Variation in the Biomass of Phragmites australis Across Community Types in the Aquatic Habitats of the Middle Volga Valley
Abstract
:1. Introduction
- To provide an overview of the species composition of plant communities dominated or co-dominated by P. australis, in relation to their aboveground biomass.
- To assess the aboveground biomass of monodominant P. australis communities compared to other tall helophytes (Glyceria maxima, Schoenoplectus lacustris, and Typha latifolia), with separate analyses for running water habitats and standing water habitats exemplified by the littoral zones of the Kuibyshev Reservoir.
- To compare the aboveground biomass of dominant tall helophytes in their monodominant communities, for both running and standing water habitats, with a particular focus on biomass in relation to projective cover, used as a proxy for shoot density.
- To evaluate the belowground biomass and the belowground-to-aboveground biomass ratios for the four helophytes studied.
2. Materials and Methods
2.1. Study Area
2.2. Field Research Overview
2.3. Vegetation Records
2.4. Biomass Assessment
2.5. Statistical Evaluation
3. Results
3.1. Community Types Dominated or Co-Dominated by P. australis
3.2. Biomass Values
4. Discussion
4.1. Vegetation Types
4.2. Biomass and Its Relationship to Other Community Characteristics
4.3. Biomass: Comparison with Other Parts of Europe
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Packer, J.G.; Meyerson, L.A.; Skálová, H.; Pyšek, P.; Kueffer, C. Biological flora of the British Isles: Phragmites australis. J. Ecol. 2017, 105, 1123–1162. [Google Scholar] [CrossRef]
- Čížková, H.; Kučera, T.; Poulin, B.; Květ, J. Ecological basis of ecosystem services and management of wetlands dominated by common reed (Phragmites australis): European perspective. Diversity 2023, 15, 629. [Google Scholar] [CrossRef]
- Rodewald-Rudescu, L. Das Schilfrohr, Phragmites Communis Trin; Schweizerbart’scher Verlag: Stuttgart, Germany, 1974; p. 307. [Google Scholar]
- Kiviat, E. Organisms using Phragmites australis are diverse and similar on three continents. J. Nat. Hist. 2019, 53, 1975–2010. [Google Scholar] [CrossRef]
- Köbbing, J.F.; Thevs, N.; Zerbe, S. The utilisation of reed (Phragmites australis): A review. Mires Peat 2013, 13, 1–14. [Google Scholar]
- Saltonstall, K.; Peterson, P.M.; Soreng, R.J. Recognition of Phragmites australis subsp. americanus (Poaceae: Arundinoideae) in North America: Evidence from morphological and genetic analyses. SIDA Contrib. Bot. 2004, 21, 683–692. [Google Scholar]
- Kiviat, E.; Hamilton, E. Phragmites use by native North Americans. Aquat. Bot. 2001, 69, 341–357. [Google Scholar] [CrossRef]
- Meyerson, L.A.; Lambert, A.M.; Saltonstall, K. A tale of three lineages: Expansion of common reed (Phragmites australis) in the US Southwest and Gulf Coast. IPSM 2010, 3, 515–520. [Google Scholar] [CrossRef]
- Chambers, R.M.; Meyerson, L.A.; Saltonstall, K. Expansion of Phragmites australis into tidal wetlands of North America. Aquat. Bot. 1999, 64, 261–273. [Google Scholar] [CrossRef]
- Kettenring, K.M.; de Blois, S.; Hauber, D.P. Moving from a regional to a continental perspective of Phragmites australis invasion in North America. AoB Plants 2012, 2012, pls040. [Google Scholar] [CrossRef]
- Engloner, A.I. Structure, growth dynamics and biomass of reed (Phragmites australis)—A review. Flora 2009, 204, 331–346. [Google Scholar] [CrossRef]
