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Abstract: Seed germination is a critical ecological process that governs both the establishment and
maintenance of plant diversity and is highly sensitive to temperature fluctuations. As climate change
accelerates, particularly through increasing temperatures, the disruption to seed germination could
pose significant risks to plant diversity. Therefore, understanding how temperature fluctuations
affect seed germination is essential for predicting the future recruitment of mountain plants and
for conserving biodiversity in the context of ongoing climate warming scenarios. In this study, we
collected seeds from 14 Impatiens species (Balsaminaceae) in the Gaoligong Mountains (Southwest
China) at an elevation of approximately 2000 m. Germination tests were conducted on seeds subjected
to cold stratification (42 days at 4 ◦C) across a range of alternating temperatures (6/1, 11/6, 16/11,
21/16, 26/21, and 31/26 ◦C). We used generalized linear mixed-effects models (random intercept)
with temperature and its higher-order terms as the fix-effect terms to construct four models describing
the relationship between germination percentage and temperature. Results indicated that (1) the ger-
mination percentage varied significantly among species and temperature treatments; (2) the nonlinear
and asymmetrical model, incorporating temperature and its quadratic and cubic terms, best fit the
germination data; and (3) the decline in germination percentage above the optimum temperature (To)
was significantly steeper than the increase below based on the best model. Overall, these findings
suggest that seed plants at low elevations in mountain ecosystems may be particularly vulnerable to
future climate warming due to the sharp decline in germination percentage at temperatures above To.
Thus, protecting low-elevation plants should be a key priority in biodiversity conservation efforts as
global temperatures continue to rise.
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1. Introduction

Seed germination is crucial for maintaining plant diversity in mountain ecosystems,
which host a substantial proportion of the world’s seed plants. This process is highly sensi-
tive to environmental hazards, particularly temperature fluctuations [1,2]. Temperature is
a critical environmental factor governing seed germination, and even minor fluctuations
can significantly impact plant survival by affecting germination success rates [3–5]. As
climate warming increases temperatures in mountain habitats, it is likely to exert strong
selective pressure on seed germination and plant regeneration [6]. However, our under-
standing of how climate warming will influence seed germination and plant diversity in
these ecosystems remains limited. As such, quantitative analysis of germination sensitivity
to temperature is essential for predicting the germination characteristics of mountain plants
and ensuring the protection of plant diversity in the context of climate warming [7].
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Cardinal temperatures are valuable for predicting seed germination under temperature
change scenarios [5]. Seeds germinate within a specific range, defined by a minimum
(Tmin) and maximum (Tmax) threshold temperature, outside of which germination does
not occur, with the highest germination percentage reached at the optimal temperature
(To) [8,9]. These cardinal temperatures can vary spatiotemporally, serving as an efficient
adaptation strategy to different ecological factors [10,11]. For instance, Mediterranean
low-elevation plants have lower Tmin values compared to high-elevation plants, enabling
them to avoid seed germination during brief warm periods in winter [10]. The Tmax
values for Peltophorum dubium seeds are higher in the northern provenance of Brazil, which
experiences higher temperatures compared to other provenances [12]. The To values
for Corymbia calophylla increase with the seed origin temperatures, aiding in maintaining
germination success under warmer habitats [13]. The three cardinal temperatures are
closely linked to environmental temperatures during seed development [12] and can be
quantified using thermal models, which are useful for characterizing germination responses
to temperature changes [8].

Various thermal models, such as intersected lines, quadratic polynomial, and five-
parameter beta models, have been developed and extensively used to investigate seed
germination responses to temperature fluctuations in both cultivated and wild species.
These studies suggest that nonlinear models are effective for assessing and predicting
shifts in seed germination due to temperature variations [10,14–18]. Conversely, linear
models have been successfully employed to quantify the effects of temperature on logit
or arcsine-transformed germination percentages, indicating that the relationships can be
significantly positive, negative, or non-correlated, depending on the temperature tolerance
of plants [4,14,19,20]. However, comparative studies on the effectiveness of nonlinear
versus linear models in capturing seed germination responses to temperature are limited,
with Watt et al. (2010) reporting that nonlinear models generally provide a more accurate
fit [21].

