Multiple Speciation and Extinction Rate Shifts Shaped the Macro-Evolutionary History of the Genus Lycium Towards a Rather Gradual Accumulation of Species Within the Genus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Assembling the Phylogeny of Lycium
2.2. Ancestral Area Reconstruction States: Historical Biogeography of Lycium
2.3. Diversification Analysis
2.4. Quantifying the Evolutionary Events That Shaped the Diversification of the Genus Lycium
3. Results
3.1. Phylogeny
3.2. Reconstruction of Historical Biogeography
3.3. Diversification Analysis
4. Discussion
4.1. Phylogeny
4.2. Biogeography Analysis
4.3. Diversification Dynamics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hunziker, A.T. South American Solanaceae: A synoptic survey. In The Biology and Taxonomy of the Solanaceae; Hawkes, G.J., Lester, R.N., Skelding, A.D., Eds.; Academic Press: London, UK, 1979; pp. 49–85. [Google Scholar]
- Hunziker, A.T. Solanaceae, parte 5: Tribu IV. Lycieae, parte B Grabowskia. Flora Faneroga’mica Argent. 1997, 41, 3–8. [Google Scholar]
- Bernardello, L.M.; Hunziker, A.T. Estudios sobre Solanaceae XXVI. Revisio’n taxono’mica de Phrodus. Kurtziana 1987, 19, 69–76. [Google Scholar]
- Hitchcock, C.L. A monographic study of the genus Lycium of the western hemisphere. Ann. Mo. Bot. Gard. 1932, 19, 179–374. [Google Scholar] [CrossRef]
- D’Arcy, W.G. Classification of Solanaceae. In The Biology and Taxonomy of the Solanaceae; Hawkes, G.J., Lester, R.N., Skelding, A.D., Eds.; Academic Press: London, UK, 1979; pp. 3–47. [Google Scholar]
- D’Arcy, W.G. The Solanaceae since 1976 with a review of its biogeography. In Solanaceae III: Taxonomy—Chemistry—Evolution; Hawks, J.G., Lester, R.N., Nee, M., Eserada, N., Eds.; Royal Botanic Garden, Kew and the Linnean Society of London: Richmond, VA, USA, 1991; pp. 75–137. [Google Scholar]
- Fukuda, T.; Yokoyama, J.; Ohashi, H. Phylogeny and Biogeography of the genus Lycium (Solanaceae) Inferences from Chloroplast DNA sequences. Mol. Phylogenet. Evol. 2001, 19, 246–258. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.S. Phylogenetic relationships and the evolution of gender dimorphism in Lycium (Solanaceae). Syst. Bot. 2002, 27, 416–428. [Google Scholar]
- Levin, R.A.; Miller, J.S. Relationships within tribe Lycieae (Solanaceae): Paraphyly of Lycium and multiple origins of gender dimorphism. Am. J. Bot. 2005, 92, 2044–2053. [Google Scholar] [CrossRef]
- Cao, Y.L.; Li, Y.L.; Fan, Y.F.; Li, Z.; Yoshida, K.; Wang, J.Y.; Ma, X.K.; Wang, N.; Mitsuda, N.; Kotake, T.; et al. Wolfberry genomes and the evolution of Lycium (Solanaceae). Commun. Biol. 2021, 4, 671. [Google Scholar] [CrossRef]
- Chiang-Cabrera, F. A Taxonomic Study of the North American Species of Lycium (Solanaceae). Ph.D. Dissertation, The University of Texas, Austin, TX, USA, 1981. [Google Scholar]
- Joubert, A.M. n Taksonomies-Mortologiese Studies van Lycium L. (Solanaceae) in Suider Afrika. Master’s Thesis, University of Orange Free State, Bloemfontein, South Africa, 1981. [Google Scholar]
- Bernardello, L.M. Revisio’n taxono’mica de las especies sudamericanas de Lycium (Solanaceae). Boletı’N Acad. Nac. Cienc. Co’Rdoba 1986, 57, 173–356. [Google Scholar]
- Bernardello, L.M. Comparative floral morphology in Lycieae. Brittonia 1987, 39, 112–129. [Google Scholar] [CrossRef]
- Middleditch, B.S. Kuwaiti Plants: Distribution, Traditional Medicine, Pytochemistry, Pharmacology and Economic Value 2; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Yamakazi, T. Solanaceae. In Flora of Japan; Iwatsuki, K., Yamazaki, T., Boufford, D.E., Ohba, H., Eds.; Kodansha Ltd.: Tokyo, Japan, 1993; Volume IIIa, pp. 183–194. [Google Scholar]
- Abe, T. Threatened pollination systems in native flora of the Ogasawara (Bonin) Islands. Ann. Bot. 2006, 98, 317–334. [Google Scholar] [CrossRef]