- Lambertini, C.; Gustafsson, M.H.G.; Frydenberg, J.; Lissner, J.; Speranza, M.; Brix, H. A phylogeographic study of the cosmopolitan genus Phragmites (Poaceae) based on AFLPs. Plant Syst. Evol. 2006, 258, 161–182. [Google Scholar] [CrossRef]
- Neuhaus, D.; Kühl, H.; Kohl, J.G.; Dörfel, P.; Börner, T. Investigation on the genetic diversity of Phragmites stands using genomic fingerprinting. Aquat. Bot. 1993, 45, 357–364. [Google Scholar] [CrossRef]
- Čurn, V.; Kubátová, B.; Vávřová, P.; Křiváčková-Suchá, O.; Čížková, H. Phenotypic and genotypic variation of Phragmites australis: Comparison of populations in two human-made lakes of different age and history. Aquat. Bot. 2007, 86, 321–330. [Google Scholar] [CrossRef]
- Křiváčková-Suchá, O.; Vávřová, P.; Čížková, H.; Čurn, V.; Kubátová, B. Phenotypic and genotypic variation of Phragmites australis: A comparative study of clones originating from two populations of different age. Aquat. Bot. 2007, 86, 361–368. [Google Scholar] [CrossRef]
- Eller, F.; Skálová, H.; Caplan, J.S.; Bhattarai, G.P.; Burger, M.K.; Cronin, J.T.; Guo, W.Y.; Guo, X.; Hazelton, E.L.; Kettenring, K.M.; et al. Cosmopolitan species as models for ecophysiological responses to global change: The common reed Phragmites australis. Front. Plant Sci. 2017, 8, 1833. [Google Scholar] [CrossRef]
- Bastlová, D.; Čížková, H.; Bastl, M.; Květ, J. Growth of Lythrum salicaria and Phragmites australis plants originating from a wide geographical area: Response to nutrient and water supply. Glob. Ecol. Biogeogr. 2004, 13, 259–271. [Google Scholar] [CrossRef]
- Bastlová, D.; Bastl, M.; Čížková, H.; Květ, J. Plasticity of Lythrum salicaria and Phragmites australis growth characteristics across a European geographical gradient. Hydrobiologia 2006, 570, 237–242. [Google Scholar] [CrossRef]
- Golub, V.B.; Mirkin, B.M. Grasslands of the lower Volga valley. Folia Geobot. Phytotax. 1986, 21, 337–395. [Google Scholar] [CrossRef]
- Golub, V.B.; Saveljeva, L.F. Vegetation of the lower Volga limans (basins without outflow). Folia Geobot. Phytotax. 1991, 26, 403–430. [Google Scholar] [CrossRef]
- Dierschke, H. Pflanzensoziologie; Eugen Ulmer: Stuttgart, Germany, 1994. [Google Scholar]
- WFO Plant List 2020. Available online: https://wfoplantlist.org/ (accessed on 29 September 2024).
- Mucina, L.; Bültmann, H.; Dierßen, K.; Theurillat, J.P.; Raus, T.; Čarni, A.; Šumberová, K.; Willner, W.; Dengler, J.; García, R.G.; et al. Vegetation of Europe: Hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl. Veg. Sci. 2016, 19, 3–264. [Google Scholar] [CrossRef]
- Šesták, Z.; Čatský, J.; Jarvis, P.G. Plant Photosynthetic Production. Manual of Methods; Dr. W. Junk Publishers: The Hague, The Netherlands, 1971; 819p. [Google Scholar]
- Zar, J.H. Biostatistical Analysis, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2010; p. 944. [Google Scholar]
- Hejný, S.; Husák, Š. Higher plant communities. In Pond Littoral Ecosystems. Structure and Functioning. Ecological Studies 28; Dykyjová, D., Květ, J., Eds.; Springer: Berlin, Germany, 1978; pp. 23–64. [Google Scholar]
- Regel, C. The bogs and swamps of White Russia. J. Ecol. 1947, 35, 96–104. [Google Scholar] [CrossRef]
- Dubyna, D.V.; Dziuba, T.P.; Iemelianova, S.M. Syntaxonomy of the Phragmito-Magno-Caricetea class in Ukraine. Ukr. Bot. J. 2014, 71, 263–274. [Google Scholar] [CrossRef]