Nonlinear models, used to describe seed germination responses to temperature, can be
categorized into two main types based on the rate of change in germination percentage. The
first type, represented by models like intersected lines [8,18], assumes a linear relationship
between germination percentage (GP) and temperature (T) within the range from Tmin/max
to To (i.e., d(GP)/dT = constant). The second type, including models such as quadratic
polynomial [16,18], suggests that the rate of change in germination percentage is more
abrupt near Tmin/max than near To (i.e., d(GP)/dT = β0 + β1 × T). Nevertheless, beyond
these general trends, there remains a significant gap in our detailed understanding of how
temperature variations affect seed germination.

Seed germination responses to temperature changes are indirectly regulated by syn-
thetase, hydrolase, and antioxidant enzymes, which govern various key metabolic reactions
involved in the germination process [22,23]. These enzyme proteins are susceptible to
degradation at temperatures exceeding the optimal range (To), and thus, warming may
cause irreversible damage to proteases, unlike cooling [22,24]. According to the enzyme
kinetics theory, the rate of enzyme activity decline between To and Tmax is more rapid than
the rate of activity increase between Tmin and To [25]. Research also suggests that crop
seed production increases gradually with temperature up to To, then sharply declines at
temperatures above To, indicating a nonlinear and asymmetric relationship between crop
seed production and temperature [26]. Based on these theories and empirical findings, we
hypothesize that the relationship between seed germination and temperature is nonlinear
and asymmetric, with a steeper decline in germination percentage above To compared to
the incline below. To test these hypotheses, we addressed the following questions: (1) Are
nonlinear models more effective than linear models in describing the relationship between
germination percentage and temperature? (2) Is the reduction in germination percentage
due to temperatures increasing above To greater than the reduction caused by temperatures
decreasing below To?
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2. Materials and Methods
2.1. Species and Seed Collection

The genus Impatiens L. in the Balsaminaceae family is one of the largest among seed
plants and is widely distributed in subtropical and temperate zones of the Northern
Hemisphere [27]. Consequently, Impatiens species serve as representative herbs in mountain
ecosystems. Fully mature seeds from 14 Impatiens species were collected at the onset of
natural dispersal between 10 August and 20 October 2023 in the Gaoligong Mountains
(97◦30′–98◦30′ E, 24◦40′–25◦30′ N), Southwest Yunnan Province, China. For each species,
seeds were collected from a single site but from more than 15 individual plants, then
packed in paper envelopes and transported to the laboratory within 3 days. All collection
sites were distributed within a narrow elevational range of 1930 to 2180 m in similar wet
understory habitats on the eastern slopes of the Gaoligong Mountains to minimize maternal
seed effects. The maximum distance between the two collection sites was approximately
500 m, while the shortest distance was about 0.5 m. The collection area is influenced by the
Indian Ocean monsoon, with an annual rainfall of 648–1591 mm and a mean temperature
of 5.4–14.9 ◦C [28].

2.2. Germination Experiments

Physiological dormancy is a common trait of Impatiens seeds in Southwest China and
can be alleviated by the cold–moist stratification [3,29]. To address this, fresh Impatiens
seeds were sown five days post-harvest on seven layers of damp filter paper in 90 mm
diameter Petri dishes, then placed in a 4 ◦C refrigerator for 42 days to break dormancy.
Cold stratification at 4 ◦C does not harm Impatiens seeds, and the 42-day period represents
the maximum time required for Impatiens seeds at 2200 m elevation to overcome dormancy.

Prior to conducting germination tests, the seeds, having undergone dormancy break-
ing, were macerated in 0.3% sodium hypochlorite solution (NaClO) for 5 min, then rinsed
three times with distilled water to prevent fungal contamination. Three replicates of
30 seeds per species were sown on the surface of five layers of damp filter paper in 90 mm
diameter Petri dishes and incubated under alternating temperature regimes (6/1, 11/6,
16/11, 21/16, 26/21, and 31/26 ◦C) and a 12 h light/dark cycle, with light (4000 Lux)
applied during the warm phase. These temperatures included the highest and lowest
temperatures of the growing season in the sampling sites. Germination was monitored
daily, with seeds displaying visible radicles (≥1 mm) considered germinated. The trials
lasted for 30 days until no further germination was observed. Non-germinated seeds were
dissected, and those showing complete and hard embryos were considered viable [29,30].
The percentage of germinated seeds was calculated after discarding nonviable seeds. The
final dataset contained 252 germination records.

2.3. Data Analysis

The seed germination percentage does not follow a normal distribution. Consequently,
a nonparametric two-way analysis of variance (ANOVA) was employed to assess differ-
ences in germination percentages among species and temperatures using the “aov” function
in the R stats package. Germination percentage was converted to ranks as the response
variable using the “rank” function in stats, and temperature was converted to a categorical
variable using the “factor” function in stats before performing ANOVA.