- Symon, D.E. Gondwanan elements of the Solanaceae. In Solanaceae III: Taxonomy—Chemistry—Evolution; Hawks, J.G., Lester, R.N., Nee, M., Eserada, N., Eds.; Royal Botanic Garden, Kew and the Linnean Society of London: Richmond, VA, USA, 1991; pp. 139–150. [Google Scholar]
- Raven, P.H.; Axelrod, D.I. Angiosperm biogeography and past continental movements. Ann. Mo. Bot. Gard. 1974, 61, 539–673. [Google Scholar] [CrossRef]
- Levin, R.A.; Miller, J.S. Molecular signatures of long-distance oceanic dispersal and the colonization of Pacific islands in Lycium carolinianum. Am. J. Bot. 2021, 108, 694–710. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.S.; Kamath, A.; Damashek, J.; Levin, R.A. Out of America to Africa or Asia: Inference of Dispersal Histories Using Nuclear and Plastid DNA and the S-RNase Self-incompatibility Locus. Mol. Biol. Evol. 2011, 28, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Gavrilets, S.; Losos, J.B. Adaptive radiation: Contrasting theory with data. Science 2009, 323, 732–737. [Google Scholar] [CrossRef]
- McPeek, M.A.; Brown, J.M. Building a regional species pool: Diversification of the Enallagma damselflies in eastern North American waters. Ecology 2000, 81, 904–920. [Google Scholar] [CrossRef]
- Stoks, R.; McPeek, M.A. A tale of two diversifications: Reciprocal habitat shifts to fill ecological space along the pond permanence gradient. Am. Nat. 2006, 168, S50–S72. [Google Scholar] [CrossRef]
- Harvey, P.H.; May, R.M.; Nee, S. Phylogenies without fossils. Evolution 1994, 48, 523–529. [Google Scholar] [CrossRef]
- Rabosky, D.L.; Lovette, I.J. Explosive evolutionary radiations: Increasing extinction or decreasing speciation through time? Evolution 2008, 62, 1866–1875. [Google Scholar] [CrossRef]
- Hoorn, C.; Wesselingh, F.P.; Ter Steege, H.; Bermudez, M.A.; Mora, A.; Sevink, J.; Sanmartín, I.; Sanchez-Meseguer, A.; Anderson, C.L.; Figueiredo, J.P.; et al. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 2010, 330, 927–931. [Google Scholar] [CrossRef]
- Condamine, F.L.; Nagalingum, N.S.; Marshall, C.R.; Morlon, H. Origin and diversification of living cycads: A cautionary tale on the impact of the branching process prior in Bayesian molecular dating. BMC Evol. Biol. 2015, 15, 65. [Google Scholar] [CrossRef]
- Barraclough, T.G.; Vogler, A.P. Recent diversification rates in North American tiger beetles estimated from a dated mtDNA phylogenetic tree. Mol. Biol. Evol. 2002, 19, 1706–1716. [Google Scholar] [CrossRef] [PubMed]
- Linder, H.P.; Eldenäs, P.; Briggs, B.G. Contrasting patterns of radiation in African and Australian Restionaceae. Evolution 2003, 57, 2688–2702. [Google Scholar] [PubMed]
- Turgeon, J.; Stoks, R.; Thum, R.A.; Brown, J.M.; McPeek, M.A. Simultaneous quaternary radiations of three damselfly clades across the Holarctic. Am. Nat. 2005, 165, E78–E107. [Google Scholar] [CrossRef] [PubMed]
- Meseguer, A.S.; Michel, A.; Fabre, P.-H.; Pérez Escobar, O.A.; Chomicki, G.; Riina, R.; Antonelli, A. Diversification dynamics in the Neotropics through time, clades, and biogeographic regions. eLife 2022, 11, e74503. [Google Scholar] [CrossRef]
- Levin, R.A.; Shak, J.R.; Miller, J.S.; Bernardello, G.; Venter, A.M. Evolutionary relationships in Tribe Lycieae (Solanaceae). VI International Solanaceae Conference: Genomics Meets Biodiversity. Acta Hortic. 2007, 745, 225–240. [Google Scholar] [CrossRef]
- Drummond, A.J.; Suchard, M.A.; Xie, D.; Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012, 29, 1969–1973. [Google Scholar] [CrossRef]
- Akaike, H. Information theory and an extension of maximum likelihood principle. In Proceedings of the Second International Symposium on Information Theory, Tsaghkadzor, Armenia, 2–8 September 1971; Petrov, B.N., Caski, F., Eds.; Akademiai Kiado: Budapest, Hungary, 1973; pp. 267–281. [Google Scholar]
- Nylander, J.A.A. Modeltest, version 2. Program Distributed by the Author. Evolutionary Biology Centre. Uppsala Univ.: Uppsala, Sweden, 2004.
