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Abstract: Plants belonging to the genus Maytenus are members of the Celastraceae family. They have
been widely used by different peoples as treatment for curing many diseases. The aim of this study
was to explore the anti-inflammatory and antioxidant properties of Maytenus elaeodendroides stem
bark extracts, an endemic Cuban plant. The antioxidant activity of four extracts (EtOH, EtOAc,
n-BuOH, and diethyl ether/petroleum ether 1:1) was determined using DPPH and FRAP methods.
Meanwhile, anti-inflammatory effects by the edema method were induced by croton oil in the mouse
ear. The investigated extracts showed radical reduction capacity and prevented ear inflammation at
doses of 4 mg/ear. In addition, FIA/ESI/IT/MSn was used to determine the qualitative chemical
composition of the EtOAc extract and allowed the identification of five flavan-3-ol monomers, four
dimers, and other proanthocyanidin oligomers. From this extract three flavan-3-ol compounds (elaeo-
cyanidin and 4′-O-methylgallocatechin), one of them new (2′-hydroxy-4′-methoxy-epigallocatechin),
and a proanthocyanidin dimer (afzelechin-(4β→8)-4′-O-methylepigallocatechin) were isolated and
identified by the chromatographic method and spectroscopic techniques, mainly ESI-MS and NMR
spectroscopic methods.

Keywords: Maytenus elaeodendroides; flavan-3-ol; 2′-hydroxy-4′-methoxy-epigallocatechin; proantho-
cyanidins; FIA/ESI/IT/MSn; antioxidant and anti-inflammatory activity

1. Introduction

Medicinal plants play a fundamental role in the health systems of many countries.
Nowadays, medicinal plants still represent a precious source of inspiration for the research
and development of new drugs [1,2]. The family Celastraceae includes 106 genera with ap-
proximately 1300 species [3] and is widespread in tropical and sub-tropical regions around
the world [4]. The family Celastraceae are widely used in traditional medicine [5] (González
et al., 2000). Particularly, Maytenus species are widely used in folk medicine and several
medicinal uses are associated with it, such as antitumor, anti-asthmatic, treatment for stom-
ach problems, antioxidant, analgesics, anti-inflammatories, and antimicrobials [6–10]. Over
the years, the numerous biological activities attributed to Maytenus species has prompted

Diversity 2024, 16, 694. https://doi.org/10.3390/d16110694 https://www.mdpi.com/journal/diversity

https://doi.org/10.3390/d16110694
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diversity
https://www.mdpi.com
https://orcid.org/0000-0002-4044-0567
https://orcid.org/0000-0002-2692-6050
https://orcid.org/0000-0001-5276-0851
https://orcid.org/0000-0003-3032-2556
https://orcid.org/0000-0002-6357-594X
https://orcid.org/0009-0009-5315-3055
https://doi.org/10.3390/d16110694
https://www.mdpi.com/journal/diversity
https://www.mdpi.com/article/10.3390/d16110694?type=check_update&version=1