Generalized linear mixed-effects models (GLMMs), with a logit link function and
binomial error structure, were used to quantify the relationship between seed germination
and temperature changes. In each random intercept model, species was included as the
random-effect term to account for germination variation among Impatiens species not
explained by the fixed-effect terms. To consider possible nonlinear responses of seed
germination to temperature changes, the average of day/night temperatures (i.e., 3.5, 8.5,
13.5, 18.5, 23.5, and 28.5 ◦C) and their higher-order terms (i.e., quadratic, cubic, and quartic)
were used as fix-effect terms to construct four alternative models. Model 1 used the average
of day/night temperature as a fix-effect term (logit(GP) = β0 + β1 × T + εspecies + ε0, ε ~
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N(0, σ2)); model 2 used the average of day/night temperature and its quadratic term as
fix-effect terms (logit(GP) = β0 + β1 × T + β2 × T2 + εspecies + ε0, ε ~ N(0, σ2)); model 3 used
the average temperature and its quadratic and cubic terms as fix-effect terms (logit(GP)
= β0 + β1 × T + β2 × T2 + β3 × T3 + εspecies + ε0, ε~ N(0, σ2)); model 4 used the average
temperature and its quadratic, cubic, and quartic terms as fix-effect terms (logit(GP) = β0
+ β1 × T + β2 × T2 + β3 × T3 + β4 × T4 + εspecies + ε0, ε ~ N(0, σ2)). GLMM analysis was
performed using the “glmer” function in the R package lme4. To compare independent
variables, temperature values were transformed to Z scores (mean = 0, SD = 1) before
GLMM analysis.

Model selection was conducted through a comprehensive evaluation of the Akaike
information criterion (AIC), collinearity, and the coefficient of determination (R2). AIC
estimates information loss when a specific model is used to describe the data-generating
process [31]. A model with an AIC value at least 2 units lower than another is considered
significantly better. The “anova” function in stats was used to compare AIC values among
models. Collinearity was assessed using the variance inflation factor (VIF) through the “vif”
function in the car package, with VIF values greater than 10 indicating high collinearity
among independent variables [32,33]. In addition, marginal and conditional R2 values were
calculated using the “r.squaredGLMM” function in the MuMIn package.

To determine the potential asymmetric effects of temperature change on seed germi-
nation, we used the best model, denoted as GP = f (T), to find the optimum germination
temperature (To) for Impatiens seeds using the “optimize” function in stats. We then ad-
justed the temperature unit at To (i.e., T = To ± 1) and compared the germination differences
between the two adjusted temperatures using the best model (i.e., ∆GP = f (To + 1) − f (To
− 1); Figure 1). To estimate the distribution of ∆GP, we employed the bootstrap method,
involving two steps. First, we used the “sample” function in stats to sample 252 records
with replacement from the original dataset and 1000 repeats. Second, we calculated ∆GP
for each bootstrap sample. The normality of ∆GP was determined using the Shapiro–Wilk
normality test with the “shapiro.test” function in stats. One-sample Student’s t-test was
performed using the “t.test” function in stats to determine whether the mean of the ∆GP
distribution differed from zero. All statistical analyses were conducted using R v.4.2.1 [34].
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Figure 1. Method for calculating ∆GP. Solid blue line represents germination as a function of
temperature, and three green dots from left to right represent values of the function at T = To − 1,
T = To, and T = To + 1, respectively.
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3. Results
3.1. Seed Germination Differences among Species and Germination Temperatures

Variation in germination percentages was observed among the 14 Impatiens species,
with I. cyanantha exhibiting the highest germination percentage (average = 87.62%; Figure 2)
and I. pianmaensis exhibiting the lowest (average = 26.3%; Figure 2). Significant differences
in germination percentages were observed among the Impatiens species when controlling
for germination temperature (F(13, 231) = 43.13, p < 0.001; Figure 2).
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Figure 2. Differences in germination percentage among Impatiens species and germination temper-
atures. Outlines are violin plots showing distribution of values across the data. Thicker sections
represent higher probability, while thinner sections represent lower probability. Points show ger-
mination percentage at different temperatures. Top left is a nonparametric two-way ANOVA table
showing variance of seed germination attributed to species, germination temperature, and residuals.

