Potential Distribution and Carbon Sequestration of Rhizophora mangle L. in El Vizcaíno Biosphere Reserve, Baja California Sur, Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Potential Distribution Maps
2.3. Carbon Sequestration Potential
- Mangrove stock in 2050 and 2070: the current ratio between the total area of the potential distribution of R. mangle in the state to the actual distribution area in the state stays constant over time.
- The conditions for potential distribution of R. mangle are also adequate for other mangrove species (A. germinans (L.) L. and L. racemosa (L.) C.F. Gaertn.) and co-exist together in the same environmental conditions [29].
- Carbon sequestration: the current carbon stock per unit area of mangroves (tree plus soil) in the Mexican North Pacific region (Mg C/ha) remains the same to 2050 and 2070.
- (1)
- Present ratio, r:
- (2)
- Expected mangrove area, E:
- (3)
- Stored carbon, S:
- (4)
- Carbon dioxide sequestration potential, CSP:
3. Results
3.1. Potential Distribution Maps
3.2. Carbon Sequestration Potential
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rzedowski, J. Vegetación de México; LIMUSA: Ciudad de México, Mexico, 1978. [Google Scholar]
- Spalding, M.; Leal, M. (Eds.) The State of the World’s Mangroves 2021; Global Mangrove Alliance: Washington, DC, USA, 2021. [Google Scholar]
- Food and agriculture Organization of the United Nations (FAO). The World’s Mangroves 1980–2005; FAO Forestry Paper 153; FAO: Rome, Italy, 2007. [Google Scholar]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- United Nations Environmental Program (UNEP). Decades of Mangrove Forest Change: What Does It Mean to Nature, People and the Climate; UNEP: Nairobi, Kenya, 2023. [Google Scholar]
- Mazda, Y.; Magi, M.; Ikeda, Y.; Kurokawa, T.; Asano, T. Wave reduction in a mangrove forest dominated by Sonneratia sp. Wetl. Ecol. Manag. 2006, 14, 365–378. [Google Scholar] [CrossRef]
- Danielsen, F.; Sørensen, M.K.; Olwig, M.F.; Selvam, V.; Parish, F.; Burgess, N.D.; Hiraishi, T.; Karunagaran, V.M.; Rasmussen, M.S.; Hansen, L.B.; et al. The Asian Tsunami: A Protective Role for Coastal Vegetation. Science 2005, 310, 643. [Google Scholar] [CrossRef] [PubMed]
- Alongi, D.M. Carbon sequestration in mangrove forests. Carbon Manag. 2012, 3, 313–322. [Google Scholar] [CrossRef]
- Ivanova, A.; Bermudez, A. Blue Carbon in Emissions Markets: Challenges and Opportunities for Mexico. In Towards an Emissions Trading System in Mexico: Rationale, Design and Connections with the Global Climate Agenda; Lucatello, S., Ed.; Springer&GIZ: Berlin/Heidelberg, Germany, 2022; pp. 265–284. [Google Scholar]
- Velázquez-Salazar, S.; Rodríguez-Zúñiga, M.T.; Alcántara-Maya, J.A.; Villeda-Chávez, E.; Valderrama-Landeros, L.; Troche-Souza, C.; Vázquez-Balderas, B.; Pérez-Espinosa, I.; Cruz-López, M.I.; Ressl, R.; et al. Manglares de México. Actualización y análisis de los datos 2020; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad; CDMX: Mexico City, México, 2021; p. 168. [Google Scholar]
- Hutchison, J.; Manica, A.; Swetnam, R.; Balmford, A.; Spalding, M. Predicting Global Patterns in Mangrove Forest Biomass. Conserv. Lett. 2014, 7, 233–240. [Google Scholar] [CrossRef]
- SEMARNAT (Secretaria del Medio ambiente y Recursos Naturales & Comisión Nacional de Áreas Naturales Protegidas). Understanding the Blue Carbon; SEMARNAT: Mexico City, Mexico, 2018; p. 40.