- Bousquet, J.; Strauss, S.H.; Doerksen, A.H.; Price, R.A. Extensive variation in evolutionary rate of rbcl gene sequences among seed plants. Proc. Natl. Acad. Sci. USA 1992, 89, 7844–7848. [Google Scholar] [CrossRef]
- Drummond, A.J.; Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 2007, 7, 214. [Google Scholar] [CrossRef]
- Rambaut, A.; Drummond, A.J. Tree-Annotator, (version 1.5.4). 2007. Available online: http://beast.bio.ed.ac.uk (accessed on 16 March 2024).
- Yan, Y.; Harris, A.J.; Xingjin, H. S-DIVA (Statistical Dispersal-Vicariance Analysis): A tool for inferring biogeographic histories. Mol. Phylogenet. Evol. 2010, 56, 848–850. [Google Scholar]
- Höhna, S.; May, M.R.; Moore, B.R. TESS: An R package for efficiently simulating phylogenetic trees and performing Bayesian inference of lineage diversification rates. Bioinformatics 2015, 32, btv651. [Google Scholar] [CrossRef]
- Bernardello, L.; Chiang-Cabrera, F. A cladistic study on the American species of Lycium (Solanaceae) based on morphological variation. In Proceedings of the VI Congreso Latinoamericano de Bota’nica, Mar del Plata, Argentina, 2–8 October 1994; Bacigalupo, N., Fortunato, R., Eds.; Missouri Botanical Garden Press: St. Louis, MO, USA, 1998; pp. 33–46. [Google Scholar]
- Smith, A.G.; Briden, J.C. Mesozoic and Cenozoic Paleocontinental Maps; Cambridge Univ. Press: Cambridge, UK, 1977. [Google Scholar]
- Gillespie, R.G.; Baldwin, B.G.; Waters, J.M.; Fraser, C.I.; Nikula, R.; Roderick, G.K. Long-distance dispersal: A framework for hypothesis testing. Trends Ecol. Evol. 2012, 27, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Zhurba, M.Y.; Klymenko, S.V.; Szot, I. Variability of morphometric traits of seeds of different genotypes of Lycium spp. Plant Var. Stud. Prot. 2021, 17, 5–13. [Google Scholar]
- Proctor, V.W. Long-distance dispersal of seeds by retention in digestive tract of birds. Science 1968, 160, 321–322. [Google Scholar] [CrossRef]
- Vlaming, V.; Proctor, V.W. Dispersal of aquatic organisms: Viability of seeds recovered from the droppings of captive Killdeer and Mallard Duck. Am. J. Bot. 1968, 55, 20–26. [Google Scholar] [CrossRef]
- McCulloch, G.A.; Gurdasani, K.; Hereward, J.P.; Morin, L.; Walter, G.H.; Raghu, S. Invasion history of Lycium ferocissimum in Australia: The impact of admixture on genetic diversity and differentiation. Divers. Distrib. 2023, 29, 879–891. [Google Scholar] [CrossRef]
- Carlquist, S. The biota of long-distance dispersal V: Plant dispersal to Pacific Islands. Bull. Torrey Bot. Club. 1967, 94, 129–162. [Google Scholar] [CrossRef]
- Carlquist, S. Chance dispersal: Long-dispersal of organisms, widely accepted as a major cause of distribution patterns, poses challenging problems of analysis. Am. Sci. 1981, 69, 509–516. [Google Scholar]
- Ono, M.; Sugawara, T. An analysis of flowering plant flora of the Ogasawara (Bonin) Islands with regard to their mode of dispersal. Ogasawara Res. 1980, 5, 25–40. [Google Scholar]
- Guppy, H.B. Plant dispersal. In Observation of a Naturalist in the Pacific Between 1891 and 1899; Macmillan & Co.: London, UK, 1906; Volume 2. [Google Scholar]
- Carlquist, S. The biota of long-distance dispersal II: Loss of dispersibility in Pacific Compositae. Evolution 1965, 20, 30–48. [Google Scholar] [CrossRef]
- Munro, C.M.; Gagne’, W.C.; Mull, M.E. Hawaii’s Birds; Hawaii Audubon Society: Honolulu, HI, USA, 1989. [Google Scholar]