The To for the germination of most Impatiens seeds was around 18.5 ◦C (Figure 2).
For example, I. siculifer had a germination percentage exceeding 80% at 18.5 ◦C but less
than 40% at 3.5 ◦C, while I. yaojiapingensis showed 66.67% germination at 13.5 ◦C and
no germination at 28.5 ◦C (Figure 2). Significant differences in germination percentages
were also noted among different germination temperatures for the same Impatiens species
(F(6, 231) = 47.64, p < 0.001; Figure 2).

3.2. Modeling the Relationship between Germination Percentage and Temperature

The GLMMs were all significant (p < 0.05) and explained at least 86.21% of the variation
in germination percentage, which was largely attributable to the random effect (Table 1).
Model 1 had the highest AIC value (2283.9) and explained less variation than the other
models, indicating that a simple linear regression was not a good predictor of germination
response to temperature change (Table 1 and Figure 3a). Model 4 exhibited severe collinear-
ity with a VIF value of 21.01 (Table 1 and Figure 3d) despite having the lowest AIC value
(1710.9) and the highest R2 value (91.15%). Based on the AIC and VIF values, Model 3 (AIC
= 1713.3, VIF = 8.02; Table 1) was preferred over Model 2 (AIC = 1753.9, VIF = 1; Table 1).
This suggests that the cubic regression model with asymmetry (logit(GP) = β0 + β1 × T +
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β2 × T2 + β3 × T3 + εspecies + ε0, ε ~ N(0, σ2); Figure 3c) better described the relationship
between germination percentage and temperature than the quadratic regression model
with symmetry (logit(GP) = β0 + β1 × T + β2 × T2 + εspecies + ε0, ε ~ N(0, σ2); Figure 3b).

Table 1. Comparison of four generalized linear random intercept models explaining the relation-
ships between logit germination percentage and temperature, including higher-order terms (i.e.,
quadratic, cubic, and quartic) using various model selection criteria. GP: germination percentage; T:
temperature; AIC: Akaike information criterion; BIC: Bayesian information criterion; R2: coefficient
of determination; VIF: variance inflation factor; p: error probability; ε~ N(0, σ2).

Model AIC BIC Marginal R2 Conditional R2 Max VIF p-Value

logit(GP) = β0 + β1 × T + εspecies + ε0 2283.9 2294.5 3.26% 86.21%
logit(GP) = β0 + β1 × T + β2 × T2 + εspecies + ε0 1753.9 1768.1 26.86% 90.9% 1 <0.001
logit(GP) = β0 + β1 × T + β2 × T2 + β3 × T3 +
εspecies + ε0

1713.3 1731 28.18% 91.12% 8.02 <0.001

logit(GP) = β0 + β1 × T + β2 × T2 + β3 × T3 +
β4 × T4 + εspecies + ε0

1710.9 1732.1 28.38% 91.15% 21.01 0.036
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Figure 3. Relationship between germination percentage and temperature fitted by linear model (a),
quadratic polynomial model (b), cubic polynomial model (c), and quartic polynomial model (d),
respectively. Lines in (a–d) represent fitted models for each species, distinguished by different colors.

Model 3 revealed that the germination percentage decreased nonlinearly with temper-
atures at both the sub-optimal (<To) and supra-optimal (>To) levels (Table 2 and Figure 3c).
Specifically, the change in Impatiens seed germination percentage was less pronounced
between Tmin and To than between To and Tmax (d(GP)/dT = 0.64 + 2 × (−0.71) × T + 3 ×
(−0.26) × T2; Table 2 and Figure 3c).
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Table 2. Results of generalized linear random intercept model estimating the relationship between
logit (GP) with T, T2, and T3; GP: germination percentage; T: temperature.

Term Variable Estimate Standard Error p-Value

Intercept 1.06 0.27 <0.001
Fixed effect T 0.64 0.07 <0.001

T2 −0.71 0.03 <0.001
T3 −0.26 0.04 <0.001

Random effect Variable Variance

Species 0.97
Residual 3.21

3.3. Germination Percentage with Temperatures Above and Below TO

The ∆GP values ranged from −1.07 to 0.24 (average = −0.43) and followed a normal
distribution (w = 1, p = 0.159; Figure 4). One-sample Student’s t-test showed that the mean
value of ∆GP was significantly less than zero (t = −15.6, p < 0.001; Figure 4). This suggests
that increasing the temperature by 1 unit above the optimal temperature had a greater
inhibitory effect on germination than decreasing the temperature by 1 unit.
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4. Discussion
4.1. Seed Germination Variation among Impatiens Species

All 14 Impatiens species exhibited heritability in seed germination, with germination
percentages significantly influenced by species. This finding is consistent with Perglová
et al. (2009), who reported marked differences in seed germination among four Impatiens
species [35]. This observed variation could be attributed to a phylogenetic pattern in seed
germination behavior across seed plants globally [11,36]. Our results highlight the necessity
of considering genetic differences among species in seed germination studies, even for
closely related species.