- Raspopov, I.M. Vegetation of Higher Aquatic Plants in Large Lakes of Northwestern USSR; Nauka: Leningrad, Russia, 1985; p. 199. (In Russian) [Google Scholar]
- Tichý, L.; Axmanová, I.; Dengler, J.; Guarino, R.; Jansen, F.; Midolo, G.; Nobis, M.P.; Van Meerbeek, K.; Aćić, S.; Attorre, F.; et al. Ellenberg-type indicator values for European vascular plant species. J. Veg. Sci. 2022, 34, e13168. [Google Scholar] [CrossRef]
- Lambertini, C.; Sorrell, B.K.; Riis, T.; Olesen, B.; Brix, H. Exploring the borders of European Phragmites within a cosmopolitan genus. AoB Plants 2012, 2012, pls020. [Google Scholar] [CrossRef] [PubMed]
- Raspopov, I.M. Biomass of macrophyte groupings of Lake Ladoga and chemical composition of plants. Proc. Karelian Branch GosNIIORKh 1968, 5, 115–119. (In Russian) [Google Scholar]
- Smirenskiy, A.A. Aquatic Fodder and Protective Plants in Hunting and Fishing Farms; Zagotizdat: Moscow, Russia, 1950; p. 136. (In Russian) [Google Scholar]
- Katanskaya, V.M. Biomass of higher aquatic vegetation in the lakes of the Karelian Isthmus. Proc. Lab. Lake Sci. USSR Acad. Sci. 1954, 3, 102–117. (In Russian) [Google Scholar]
- Ganetskaya, Z.G. Productivity of reed stands of inland water bodies of the USSR. In Biological Productivity and Cycling of Chemical Elements in Plant Communities; Nauka: Leningrad, Russia, 1971; pp. 91–113. (In Russian) [Google Scholar]
- Vretare, V.; Weisner, S.E.; Strand, J.A.; Granéli, W. Phenotypic plasticity in Phragmites australis as a functional response to water depth. Aquat. Bot. 2001, 69, 127–145. [Google Scholar] [CrossRef]
- Granéli, W. Reed Phragmites australis (Cav.) Trin. ex Steudel as an energy source in Sweden. Biomass 1984, 4, 183–208. [Google Scholar] [CrossRef]
- Ksenofontova, T. Morphology, production and mineral contents in Phragmites australis in different waterbodies of the Estonian SSR. Folia Geobot. Phytotax. 1988, 23, 17–43. [Google Scholar] [CrossRef]
- Čížková, H.; Pechar, L.; Husák, Š.; Květ, J.; Bauer, V.; Radová, J.; Edwards, K. Chemical characteristics of soils and pore waters of three wetland sites dominated by Phragmites australis: Relation to vegetation composition and reed performance. Aquat. Bot. 2001, 69, 235–249. [Google Scholar] [CrossRef]
- Čížková, H.; Bauer, V. Rhizome respiration of Phragmites australis: Effect of rhizome age, temperature, and nutrient status of the habitat. Aquat. Bot. 1998, 61, 239–253. [Google Scholar] [CrossRef]
- Fiala, K. Underground organs of P. communis, their growth, biomass and net production. Folia Geobot. Phytotax. 1976, 11, 225–259. [Google Scholar] [CrossRef]
- Čížková, H. Work Package 2: Growth dynamics and ecophysiology of Phragmites in relation to the climatic conditions in boreal-Mediterranean and oceanic-continental gradients. In Final Report of Project EUREED II: Dynamics and Stability of Reed-Dominated Ecosystems in Relation to Major Environmental Factors That Are Subject to Global and Regional Anthropogenically-Induced Changes; Brix, H., Ed.; University of Aarhus: Aarhus, Denmark, 1999; pp. 45–52. [Google Scholar]
- Šantrůčková, H.; Picek, T.; Šimek, M.; Bauer, V.; Kopecký, J.; Pechar, L.; Lukavská, J.; Čížková, H. Decomposition processes in soil of a healthy and a declining Phragmites australis stand. Aquat. Bot. 2001, 69, 217–234. [Google Scholar] [CrossRef]
