The Vulnerability of Malagasy Protected Areas in the Face of Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Data Analyses
3. Results
3.1. Distance-Based Climate Change Velocity Across Madagascar
3.2. Climate Change Velocity Inside and Outside Malagasy Protected Areas Per Ecoregion
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variable | PC1 | PC2 | PC3 | PC4 | PC5 |
---|---|---|---|---|---|
bio5c | −0.212408977 | −0.079635162 | −0.06350434 | 0.201013123 | −0.007483132 |
bio5f | −0.210254306 | −0.071025493 | −0.081536884 | 0.217047379 | −0.01570473 |
bio18c | 0.201609974 | −0.052284209 | 0.11994681 | 0.087286444 | −0.100895281 |
bio18f | 0.198566583 | −0.067888475 | 0.106267064 | 0.067548996 | −0.072145488 |
bio1f | −0.196488305 | −0.154587877 | −0.041407966 | 0.072229316 | −0.062983136 |
bio1c | −0.193929176 | −0.160712604 | −0.041631355 | 0.067036597 | −0.05284399 |
bio15f | −0.193400001 | 0.077361143 | 0.168676488 | −0.082053318 | −0.117422531 |
bio11f | −0.18936105 | −0.173791521 | 0.010284108 | 0.029620223 | 0.007294249 |
bio11c | −0.186057937 | −0.179828264 | 0.011167841 | 0.025375149 | 0.012618865 |
bio10f | −0.185912585 | −0.154480715 | −0.11270944 | 0.104912655 | −0.118266073 |
bio10c | −0.184996175 | −0.154971955 | −0.118984435 | 0.09887224 | −0.103548134 |
bio15c | −0.184496465 | 0.073778725 | 0.196946986 | −0.095771028 | −0.139640471 |
bio8f | −0.183946256 | −0.150462412 | −0.131463783 | 0.095340176 | −0.122163124 |
bio8c | −0.182323711 | −0.151549365 | −0.13696423 | 0.095194031 | −0.106107532 |
bio17f | 0.178692396 | −0.155990043 | −0.130240763 | 0.113436171 | 0.179811248 |
bio17c | 0.176864816 | −0.15848659 | −0.134078791 | 0.116854715 | 0.154160122 |
bio14f | 0.174843791 | −0.16063727 | −0.130683975 | 0.124231297 | 0.198951175 |
bio14c | 0.174592596 | −0.161752798 | −0.13382915 | 0.126573092 | 0.164212052 |
bio12c | 0.172886334 | −0.165322443 | 0.122673173 | 0.181604127 | −0.008241253 |
bio12f | 0.168490858 | −0.171006147 | 0.12249066 | 0.193289811 | −0.006233409 |
bio9f | −0.168230569 | −0.204466822 | −0.017826445 | 0.040671092 | 0.030893864 |
bio19f | 0.167765966 | −0.168896003 | −0.134221275 | 0.120905689 | 0.180593997 |
bio9c | −0.165643502 | −0.208187257 | −0.014329336 | 0.03222933 | 0.042329753 |
bio19c | 0.16545317 | −0.170346398 | −0.135497618 | 0.125590254 | 0.182272039 |
bio3f | −0.160715495 | 0.096982063 | 0.225187337 | 0.073193368 | 0.455977365 |
bio3c | −0.151057825 | 0.109446756 | 0.235632746 | 0.063697428 | 0.451687578 |
bio6f | −0.142357077 | −0.232627644 | −0.028344759 | −0.087537796 | 0.035987047 |
bio6c | −0.133420766 | −0.239768046 | −0.025702463 | −0.097877966 | 0.041250052 |
bio2c | −0.124840219 | 0.211611753 | 0.057394637 | 0.324958545 | 0.120374388 |
bio4f | 0.121532849 | 0.155968509 | −0.261155861 | 0.137722883 | −0.261987527 |
bio2f | −0.115591611 | 0.218899441 | 0.05189141 | 0.331240286 | 0.141015674 |
bio4c | 0.107060297 | 0.161238986 | −0.275831881 | 0.141649885 | −0.251496833 |
bio16c | 0.104973203 | −0.135473598 | 0.314175958 | 0.150294956 | −0.161476579 |
bio16f | 0.102428763 | −0.146512703 | 0.301585506 | 0.180587188 | −0.140939898 |
bio7c | −0.083182429 | 0.229490579 | −0.044359 | 0.386647423 | −0.066057912 |