- Instituto Nacional de Ecología—Secretaria de Medio Ambiente, Recursos Naturales y Pesca (INE-SEMARNAP). Programa de manejo Reserva de la Biosfera El Vizcaíno; INE-SEMARNAP: Mexico City, México, 2000; p. 243. [Google Scholar]
- Alongi, D.M. The impact of climate change on mangrove forests. Curr. Clim. Chang. Rep. 2015, 1, 30–39. [Google Scholar] [CrossRef]
- Simard, S.; Fatoyinbo, L.; Smetanka, C.; Rivera-Monroy, V.H.; Castañeda-Moya, E.; Thomas, N.; Stocken, T. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 2019, 12, 40–45. [Google Scholar] [CrossRef]
- Goldberg, L.; Lagomasino, D.; Thomas, N.; Fatoyoinbo, T. Global declines in human-driven mangrove loss. Glob. Chang. Biol. 2020, 26, 5844–5855. [Google Scholar] [CrossRef]
- National Commission of Protected Natural Areas and United Nations Development Program (CONANP & PNUD). In Executive Summary of the Climate Change Adaptation Program of the El Vizcaíno Biosphere Reserve, 1st ed.; CONANP & PNUD: Mexico City, Mexico, 2020; p. 28. Available online: https://www.gob.mx/cms/uploads/attachment/file/579937/PACC_El_Vizcaino.pdf (accessed on 30 July 2024).
- Ivanova, A. Adaptación al cambio climático en la reserva de la Biósfera El Vizcaíno. Acciones para mejorar el bienestar de los habitantes y conservar la naturaleza; Universidad Autónoma de Baja California Sur: La Paz, Mexico, 2022; p. 335. [Google Scholar]
- Pearson, R.G.; Dawson, T.P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 2003, 12, 361–371. [Google Scholar] [CrossRef]
- Peterson, A.T.; Martínez-Meyer, E.; González-Salazar, C.; Hall, P.W. Modeled climate change effects on distributions of Canadian butterfly species. Can. J. Zool. 2004, 82, 851–858. [Google Scholar] [CrossRef]
- Record, S.; Charney, N.D.; Zakaria, R.M.; Ellison, A.M. Projecting global mangrove species and community distributions under climate change. Ecosphere 2013, 4, 34. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Almazroui, M.; Islam, M.N.; Saeed, F.; Saeed, S.; Ismail, M.; Ehsan, M.A.; Diallo, I.; O’Brien, E.; Ashfaq, M.; Martínez-Castro, D.; et al. Projected Changes in Temperature and Precipitation Over the United States, Central America, and the Caribbean in CMIP6 GCMs. Earth Syst. Environ. 2021, 5, 1–24. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; García, J.R.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Moreno-Amat, E.; Mateo, R.G.; Nieto-Lugilde, D.; Morueta-Holme, N.; Svenning, J.C.; García-Amorena, I. Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data. Ecol. Model. 2015, 312, 308–317. [Google Scholar] [CrossRef]
- Petitpierre, B.; Broennimann, O.; Kueffer, C.; Daehler, C.; Guisan, A. Selecting predictors to maximize the transferability of species distribution models: Lessons from cross-continental plant invasions. Glob. Ecol. Biogeogr. 2017, 26, 275–287. [Google Scholar] [CrossRef]
- Gómez-Pompa, A. Ecología de la Vegetación del Estado de Veracruz; CECSA: Villahermosa, México, 1977; p. 91. [Google Scholar]
