Trypanorhyncha mature in the stomach and spiral valve of
elasmobranchs [25] and are considered pelagic parasites, with copepods serving as the first
intermediate hosts, larger invertebrates (as cephalopods) acting as the second intermediate
hosts, and teleost fishes as a paratenic host [18].

Similarly, Anisakis sp. (Anisakidae) follow a pelagic life cycle, using invertebrates
as the first intermediate host and larger crustaceans or teleosts as second intermediate
hosts [26]. The adults are found in cetaceans and sometimes in pinnipeds [27]. The high
prevalence of Anisakis sp. (>50%) suggests that A. rostrata may play a significant role in
the life cycle of Anisakis in the SEPO. In contrast, species of the genus Hysterothylacium
(Raphidascarididae) are found as adults in the digestive tracts of teleosst. Their larval
stages have been reported from invertebrates (crustaceans) and fish [28], suggesting that
Hysterothylacium has a pelagic life cycle, as indicated by Ñacari et al. [18].

Additionally, Cystidicolidae nematodes may have benthopelagic life cycles [18], with
demersal crustaceans (such as amphipods and decapods) acting as intermediate hosts. The
found specimens of Cystidicolidae gen. sp. from A. rostrata might represent a new species
in this often host-specific genus [29].

Therefore, of the 13 species of TTPs that parasitize A. rostrata, 46% can be considered
as pelagic, 23% as benthopelagic, and 31% have unknown life cycles.

Pioneering studies indicate that demersal fish typically have a generalist diet, where
pelagic food is important, especially for those that are ecologically dominant on the lower
continental slope and rise [20]. For instance, A. rostrata appears to feed mostly on pelagic
prey rather than benthic prey [20,21], possibly exhibiting vertical migrations. (Figure 1).
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Figure 1. Schematic illustration showing potential pathway of the TTPs in Antimora rostrata
from SEPO.

5. Conclusions

The metazoan parasite fauna of A. rostrata was diverse, consisting of 17 species. For
the first time, larval Hepatoxylon sp. (Eucestoda) is reported as a parasite of this fish species,
adding a new species to the biodiversity of parasites recorded worldwide from this fish
species (Supplementary Materials Table S1).

Our results highlight the important roles that TTPs and their possible life cycles
(pelagic, benthic, or benthopelagic) can play in inferring the feeding behavior of some
species in the SEPO. This suggests that A. rostrata may undertake vertical migrations,
enabling it to consume both pelagic and benthopelgic organisms, as suggested by Ñacari
et al. [18]. The combined use of carbon, nitrogen, and sulfur stable isotopes indicate a
significant energy source from pelagic pathways for this species [30]. Supplementary
Materials includes a list of the known parasite taxa for Antimora rostrata worldwide [31–40].
These observations, made through their parasites, reinforce the idea that A. rostrata exhibits
a flexible feeding strategy, contributing to its ecological success in deep-sea environments
in the SEPO.
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