- Crisp, M.D.; Cook, L.G. Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperm. New Phytol. 2011, 192, 997–1009. [Google Scholar] [CrossRef]
- Yessoufou, K.; Bamigboye, S.O.; Daru, B.H.; van der Bank, M. Evidence of constant diversification punctuated by a mass extinction in the African cycads. Ecol. Evol. 2014, 4, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Valente, L.M.; Savolainen, V.; Vargas, P. Unparalleled rates of species diversification in Europe. Proc. R. Soc. B Biol. Sci. 2010, 277, 1489–1496. [Google Scholar] [CrossRef]
- Mittelbach, G.G.; Schemske, D.W.; Cornell, H.V.; Allen, A.P.; Brown, J.M.; Bush, M.B.; Harrison, S.P.; Hurlbert, A.H.; Knowlton, N.; Lessios, H.A.; et al. Evolution and the latitudinal diversity gradient: Speciation, extinction and biogeography. Ecol. Lett. 2007, 10, 315–331. [Google Scholar] [CrossRef]
- Schemske, D.W. Speciation and patterns of diversity. In Biotic Interactions and Speciation in the Tropics; Butlin, R., Bridle, J., Schluter, D., Eds.; Cambridge Univ. Press: Cambridge, UK, 2009; pp. 219–239. [Google Scholar]
- Gorelick, R.; Olson, K. Is lack of cycad (Cycadales) diversity a result of a lack of polyploidy? Bot. J. Linn. Soc. 2011, 165, 156–167. [Google Scholar] [CrossRef]
- Harvey, M.G.; Bravo, G.A.; Claramunt, S.; Cuervo, A.M.; Derryberry, G.E.; Battilana, J.; Seeholzer, G.F.; McKay, J.S.; O’Meara, B.C.; Faircloth, B.C.; et al. The evolution of a tropical biodiversity hotspot. Science 2020, 370, 1343–1348. [Google Scholar] [CrossRef]
- Santos, J.C.; Coloma, L.A.; Summers, K.; Caldwell, J.P.; Ree, R.; Cannatella, D.C. Amazonian amphibian diversity is primarily derived from late miocene andean lineages. PLoS Biol. 2009, 7, e1000056. [Google Scholar] [CrossRef]
- Schley, R.J.; de la Estrella, M.; Perez-Escoba, O.A.; Bruneau, A.; Barraclough, T.; Forest, F.; Klitgard, B. Is Amazon a “museum” for neotropical trees? The evolution of the Brownea clade (Detarioideae, Leguminosae). Mol. Phylogenet. Evol. 2018, 126, 279–292. [Google Scholar] [CrossRef]
- Simpson, G.G. Splendid Isolation: The Curious History of South American Mammals; Yale University Press: New Haven, CT, USA, 1980. [Google Scholar]
- Stebbins, G.L. Flowering Plants: Evolution Above the Species Level; Harvard University Press: Cambridge, MA, USA, 1974. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Yessoufou, K.; Zhang, X.; Lin, S.; Mankga, L. Multiple Speciation and Extinction Rate Shifts Shaped the Macro-Evolutionary History of the Genus Lycium Towards a Rather Gradual Accumulation of Species Within the Genus. Diversity 2024, 16, 680. https://doi.org/10.3390/d16110680
Chen H, Yessoufou K, Zhang X, Lin S, Mankga L. Multiple Speciation and Extinction Rate Shifts Shaped the Macro-Evolutionary History of the Genus Lycium Towards a Rather Gradual Accumulation of Species Within the Genus. Diversity. 2024; 16(11):680. https://doi.org/10.3390/d16110680
Chicago/Turabian StyleChen, Haikui, Kowiyou Yessoufou, Xiu Zhang, Shouhe Lin, and Ledile Mankga. 2024. "Multiple Speciation and Extinction Rate Shifts Shaped the Macro-Evolutionary History of the Genus Lycium Towards a Rather Gradual Accumulation of Species Within the Genus" Diversity 16, no. 11: 680. https://doi.org/10.3390/d16110680
APA StyleChen, H., Yessoufou, K., Zhang, X., Lin, S., & Mankga, L. (2024). Multiple Speciation and Extinction Rate Shifts Shaped the Macro-Evolutionary History of the Genus Lycium Towards a Rather Gradual Accumulation of Species Within the Genus. Diversity, 16(11), 680. https://doi.org/10.3390/d16110680