- Rodríguez-Medina, K.; Yañez-Arenas, C.; Peterson, A.T.; Euán Ávila, J.; Herrera-Silveira, J. Evaluating the capacity of species distribution modeling to predict the geographic distribution of the mangrove community in Mexico. PLoS ONE 2020, 15, e0237701. [Google Scholar] [CrossRef]
- Cavanaugh, K.C.; Parker, J.D.; Cook-Patton, S.C.; Feller, I.C.; Williams, A.P.; Kellner, J.R. Integrating physiological threshold experiments with climate modeling to project mangrove species’ range expansion. Glob. Chang. Biol. 2015, 21, 1928–1938. [Google Scholar] [CrossRef]
- Osland, M.J.; Feher, L.C.; Griffith, K.T.; Cavanaugh, K.C.; Enwright, N.M.; Day, R.H.; Stagg, C.L.; Krauss, K.W.; Howard, R.J.; Grace, J.B.; et al. Climatic controls on the global distribution, abundance, and species richness of mangrove forests. Ecol. Monogr. 2016, 87, 341–359. [Google Scholar] [CrossRef]
- Yáñez-Arancibia, A.; Twilley, R.R.; Lara, A.L. Los ecosistemas de manglar frente al cambio climático global. Madera Y Bosques 1998, 4, 3–19. [Google Scholar] [CrossRef]
- Royle, J.A.; Chandler, R.B.; Yackulic, C.; Nichols, J.D. Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. Methods Ecol. Evol. 2012, 3, 545–554. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Van Etten, J.; Cheng, J.; Mattiuzzi, M.; Sumner, M.; Greenberg, J.A. Raster: Geographic Data Analysis and Modeling. R Package Version, 3. 2019. Available online: https://CRAN.R-project.org/package=raster (accessed on 12 May 2023).
- Bivand, R.; Keitt, T.; Rowlingson, B. Rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. R Package Version 1.5-18. 2020. Available online: https://rdrr.io/cran/rgdal/ (accessed on 12 May 2023).
- Pebesma, E.J.; Bivand, R.S. S classes and methods for spatial data: The sp package. R News 2005, 5, 9–13. [Google Scholar]
- Grosjean, P.H. SciViews: A GUI API for R 2019. UMONS. Available online: http://www.sciviews.org/SciViews-R (accessed on 12 May 2023).
- Core Team R. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2014. Available online: http://www.Rproject.org/ (accessed on 12 May 2023).
- Osorio-Olvera, L.; Lira-Noriega, A.; Soberón, J.; Peterson, A.T.; Falconi, M.; Contreras-Díaz, R.G.; Martínez-Meyer, E.; Barve, V.; Barve, N. ntbox: An R package with graphical user interface for modeling and evaluating multidimensional ecological niches. Methods Ecol. Evol. 2020, 11, 1199–1206. [Google Scholar] [CrossRef]
- Peterson, A.T.; Papes, M.; Soberón, J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Model. 2008, 213, 63–72. [Google Scholar] [CrossRef]
- Pearson, R.G.; Raxworthy, C.; Nakamura, M.; Peterson, A.T. Predicting species’ distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 2007, 34, 102–117. [Google Scholar] [CrossRef]
- National Commission for the Knowledge and Use of Biodiversity (CONABIO). Extensión y Distribución de Manglares; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). 2022. Available online: https://www.biodiversidad.gob.mx/monitoreo/smmm/extensionDist (accessed on 21 August 2024).