Diversity 2024, 16, 694 2 of 12

several phytochemical studies and many compounds’ classes were characterized and iso-
lated, including flavonoids, pentacyclic triterpenes, alkaloids, and condensed tannins [3].
Our previous studies on the M. aquifolium Martius e M. ilicifolia Mart. ex Reiss allowed the
isolation and structural characterization of a series of new flavonoid tetraglycosides [11,12].
Recently, other authors have reported the effectiveness of Maytenus ilicifolia extracts in
preventing low-density lipoprotein (LDL) oxidation, a significant factor in reducing the risk
of cardiovascular disease [13]. Medium and high polarity extracts from Maytenus species
are known to contain polyphenolic compounds such as flavan-3-ol and proanthocyani-
dins [13,14]. The isolation of proanthocyanidins is very difficult due to their great structural
complexity, polarity, and high molecular weight. Therefore, tandem mass spectrometry
in the flow injection analysis mode (FIA/ESI/IT/MSn) technique is a very useful tool
for the identification of these compounds. FIA/ESI/IT/MSn was used to determine the
polyphenolic profile of the ethanolic extract of M. cajalbanica barks, identifying 5 flavan-3-ol
monomers, 33 proanthocyanidins, 2 free flavonoids, and their respective glycosides as ma-
jor compounds [15]. M. elaeodendroides has been used for many years in Cuban traditional
medicine for the treatment of inflammatory processes [16]. In previous works, Spengler
et al. isolated, from the less polar extract of M. elaeodendroides bark, triperpenes belonging
to the family of lupeol and friedelane [17,18]. In addition, Fernández et al. reported the
isolation of four triperpenes of lupeol for the first time in the species M. elaeodendroides [19].
There are reports in the literature on the anti-inflammatory activity of lupane triterpenes,
isolated in the studies cited above [17,19,20]. Caruso et al. [21] explored the Maytenus
octogona potential as an antioxidant and anti-inflammatory agent through two key method-
ologies: cyclic voltammetry and computational docking. They highlighted the potential
therapeutic applications of M. octogona in managing oxidative stress and inflammation,
suggesting that it may be valuable in treating conditions related to these processes. New
flavonoid (−)-4′-O-methylepicatechin 5-O-β-D-glucopyranoside, along with four known
triterpenes and a flavonoid were isolated recently from the ethyl acetate extract of Maytenus
quadrangulata leaves. The compounds were evaluated against the bacteria Staphylococcus
aureus and Klebsiella pneumoniae, but neither exhibited activity, even at the highest concen-
tration tested [22]. Recently, inhibitory activity of Mayaro virus replication and infectivity
exerted by Maytenus quadrangulata extracts has been reported. This finding is relevant given
the lack of specific antiviral treatments for many viral infections [23]. The study showed the
contribution of catechin to the overall antiviral effect of the extract, perhaps interfering with
the viral life cycle or enhancing the host immune response. To gain knowledge of folk uses
and traditional plants growing in Cuba, the purpose of this study was to characterize the
phytochemical profile of four extracts obtained from stem bark of M. elaeodendroides and to
evaluate its bioactive properties, as well as its antioxidant and anti-inflammatory activities.

2. Materials and Methods
2.1. General

Analytical-grade petroleum ether, n-hexane, ethyl acetate (EtOAc), n-butanol (n-
BuOH), methanol (MeOH), chloroform (CHCl3), dichloromethane (CH2Cl2), and ethanol
(EtOH) were used in this work. For FIA-ESI-IT-MSn, HPLC-grade methanol was purchased
from J.T. Baker (Phillipsburg, NJ, USA). HPLC-grade water was prepared using a Milli-Q
purification system (Millipore, Bedford, MA, USA). The RP18 cartridge was a Phenomenex
Strata C18-E, 55 µm, 70 Å, 500 mg·3 mL−1. The filter membrane (0.22 µm) was nylon.
Sephadex LH-20 and silica gel 0.06-0.2 mm (70-230 Mesh, Merck, Rahway, NJ, USA) were
used for column chromatography and TLC was performed on 0.2 mm thick Kiesegel 60
F254 layers (Merck, NJ, USA).

2.2. Plant Material

The stem bark of Maytenus elaeodendroides was collected in La Coca dam in December
2011 and identified by Dr. Pedro Herrera from Instituto de Ecología y Sistemática (Havana,
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Cuba), where a voucher specimen was deposited with the number HAC41417. The plant
material was oven-dried at 40 ◦C and ground to a fine powder, yielding 990 g.