bio13c | 0.072482035 | −0.13027901 | 0.349757762 | 0.113239291 | −0.196501446 |
bio13f | 0.064922425 | −0.139658337 | 0.342803348 | 0.155906057 | −0.163818143 |
bio7f | −0.054824225 | 0.241725708 | −0.059142405 | 0.387291753 | −0.069841388 |
Explained Variance | 0.484308764 | 0.292602565 | 0.140664911 | 0.046332683 | 0.014126612 |
Cumulative Variance | 0.484308764 | 0.7769113 | 0.9175762 | 0.9639089 | 0.9780355 |
References
- Dawson, T.P.; Jackson, S.T.; House, J.I.; Prentice, I.C.; Mace, G.M. Beyond Predictions: Biodiversity Conservation in a Changing Climate. Science 2011, 332, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Carroll, C.; Rohlf, D.J.; Li, Y.; Hartl, B.; Phillips, M.K.; Noss, R.F. Connectivity Conservation and Endangered Species Recovery: A Study in the Challenges of Defining Conservation-Reliant Species. Conserv. Lett. 2015, 8, 132–138. [Google Scholar] [CrossRef]
- Gardner, C.J.; Nicoll, M.E.; Birkinshaw, C.; Harris, A.; Lewis, R.E.; Rakotomalala, D.; Ratsifandrihamanana, A.N. The Rapid Expansion of Madagascar’s Protected Area System. Biol. Conserv. 2018, 220, 29–36. [Google Scholar] [CrossRef]
- Dobrowski, S.Z.; Littlefield, C.E.; Lyons, D.S.; Hollenberg, C.; Carroll, C.; Parks, S.A.; Abatzoglou, J.T.; Hegewisch, K.; Gage, J. Protected-Area Targets Could Be Undermined by Climate Change-Driven Shifts in Ecoregions and Biomes. Commun. Earth Environ. 2021, 2, 198. [Google Scholar] [CrossRef]
- Walther, G.R. Community and Ecosystem Responses to Recent Climate Change. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2019–2024. [Google Scholar] [CrossRef] [PubMed]
- Mascaro, J.; Hughes, R.F.; Schnitzer, S.A. Novel Forests Maintain Ecosystem Processes after the Decline of Native Tree Species. Ecol. Monogr. 2012, 82, 221–228. [Google Scholar] [CrossRef]
- Scheffers, B.R.; De Meester, L.; Bridge, T.C.L.; Hoffmann, A.A.; Pandolfi, J.M.; Corlett, R.T.; Butchart, S.H.M.; Pearce-Kelly, P.; Kovacs, K.M.; Dudgeon, D. The Broad Footprint of Climate Change from Genes to Biomes to People. Science 2016, 354, aaf7671. [Google Scholar] [CrossRef]
- Crossman, N.D.; Bryan, B.A.; Summers, D.M. Identifying Priority Areas for Reducing Species Vulnerability to Climate Change. Divers. Distrib. 2012, 18, 60–72. [Google Scholar] [CrossRef]
- Groves, C.R.; Game, E.T.; Anderson, M.G.; Cross, M.; Enquist, C.; Ferdaña, Z.; Girvetz, E.; Gondor, A.; Hall, K.R.; Higgins, J.; et al. Incorporating Climate Change into Systematic Conservation Planning. Biodivers. Conserv. 2012, 21, 1651–1671. [Google Scholar] [CrossRef]
- Nadeau, C.P.; Fuller, A.K.; Rosenblatt, D.L. Climate-Smart Management of Biodiversity. Ecosphere 2015, 6, art91. [Google Scholar] [CrossRef]
- Laurance, W.F.; Koster, H.; Grooten, M.; Anderson, A.B.; Zuidema, P.A.; Zwick, S.; Zagt, R.J.; Lynam, A.J.; Linkie, M.; Anten, N.P.R. Making Conservation Research More Relevant for Conservation Practitioners. Biol. Conserv. 2012, 153, 164–168. [Google Scholar] [CrossRef]
- Thomas, C.D.; Gillingham, P.K. The Performance of Protected Areas for Biodiversity under Climate Change. Biol. J. Linn. Soc. 2015, 115, 718–730. [Google Scholar] [CrossRef]