- Dykyjová, D.; Květ, J. Comparison of biomass production in reedswamp communities growing in South Bohemia and South Moravia. In IBP PT-PP Report No. 1; Czechoslovak Academy of Sciences: Praha, Czech Republic, 1970; pp. 71–79. [Google Scholar]
- Čížková, H.; Istvánovics, V.; Bauer, V.; Balázs, L. Low levels of reserve carbohydrates in reed (Phragmites australis) stands of Kis-Balaton, Hungary. Aquat. Bot. 2001, 69, 209–216. [Google Scholar] [CrossRef]
- Ondok, J.P.; Dykyjová, D. Assessment od shoot biomass of dominant reed-beds in Třeboň Basin. Methodical aspects. In IBP/PT-PP Report No. 3: Ecosystem Study on Wetland Biome in Czechoslovakia; Institute of Botany, Czech Academy of Sciences: Třeboň, Czech Republic, 1973; pp. 79–82. [Google Scholar]
- Květ, J.; Husák, Š. Primary data on biomass and production estimates in typical stands of fishpond littoral plant communitites. In Pond Littoral Ecosystems. Structure and Functioning. Ecological Studies 28; Dykyjová, D., Květ, J., Eds.; Springer: Berlin, Germany, 1978; pp. 211–215. [Google Scholar]
Community Type | Habitat Type | Soil | Depth (cm) | Plant Species | Projective Cover (%) |
---|---|---|---|---|---|
Phragmitetum australis | R, S | all types | 0–150 | P. australis | (10) 80–100 |
Spirodelo-Phragmitetum australis (standing waters) | R, S | fine-grained | 40–80 | P. australis | 50 |
Spirodela polyrhiza | 30–90 | ||||
Lemna minor | (30) 50–80 | ||||
Lemna trisulca | (30) 50–90 | ||||
Hydrocharis morsus-ranae | 1–5 | ||||
Ceratophyllum demersum | 1–5 | ||||
Utricularia vulgaris | 1–3 (5) | ||||
Typheto angustifoliae-Phragmitetum australis. | S | all types | 20–100 | P. australis + Typha latifolia | 50–80 |
Phalaris arundinacea | 1–5 in some cases | ||||
C. demersum | |||||
L. minor | |||||
S. polyrhiza | |||||
Potamogeton lucens | |||||
P. perfoliatus | |||||
Equiseto-fluviatilis-Phragmitetum australis | R, S | silted | 0–70 | P. australis | 70–90 |
slow flow | Equisetum fluviatilis | 20–40 | |||
L. trisulca | 70–95 | ||||
Carex acuta | 1–10 | ||||
Schoenoplecteto lacustris-Phragmitetum australis | R, S | clay | 0–80 | Schoenoplectus lacustris | 40–50 |
P. australis | 50–60 | ||||
Ceratophyllo-Phragmitetum australis | S | sandy, sandy-silt | 1–90 | C. demersum | average 70 |
P. australis | 50 | ||||
H. morsus-ranae | 5–80 | ||||
S. polyrhiza | 1–10 | ||||
L. minor | 1 | ||||
Nuphareto-Phragmitetum australis | R | 0–140 | P. australis | 25–75 | |
strong currentrapid depth increase from the bank | Nuphar lutea | 5–80 | |||
H. morsus-ranae | 5–80 | ||||
S. polyrhiza | 40–80 | ||||
L. minor | 20–30 | ||||
Sparganium erectum | 1–20 | ||||
C. demersum | 2–10 | ||||
Potamogeton pectinatus | 1–5 | ||||
Sagittaria sagittifolia | 1–3 |
Community Type | Biomass (kg Dry Weight m−2) |
---|---|
Phragmitetum australis | 0.91 (0.43–1.78) |
Spirodelo-Phragmitetum australis | 0.46 (0.17–0.68) |
Typheto angustifoliae-Phragmitetum australis | 0.79 |
Schoenoplecteto lacustris-Phragmitetum australis | 2.26 (0.80–1.66) |
Ceratophyllo-Phragmitetum australis | 1.14 (0.88–1.67) |
Nuphareto-Phragmitetum australis | 0.85 (0.62–1.30) |
Community Type | Running Water Habitats | Kuibyshev Reservoir | |||
Mean ± SE | n | Mean ± SE | n | ||
Phragmitetum australis | 1.32 ± 0.07 a | 38 | 0.70 ± 0.07 ab | 19 | * |
Glycerietum maximae | 1.16 ± 0.12 a | 18 | 0.56 ± 0.03 b | 41 | * |