- Herrera-Silveira, J.A.; Pech-Cardenas, M.A.; Morales-Ojeda, S.M.; Cinco-Castro, S.; Camacho-Rico, A.; Caamal Sosa, J.P.; Mendoza-Martinez, J.E.; Pech-Poot, E.Y.; Montero, J.; Teutli-Hernandez, C. Blue carbon of Mexico, carbon stocks and fluxes: A systematic review. PeerJ 2020, 8, e8790. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, P.; Hu, W.; Chen, G.; Zhang, D.; Chen, B.; Lei, G. Modeling the Climate Suitability of Northernmost Mangroves in China under Climate Change Scenarios. Forests 2022, 13, 64. [Google Scholar] [CrossRef]
- Cavanaugh, K.C.; Kellner, J.R.; Forde, A.J.; Gruner, D.S.; Parker, J.D.; Rodriguez, W.; Feller, I.C. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc. Natl. Acad. Sci. USA 2014, 111, 723–727. [Google Scholar] [CrossRef]
- Fazlioglu, F.; Wan, J.S.H.; Chen, L. Latitudinal shifts in mangrove species worldwide: Evidence from historical occurrence records. Hydrobiologia 2020, 847, 4111–4123. [Google Scholar] [CrossRef]
- López-Medellin, X.; Ezcurra, E.; González-Abraham, C.; Hak, J.; Santiago, L.S.; Sickman, J.O. Oceanographic anomalies and sea-level rise drive mangroves inland in the Pacific coast of Mexico. J. Veget. Sci. 2011, 22, 143–151. [Google Scholar] [CrossRef]
- Hak, J.; López-Medellín, X.; Beltrán, J.M.; Josse, C.; Stein, B.; White, R. Changes in Mangrove Habitat in Baja California Sur from 1986 to 2001; Natureserve: Arlington, TX, USA, 2008. [Google Scholar]
- Keely, A.E.; Goulden, M.L. Rapid shifts in plant distribution with recent climate change. Proc. Natl. Acad. Sci. USA 2008, 105, 11823–11826. [Google Scholar] [CrossRef]
- Lenoir, J.; Gégout, J.C.; Marquet, P.A.; de Ruffray, P.; Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 2008, 320, 1768–1771. [Google Scholar] [CrossRef] [PubMed]
- Feeley, K.J.; Silman, M.R.; Bush, M.B.; Farfan, W.; Cabrera, K.G.; Malhi, Y.; Meir, P.; Salinas-Revilla, N.; Quisiyupanqui, M.N.R.; Saatchi, S. Upslope migration of Andean trees. J. Biogeogr. 2011, 38, 783–791. [Google Scholar] [CrossRef]
- Fei, S.; Desprez, J.M.; Potter, K.M.; Jo, I.; Knott, J.A.; Oswalt, C.M. Divergence of species responses to climate change. Sci. Adv. 2017, 3, e1603055. [Google Scholar] [CrossRef] [PubMed]
- Aburto-Oropeza, O.; Ezcurra, E.; Danemann, G.; Valdez, V.; Murray, J.; Sala, E. Mangroves in the Gulf of California increase fishery yields. Proc. Natl. Acad. Sci. USA 2008, 105, 10456–10459. [Google Scholar] [CrossRef]
- Ning, Z.H.; Turner, R.E.; Doyle, T.; Abdollahi, K.K. Integrated Assessment of the Climate Change Impacts on the Gulf Coast Region; GCRCC and LSU Graphic Services: Baton Rouge, LA, USA, 2003; p. 236. [Google Scholar]
- Coldren, G.A.; Langley, J.A.; Feller, I.C.; Chapman, S.K. Warming accelerates mangrove expansion and surface elevation gain in a subtropical wetland. J. Ecol. 2018, 107, 79–90. [Google Scholar] [CrossRef]
- Pörtner, H.-O.; Roberts, D.C.; Tignor, M.; Poloczanska, E.S.; Mintenbeck, K.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. (Eds.) IPCC, 2022: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; p. 3056. [Google Scholar] [CrossRef]
- Serrano, R. Legal Diagnosis of Coastal Zones: Design for Its Reform and Updating (A Study of Comparative Law); Autonomous University of Baja California Sur: La Paz, Mexico, 2018. [Google Scholar]
- Ausden, M. Climate change adaptation: Putting principles into practice. Environ. Manag. 2014, 54, 685–698. [Google Scholar] [CrossRef]
- Comisión Económica para América Latina y el Caribe (CEPAL). El Cambio Climático y Sus Efectos en la Biodiversidad en América Latina; CEPAL-Unión Europea: Naciones Unidas, Santiago, 2015; p. 84. [Google Scholar]
- Gesellschaft für Internationale Zusammenarbeit (GIZ). Adaptación basada en los Ecosistemas (AbE). Un nuevo enfoque para promover soluciones naturales para la adaptación al cambio climático en diferentes sectores. Medio Ambiente Y Cambio Climático 2012, 1–2. Available online: https://www.giz.de/expertise/downloads/giz2013-es-adaptacion-basada-en-los-ecosistemas.pdf (accessed on 12 May 2023).