2.3. Extraction and Isolation

The powdered oven-dried plant samples (250 g) were defatted with diethyl ether/
petroleum ether 1:1 (ME-4 extract) then extracted with EtOH. The EtOH extract (ME-1) was
concentrated by reduced pressure to yield an oil, further dissolved in a hydro alcoholic
solution (30%) and extracted with EtOAc and n-BuOH in a separating funnel. The resulting
extracts were concentrated under reduced pressure in order to obtain the final EtOAc extract
(ME-2) (21.3 g) and n-BuOH extract (ME-3) (14.4 g). The EtOAc (3 g) extracts were further
fractionated with an n-hexane/CHCl3/MeOH (1:2:3) mixture through Sephadex LH-20
packed column to give ten fractions (A-J). Fractions E and F were further fractionated by
column chromatography on silica gel with n-hexane/CHCl3/MeOH (1:1:0.4) to give 6 and
5 fractions. Fractions E2 and F3 were purified by preparative thin layer chromatography
with n-hexane/CHCl3/MeOH (1:1:0.4) mixture to give the compounds 1 (3 mg) and 3
(21 mg). Compounds 2 (18 mg) and 4 (22 mg) were obtained by preparative thin layer
chromatography from fractions E5 and F4 with CH2Cl2/EtOAc/MeOH (1:1:0.3).

2.4. Structure Elucidation Procedures

The structural elucidation was carried out through physical and spectroscopic data
measurements, and by comparing the obtained data with previously published values.
The melting points (m.p.) were determined on a Electrothermal 9100 apparatus. The
optical rotations were determined with a Jasco p-1020 automatic polarimeter. FAB-MS
data were measured by a JEOL JMS HX 110 spectrometer (Corporate benefits, Peabody,
MA, USA), and the positive ions were detected by using glycerin as a matrix. 1H- and
13C-NMR spectra were obtained using a Varian Unity Inova 500 spectrometer (International
Equipment Trading Ltd., Mundelein, IL, USA) in deuterated dimethylsulfoxide (DMSO-d6),
using TMS as an internal standard. Mass spectra were recorded on an LCQ Fleet mass
spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) and a Thermo Finnigan LCQ
Deca mass spectrometer, both equipped with an ESI source and a direct injection device for
the sample.

Compound 1
Red solid; mp 160–161 ◦C (recrystallized acetone). [α]D

20◦ = −3.7 (c = 0.0029 mol/L,
CH3OH); ESI-HRMS, m/z 342.1222 (100%) (positive mode) from the deuterated molecular
ion peak; Anal. Calcd for C16H10D6O8: C 56.09%, H 6.30%, O 37.32%. Found: C 56.14%, H
6.47%, O 37.39%. NMR-1H (DMSO-d6, ppm): 2.48 (1H, d, J = 3.5 Hz; 16 Hz); 2.68 (1H, d,
J = 4.5 Hz, 16 Hz); 3.66 (3H, s); 4.1 (1H, d, J = 2.5 Hz); 4.68 (1H, s); 5.72 (1H, d, J = 2.0 Hz);
5.89 (1H, d, J = 2.0 Hz); 6.41 (1H, s). NMR-13C (DMSO-d6, ppm): 77.8; 64.6; 28.0; 157.5; 95.0;
157.7; 93.9; 156.6; 100.0; 136.6; 105.95; 149.8; 134.4; 149.8; 105.95; 59.38.

2.5. Flow Injection Analysis (FIA-ESI-IT-MSn)

A solution of EtOAc extract (MeOH/H2O 8:2 v/v, 1 mg/mL) was submitted to
the solid-phase extraction using an RP18 cartridge, eluted with MeOH/H2O 8:2 (v/v).
After drying, 1 mg was dissolved in 1 mL of MeOH/H2O 8:2 (v/v) solution (solution A)
and an aliquot was diluted with MeOH/H2O 8:2 (v/v) to reach a final volume of 1 mL
(1 µg/mL) and was filtered through a 0.22 µm nylon filter membrane. The final solution was
introduced by direct flow injection at 5 µL/min into the ESI source using a syringe pump.
Analyses were performed using a Thermo Finnigan LCQ Deca ion trap mass spectrometer
(San Jose, CA, USA) equipped with an ESI interface. Mass spectra were acquired both in
positive and negative mode. The data were acquired in the full scan (range of m/z 50–2000)
and tandem mass scanning modes. For MSn analyses, collision energies chosen for each
fragmentation was 35%. The optimized instrumental parameters were as follows: capillary
temperature 300 ◦C, capillary voltage 13 V, spray voltage 5 kV, sheath gas flow rate 35
(nitrogen, arbitrary units), auxiliary gas flow rate 10 (arbitrary units).
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2.6. Assay of 2,2-Diphenyl-2-picrylhydrazyl (DPPH) Scavenging Activity