Schoenoplectetum lacustris | 0.70 ± 0.07 b | 33 | 0.95 ± 0.07 c | 19 | ns |
Typhetum angustifoliae | 0.95 ± 0.04 c | 62 | 0.78 ± 0.03 ac | 115 | * |
Dominant Species | Running Water Habitats | Standing Water Habitats | |||
Mean ± SE | n | Mean ± SE | n | ||
Phragmites australis | 1.10 ± 0.16 a | 54 | 0.63 ± 0.02 a | 40 | * |
Glyceria maxima | 0.73 ± 0.09 b | 31 | 0.61 ± 0.07 a | 20 | ns |
Schoenoplectus lacustris | 0.61 ± 0.07 c | 31 | 1.00 ± 0.11 b | 23 | * |
Typha angustifolia | 0.83 ± 0.05 b | 66 | 0.91 ± 0.03 b | 83 | ns |
Plant Species | Belowground Biomass | B/A | n |
---|---|---|---|
Phragmites australis | 1.89 ± 0.18 a | 1.54 ± 0.05 a | 35 |
Glyceria maxima | 0.70 ± 0.06 b | 0.77 ± 0.02 b | 15 |
Schoenoplectus lacustris | 1.75 ± 0.33 a | 1.41 ± 0.01 a | 13 |
Typha angustifolia | 1.68 ± 0.23 a | 1.47 ± 0.02 a | 38 |
Habitat Type and Region | Biomass | Reference | |
---|---|---|---|
Mean | Range | ||
Oněga lake | 0.35 | 0.1–1.1 | [32] |
Lakes of Karelia | 0.78 | 0.1–2.0 | [33,34] |
Reservoirs of the Upper Volga Valley | 0.3–0.6 | [35] | |
Reservoirs in the Kuban Delta Region | 0.3–0.8 | [35] | |
The Kuban limans | 0.3–7.5 | [35] | |
Reservoirs in the Volga Delta | 0.5–1.1 | [35] | |
Lakes in the forest-steppe in Western Siberia | 1.3–2.1 | [35] | |
Lakes of the Novosibirsk Region | 0.1–0.3 | [35] | |
Reservoirs of the Baikal region | 0.4–1.4 | [35] |
Species | Site(s) | Aboveground Biomass (kg · m−2) | Belowground Biomass (kg · m−2) | B/A Ratio | Reference |
---|---|---|---|---|---|
P. australis | Lake Häljasjön (mesotrophic, SE) | 0.9 (0.8–1.1) | 0.7 (0.7–0.8) | 1.0 (0.6–1.4) | [36] |
Lake Täkern, harvested stand (SE) | 1.0 | [37] | |||
Lake Ivösjön, harvested stand (SE) | 0.7 | [37] | |||
Lake Vänern, harvested stand (SE) | 1.8 | [37] | |||
Lake Vörtsjärv (eutrophic, EE) | (0.7–1.0) | [38] | |||
Branná sand pit (mesotrophic, CZ) | 0.9 | 1.1 | 1.2 | [39,40] | |
Littoral of Rožmberk fishpond (eutrophic, CZ) | 1.0 (0.8–1.4) | 2.5 (2.2–3.4) | 2.5 (1.7–4.1) | [39,40,41,42,43] | |
Littoral of Opatovický fishpond (eutrophic, CZ) | 1.8 | 5.1 (3.4–5.9) | 2.9 (2.0–4.7) | [41,44] | |
Kis–Balaton wetland, healthy stand (eutrophic, HU) | 1.5 | 2.6 | 1.8 | [45] | |
G. maxima | Fishponds littorals (CZ) | 1.0 (0.6–2.6) | 0.7–4.7 | 1.1–7.6 | [46,47] |
S. lacustris | Fishponds littorals (CZ | 2.1 (0.8–3.0) | 0.8–4.5 | 2.3–3.9 | [47] |
T. angustifolia | Fishponds littorals (CZ) | 1.8 (1.0–3.0) | 0.9–3.6 | 0.9–1.2 | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papchenkov, V.; Čížková, H. Variation in the Biomass of Phragmites australis Across Community Types in the Aquatic Habitats of the Middle Volga Valley. Diversity 2024, 16, 644. https://doi.org/10.3390/d16100644
Papchenkov V, Čížková H. Variation in the Biomass of Phragmites australis Across Community Types in the Aquatic Habitats of the Middle Volga Valley. Diversity. 2024; 16(10):644. https://doi.org/10.3390/d16100644
Chicago/Turabian StylePapchenkov, Vladimir, and Hana Čížková. 2024. "Variation in the Biomass of Phragmites australis Across Community Types in the Aquatic Habitats of the Middle Volga Valley" Diversity 16, no. 10: 644. https://doi.org/10.3390/d16100644
APA StylePapchenkov, V., & Čížková, H. (2024). Variation in the Biomass of Phragmites australis Across Community Types in the Aquatic Habitats of the Middle Volga Valley. Diversity, 16(10), 644. https://doi.org/10.3390/d16100644