4.2. Nonlinear and Asymmetric Relationship between Seed Germination and Temperature

An initially increasing and then decreasing trend in Impatiens seed germination per-
centage with incubation temperature was observed, consistent with previous reports for
various cultivated and wild species [4,14,30]. This pattern suggests the existence of a
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thermal threshold beyond which germination percentages decline in Impatiens species.
Seed germination behavior is an adaptation to the climatic conditions of a plant’s natural
habitat [3]; therefore, all 14 Impatiens species were able to germinate at 13.5 ◦C, corre-
sponding to the low temperatures before the rainy season in the Gaoligong Mountains.
This indicates convergent adaptation among Impatiens species, ensuring that subsequent
seedling establishment occurs when sufficient water is available.

Nonlinear models more accurately captured the relationship between germination
percentage and temperature compared to linear models, suggesting that the germination
percentage of Impatiens seeds increases with temperature until reaching an optimum,
after which it declines. While linear models are straightforward and can be helpful for
predicting germination responses to temperature fluctuations, they are generally more
prone to bias than nonlinear models [12]. Accumulating evidence has indicated that the
relationship between seed germination and temperature exhibits a significant curve, passing
through To [18,21,37]. Nonlinear models, such as quadratic polynomial models, intersected-
lines models, beta models, and Dent-like models, have been shown to fit germination
data well [15,16,18,37]. The suitability of a particular nonlinear model depends on the
germination behavior of the species or ecotype [18,37].

The relationship between germination percentage and temperature in Impatiens species
was also asymmetric, with the decline in germination percentage above To, which was
found to be significantly steeper than the incline below. This may be because temperatures
above To can cause seed death through protein denaturation [22]. As temperatures increase
above To, the enzyme activity controlling various seed metabolic processes decreases
sharply, eventually halting enzyme-catalyzed reactions as enzymes lose their ability to
function [25]. Additionally, asymmetric models are more adaptable than symmetric models,
as their curvilinear nature allows for a gradual transition between phases, producing a
smoother and more realistic curve [37]. This finding partially aligns with previous research
showing a gradual increase in corn, soybean, and cotton yields with rising temperatures
up to To, followed by a sharp decline beyond that point [26], indicating severe damage to
both agricultural seed production and wild plant propagation under climate warming. To
the best of our knowledge, this is the first report documenting a nonlinear and asymmetric
response of seed germination to temperature changes.

4.3. Implications for Plant Diversity Conservation Under Climate Warming Scenarios

Climate change, particularly rising temperatures, strongly influences seed germination,
plant recruitment, and species diversity [38]. Consequently, nonlinear and asymmetric
models that describe the relationship between seed germination and temperature are
essential tools for predicting the germination characteristics and seedling establishment
of mountain plants in the context of global climate change [6]. Plants in the mountains of
Southwest China, a global biodiversity hotspot, are generally restricted to specific climatic
conditions and are particularly vulnerable to climate warming [39]. The asymmetric
effects of temperature on seed germination suggest that rising temperatures due to climate
warming could make it difficult for seeds to germinate at low elevations in these mountains,
where plants are already near their upper germination temperature limits [5,17]. While
most previous studies on plant diversity conservation have focused primarily on the
germination responses of alpine plants to climate warming in the mountains of Southwest
China [40–43], our results suggest that plants at low elevations should also be of concern
due to the sharp decline in germination percentage at temperatures above the optimum.

5. Conclusions

Nonlinear and asymmetric models more accurately capture the relationship between
seed germination and temperature compared to nonlinear and symmetric models, in-
dicating that warming is more detrimental to seed germination than cooling above the
optimum temperature. In a warming world, plants are increasingly pushed toward their
upper germination temperature limits. This study highlights the importance of conserving
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plant diversity at low elevations in mountain ecosystems, where many species are already
approaching their upper germination temperature limits and experience substantial de-
clines in germination percentage at temperatures above their optimum. To the best of our
knowledge, this research is the first to reveal the nonlinear and asymmetric response of
seed germination to temperature changes.
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