The antioxidant activity of the four M. elaeodendroides extracts was measured in terms
of hydrogen-donating or radical scavenging ability, using the stable radical DPPH [24].
In the test tubes, 1.5 mL of DPPH (0.075 mg/mL) in ethanol was mixed with 750 µL of
five concentrations of the different extracts to evaluate in a range of concentrations lower
than 1000 µg/mL. A control sample (absolute ethanol) and reference (750 µL absolute
ethanol and 1.5 mg/mL of DPPH solution) were also used. The decrease in the absorbance
was determined at 515 nm, until the reaction plateau step was reached. α Tocopherol
(Sigma, Fukushima, Japan) was used as an antioxidant standard. Three independent
tests were performed for each sample. Then, the IC50 values (total antioxidant extract
necessary to decrease the initial DPPH radical concentration by 50%) were determined. The
inhibition percent of DPPH• radical was calculated by: Inhibition (%) = (D.O. control −
D.O. sample)/D.O. control) × 100.

2.7. Ferric Reducing Antioxidant Power (FRAP) Assay

The ferric reducing antioxidant power (FRAP) assay is a method that measures the
reduction of ferric ion (Fe3+) ligand complex to the intensely blue-colored ferrous (Fe2+)
complex by antioxidants in an acidic medium. Antioxidant activity is determined as
increase in the absorbance at 593 nm, and the results are expressed as micromolar Fe2+

equivalents or relative to an antioxidant standard [25]. Briefly, the FRAP reagent was
prepared by mixing acetate buffer (300 mM, pH 3.6), a solution of 10 mM TPTZ in 40 mM
HCl, and 20 mM FeCl3 at 10:1:1 (v/v/v). The reagent (3.4 µL) and sample solutions (100 µL)
were added to each well and mixed thoroughly. The absorbance was taken at 593 nm
after 30 min. A solution of ascorbic acid (100 µM) was used as a standard. All solutions
were used on the day of preparation. The results were expressed as µmol ascorbic acid
equivalent/g extract. Analyses were performed in triplicate on each extract.

2.8. Statistical Analysis

Values were expressed as the mean ± standard error of the mean (SEM). Statistical
analyses were performed with GraphPad Prism 5.0 (GraphPad, La Jolla, CA, USA). For
multiple comparisons, a one-way ANOVA test was used followed by Bonferroni test a
posteriori. Values of p < 0.05 were considered statistically significant.

2.9. Anti-Inflammatory Assay
2.9.1. Animals

The experiment was run in accordance with Good Laboratory Practice rules and animal
protection laws. The experiment was approved by the ethical committee of Oriente Univer-
sity, which follows the guidelines from the Cuban Animal Ethical Committee. Male OF-1
mice, 20–22 g weight, were used. They were supplied by the National Center for Produc-
tion of Laboratory Animals (CENPALAB), Havana City, Cuba, and were kept in standard
laboratory conditions with water and food ad libitum. The mice had an acclimatization–
quarantine of 7 days and remained under controlled temperature (21–24 ◦C), humidity
(60–65%), and alternative light/dark cycle of 12 h.