- Convention on Biological Diversity (CBD). Connecting Biodiversity and Climate Change Mitigation and Adaptation: Report of the Second Ad Hoc Technical Expert Group on Biodiversity and Climate Change; Technical Series No. 41; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2009; p. 126. [Google Scholar]
Projection | Potential Distribution Area (km2) | Expected Mangrove Area (ha) | Carbon Stock (Mg C) | Sequestered CO2 (Mg CO2) |
---|---|---|---|---|
Current | 6544 | 10,989 | 2,251,544 | 8,255,663 |
ACCESS-CM2 SSP2-4.5 2050 | 9419 | 15,816 | 3,240,756 | 11,882,773 |
ACCESS-CM2 SSP2-4.5 2070 | 9619 | 16,153 | 3,309,702 | 12,135,575 |
ACCESS-CM2 SSP5-8.5 2050 | 8996 | 15,107 | 3,095,467 | 11,350,045 |
ACCESS-CM2 SSP5-8.5 2070 | 8067 | 13,546 | 2,775,593 | 10,177,174 |
EC-Earth3-Veg SSP2-4.5 2050 | 9948 | 16,704 | 3,422,738 | 12,550,040 |
EC-Earth3-Veg SSP2-4.5 2070 | 9479 | 15,917 | 3,261,470 | 11,958,722 |
EC-Earth3-Veg SSP5-8.5 2050 | 10,159 | 17,060 | 3,495,531 | 12,816,947 |
EC-Earth3-Veg SSP5-8.5 2070 | 9443 | 15,857 | 3,249,042 | 11,913,153 |
MPI-ESM1-2-HR SSP2-4.5 2050 | 10,238 | 17,193 | 3,522,754 | 12,916,765 |
MPI-ESM1-2-HR SSP2-4.5 2070 | 11,115 | 18,664 | 3,824,282 | 14,022,367 |
MPI-ESM1-2-HR SSP5-8.5 2050 | 10,431 | 17,516 | 3,589,037 | 13,159,802 |
MPI-ESM1-2-HR SSP5-8.5 2070 | 9873 | 16,579 | 3,396,994 | 12,455,646 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estrada-Contreras, I.; Bermúdez, A.; Castro, R.S.; Ivanova, A. Potential Distribution and Carbon Sequestration of Rhizophora mangle L. in El Vizcaíno Biosphere Reserve, Baja California Sur, Mexico. Diversity 2024, 16, 660. https://doi.org/10.3390/d16110660
Estrada-Contreras I, Bermúdez A, Castro RS, Ivanova A. Potential Distribution and Carbon Sequestration of Rhizophora mangle L. in El Vizcaíno Biosphere Reserve, Baja California Sur, Mexico. Diversity. 2024; 16(11):660. https://doi.org/10.3390/d16110660
Chicago/Turabian StyleEstrada-Contreras, Israel, Alfredo Bermúdez, Rodrigo Serrano Castro, and Antonina Ivanova. 2024. "Potential Distribution and Carbon Sequestration of Rhizophora mangle L. in El Vizcaíno Biosphere Reserve, Baja California Sur, Mexico" Diversity 16, no. 11: 660. https://doi.org/10.3390/d16110660
APA StyleEstrada-Contreras, I., Bermúdez, A., Castro, R. S., & Ivanova, A. (2024). Potential Distribution and Carbon Sequestration of Rhizophora mangle L. in El Vizcaíno Biosphere Reserve, Baja California Sur, Mexico. Diversity, 16(11), 660. https://doi.org/10.3390/d16110660