- Urban, M.C.; Zarnetske, P.L.; Skelly, D.K. Moving Forward: Dispersal and Species Interactions Determine Biotic Responses to Climate Change. Ann. N. Y. Acad. Sci. 2013, 1297, 44–60. [Google Scholar] [CrossRef] [PubMed]
- Batllori, E.; Parisien, M.A.; Parks, S.A.; Moritz, M.A.; Miller, C. Potential Relocation of Climatic Environments Suggests High Rates of Climate Displacement within the North American Protection Network. Glob. Chang. Biol. 2017, 23, 3219–3230. [Google Scholar] [CrossRef] [PubMed]
- Littlefield, C.E.; McRae, B.H.; Michalak, J.L.; Lawler, J.J.; Carroll, C. Connecting Today’s Climates to Future Climate Analogs to Facilitate Movement of Species under Climate Change. Conserv. Biol. 2017, 31, 1397–1408. [Google Scholar] [CrossRef]
- Holsinger, L.; Parks, S.A.; Parisien, M.A.; Miller, C.; Batllori, E.; Moritz, M.A. Climate Change Likely to Reshape Vegetation in North America’s Largest Protected Areas. Conserv. Sci. Pract. 2019, 1, e50. [Google Scholar] [CrossRef]
- Velazco, S.J.E.; Villalobos, F.; Galvão, F.; de Marco Júnior, P. A Dark Scenario for Cerrado Plant Species: Effects of Future Climate, Land Use and Protected Areas Ineffectiveness. Divers. Distrib. 2019, 25, 660–673. [Google Scholar] [CrossRef]
- Araújo, M.B.; Alagador, D.; Cabeza, M.; Nogués-Bravo, D.; Thuiller, W. Climate Change Threatens European Conservation Areas. Ecol. Lett. 2011, 14, 484–492. [Google Scholar] [CrossRef]
- Fuentes-Castillo, T.; Scherson, R.A.; Marquet, P.A.; Fajardo, J.; Corcoran, D.; Román, M.J.; Pliscoff, P. Modelling the Current and Future Biodiversity Distribution in the Chilean Mediterranean Hotspot. The Role of Protected Areas Network in a Warmer Future. Divers. Distrib. 2019, 25, 1897–1909. [Google Scholar] [CrossRef]
- Hoffmann, S.; Irl, S.; Beierkuhnlein, C. Predicted Climate Shifts within Terrestrial Protected Areas Worldwide. Nat. Commun. 2019, 10, 4787. [Google Scholar] [CrossRef]
- Hole, D.G.; Huntley, B.; Arinaitwe, J.; Butchart, S.H.M.; Collingham, Y.C.; Fishpool, L.D.C.; Pain, D.J.; Willis, S.G. Toward a Management Framework for Networks of Protected Areas in the Face of Climate Change. Conserv. Biol. 2011, 25, 305–315. [Google Scholar] [CrossRef]
- Lai, Q.; Hoffmann, S.; Jaeschke, A.; Beierkuhnlein, C. Emerging Spatial Prioritization for Biodiversity Conservation Indicated by Climate Change Velocity. Ecol. Indic. 2022, 138, 108829. [Google Scholar] [CrossRef]
- Ganzhorn, J.U.; Lowry, P.P.; Schatz, G.E.; Sommer, S. The Biodiversity of Madagascar: One of the World’s Hottest Hotspots on its Way Out. Oryx 2001, 35, 346–348. [Google Scholar] [CrossRef]
- Goyder, D.; Baker, W.; Besnard, G.; Dransfield, D.; Gardiner, D.; Moat, D.; Rabehevitra, D.; Rajaovelona, D.; Rakotoarisoa, S.; Rakotonasolo, F.; et al. Country Focus—State of knowledge of Madagascan Plants. In State of the World’s Plants 2017. Report; Willis, K.J., Ed.; Royal Botanic Gardens, Kew: Richmond, UK, 2017. [Google Scholar]
- Antonelli, A.; Smith, R.J.; Perrigo, A.L.; Crottini, A.; Hackel, J.; Testo, W.; Farooq, H.; Torres Jiménez, M.F.; Andela, N.; Andermann, T.; et al. Madagascar’s Extraordinary Biodiversity: Evolution, Distribution, and Use. Science 2022, 378, eabf0869. [Google Scholar] [CrossRef]
- Goodman, S.M.; Benstead, J.P. Updated Estimates of Biotic Diversity and Endemism for Madagascar. Oryx 2005, 39, 73–77. [Google Scholar] [CrossRef]
- Goodman, S.M. Updated Estimates of Biotic Diversity and Endemism for Madagascar—Revisited after 20 years. Oryx 2023, 57, 561–565. [Google Scholar] [CrossRef]
- Harper, G.J.; Steininger, M.K.; Tucker, C.J.; Juhn, D.; Hawkins, F. Fifty Years of Deforestation and Forest Fragmentation in Madagascar. Environ. Conserv. 2007, 34, 325–333. [Google Scholar] [CrossRef]
- Vieilledent, G.; Grinand, C.; Rakotomalala, F.A.; Ranaivosoa, R.; Rakotoarijaona, J.R.; Allnutt, T.F.; Achard, F. Combining Global Tree Cover Loss Data with Historical National Forest Cover Maps to Look at Six Decades of Deforestation and Forest Fragmentation in Madagascar. Biol. Conserv. 2018, 222, 189–197. [Google Scholar] [CrossRef]
- Rakotomala, F.A.; Rabenandrasana, J.C.; Andriambahiny, J.E.; Rajaonson, R.; Andriamalala, F.; Burren, C.; Rakotoarijaona, J.R.; Parany, B.L.E.; Vaudry, R.; Rakotoniaina, S.; et al. Estimation de la Deforestation des Forets Humides á Madagascar utilisant une Classification Multidate d’Images Landsat Entre 2005, 2010 et 2013. Rev. Fr. Photogramm. Teledetect. 2015, 1, 11–23. [Google Scholar] [CrossRef]
- Rafanoharana, S.C.; Andrianambinina, F.O.; Rasamuel, H.A.; Waeber, P.O.; Wilmé, L.; Ganzhorn, J.U. Projecting Forest Cover in Madagascar’s Protected Areas to 2050 and its Implications for Lemur Conservation. Oryx 2024, 58, 155–163. [Google Scholar] [CrossRef]
- Goodman, S.M.; Raherilalao, M.J.; Wohlhauser, S. Les Aires Protégées Terrestres de Madagascar: Leur Histoire, Description et Biote/The Terrestrial Protected Areas of Madagascar: Their History, Description, and Biota; Association Vahatra: Antananarivo, Madagasca, 2018. [Google Scholar]
- Mazaris, A.D.; Papanikolaou, A.D.; Barbet-Massin, M.; Kallimanis, A.S.; Jiguet, F.; Schmeller, D.S.; Pantis, J.D. Evaluating the Connectivity of a Protected Areas’ Network under the Prism of Global Change: The Efficiency of the European Natura 2000 Network for Four Birds of Prey. PLoS ONE 2013, 8, e59640. [Google Scholar] [CrossRef]
- van Teeffelen, A.; Meller, L.; van Minnen, J.; Vermaat, J.; Cabeza, M. How Climate Proof Is the European Union’s Biodiversity Policy? Reg. Environ. Chang. 2015, 15, 997–1010. [Google Scholar] [CrossRef]
- Carroll, C.; Lawler, J.J.; Roberts, D.R.; Hamann, A. Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change. PLoS ONE 2015, 10, e0140486. [Google Scholar] [CrossRef]
- Hamann, A.; Roberts, D.R.; Barber, Q.E.; Carroll, C.; Nielsen, S.E. Velocity of Climate Change Algorithms for Guiding Conservation and Management. Glob. Chang. Biol. 2015, 21, 997–1004. [Google Scholar] [CrossRef]
- Carroll, C.; Roberts, D.R.; Michalak, J.L.; Lawler, J.J.; Nielsen, S.E.; Stralberg, D.; Hamann, A.; Mcrae, B.H.; Wang, T. Scale-Dependent Complementarity of Climatic Velocity and Environmental Diversity for Identifying Priority Areas for Conservation under Climate Change. Glob. Chang. Biol. 2017, 23, 4508–4520. [Google Scholar] [CrossRef]
- UNEP-WCMC and IUCN. Protected Planet: The World Database on Protected Areas (WDPA) and World Database on Other Effective Area-based Conservation Measures (WD-OECM); UNEP-WCMC and IUCN: Cambridge, UK, 2024; Available online: www.protectedplanet.net (accessed on 25 April 2024).
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, P.; Kessler, M. Climatologies at High Resolution for the Earth Land Surface Areas. Sci. Data 2017, 4, 170122. [Google Scholar] [CrossRef]
- Brun, P.; Zimmermann, N.E.; Hari, C.; Pellissier, L.; Karger, D. Data from: CHELSA-BIOCLIM+ A novel set of global climate-related predictors at kilometer-resolution. EnviDat 2022. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E. The Global 200: Priority Ecoregions for Global Conservation. Ann. Mo. Bot. Gard. 2002, 89, 199–224. [Google Scholar] [CrossRef]
- GADM. Database of Global Administrative Areas, Version 4.1 (gadm.org). 2020–2022. Available online: https://gadm.org/download_country.html (accessed on 25 April 2024).
- Coldrey, K.M.; Turpie, J.K. The Future Representativeness of Madagascar’s Protected Area Network in the Face of Climate Change. Afr. J. Ecol. 2021, 59, 253–263. [Google Scholar] [CrossRef]
- Haight, J.; Hammill, E. Protected Areas as Potential Refugia for Biodiversity under Climatic Change. Biol. Conserv. 2020, 241, 108258. [Google Scholar] [CrossRef]
- Hoffmann, S.; Beierkuhnlein, C. Climate Change Exposure and Vulnerability of the Global Protected Area Estate from an International Perspective. Divers. Distrib. 2020, 26, 1496–1509. [Google Scholar] [CrossRef]
- Kremen, C.; Cameron, A.; Moilanen, A.; Phillips, S.J.; Thomas, C.D.; Beentje, H.; Dransfield, J.; Fisher, B.L.; Glaw, F.; Good, T.C.; et al. Aligning Conservation Priorities across Taxa in Madagascar with High-resolution Planning Tools. Science 2018, 320, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Morelli, T.L.; Smith, A.B.; Mancini, A.N.; Balko, E.A.; Borgerson, C.; Dolch, R.; Farris, Z.; Federman, S.; Golden, C.D.; Holmes, S.M.; et al. The Fate of Madagascar’s Rainforest Habitat. Nat. Clim. Chang. 2020, 10, 89–96. [Google Scholar] [CrossRef]
- Kupika, O.L.; Gandiwa, E.; Nhamo, G.; Kativu, S. Local Ecological Knowledge on Climate Change and Ecosystem-based Adaptation Strategies Promote Resilience in the Middle Zambezi Biosphere Reserve, Zimbabwe. Scientifica 2019, 2019, 3069254. [Google Scholar] [CrossRef]
- Beierkuhnlein, C. Nature Conservation of a Moving Target—Protected Areas in Transition. Berichte Reinhold-Tüxen-Ges. 2024, 33. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, Q.; Beierkuhnlein, C. The Vulnerability of Malagasy Protected Areas in the Face of Climate Change. Diversity 2024, 16, 661. https://doi.org/10.3390/d16110661
Lai Q, Beierkuhnlein C. The Vulnerability of Malagasy Protected Areas in the Face of Climate Change. Diversity. 2024; 16(11):661. https://doi.org/10.3390/d16110661
Chicago/Turabian StyleLai, Qi, and Carl Beierkuhnlein. 2024. "The Vulnerability of Malagasy Protected Areas in the Face of Climate Change" Diversity 16, no. 11: 661. https://doi.org/10.3390/d16110661
APA StyleLai, Q., & Beierkuhnlein, C. (2024). The Vulnerability of Malagasy Protected Areas in the Face of Climate Change. Diversity, 16(11), 661. https://doi.org/10.3390/d16110661