2.9.2. Experimental

For the determination of the anti-inflammatory activity, the edema method induced
by croton oil in the mouse ear was used [26]. Different doses of the extracts (ME-1, 2, 3, 4)
were administered topically in the ear of the animals 1 h before the application of the croton
oil (2 mg/ear in 20 µL of acetone). The doses evaluated were 0.5, 1.0, 2.0, and 4.0 mg/20 µL
of acetone. The left ear of each animal (control) received the vehicle (acetone 20 µL). A
group treated with indomethacin (3 mg/20 µL acetone) was used as the reference group.
The inflammation was followed for five hours after the croton oil application. After this
period, the animals were sacrificed and immediately a 6 mm diameter disc from each ear
was removed and weighed. The inflammation induced by croton oil was quantified as the
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increase in weight of the biopsy of the ears (right) treated, minus the left (untreated) ears,
as weight of the edema.

3. Results and Discussion
3.1. Isolation and Structure Elucidation of Major Compounds of EtOAc Extract

The EtOH extract of the stem bark of M. elaeodendroides was concentrated by reduced
pressure and extracted with EtOAc and n-BuOH in a separating funnel. The EtOAc extract
was subjected to Sephadex LH-20, silica gel column chromatography (CC), and preparative
thin layer chromatography to yield compounds 1–4 (Figure 1). The structures of the
compounds present into the extract were elucidated based on 1D and 2D NMR spectra,
ESI-MS data and by comparing the obtained data with previously published values.
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Figure 1. Compounds 1–4 isolated from M. elaeodendroides stem bark.

Compound 1 was isolated as a red solid of melting point 160–161 ◦C (recrystallized
acetone) and [α]20◦

D = −3.7 (c= 0.0029 mol/L, CH3OH). The molecular formula C16H15O8
was determined from the deuterated molecular ion peak at m/z 342.1222 in the positive ion
ESI/HRMS measurement. The NMR-1H spectrum (DMSO-d6) showed a total of 8 signals
corresponding to 10 protons, 3 of them appear in aromatic protons area clearly divided into
two groups (Figure S1). This behavior is typical of a compound of flavonoid nature. The
characteristics of the region between 2.40 and 5.00 ppm and the doublets at 5.72 ppm (1H,
d, 2.0 Hz, H-8) and 5.89 ppm (1H, d, 2.0 Hz, H-6) indicate a catechin derivative.

In the proton zone of ring B, a singlet was observed that integrates one proton (1H, s),
so it was concluded that there are 4 substituents in the ring. In addition, it was observed 1
singlet that integrates 3 protons at 3.66 ppm correspond to a methoxyl group bound to an
aromatic ring, so one of the substituents of ring B must be a methoxyl group.

The existence of two doublets of doublets in the most armored zone of the spectrum at
2.48 ppm (1H, dd, 3.5 Hz, 16 Hz, H-4e) and 2.68 ppm (1H, dd, 4.5 Hz, 16 Hz, H-4a) indicate
the presence of two protons attached to the same carbon (C-4). Also, the zone between 4
and 5 ppm shows a broad singlet at 4.68 ppm (1H, brs; H-2) that integrates a proton and
a doublet at 4.10 ppm (1H, d, 3 Hz, H-3) corresponding to a proton attached to a carbon
with an electroacceptor substituent. Chemical shifts and the appearance of these two last
signals are characteristic of 2,3-cis-flavan-3-ol [27]. All of this indicates that compound 1 is
an epicatechin derivative. The coupling between the protons H-2, H-3, H-4a, and H-4e was
confirmed with the help of the two-dimensional COSY experiment (Figure S2).
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The two-dimensional experiments HSQC and HMBC (Figure S3) allowed us to un-
equivocally assign all the signals (Table S1). The HSQC experiment showed a coupling
between the B ring proton at 6.41 ppm and the carbon at 105.95 ppm, (Figure S4), indicating
that both were directly linked. In addition, there was correlation to two or three bonds
(HMBC experiment) between this carbon and the proton H-2 (4.68 ppm), which places the
proton of ring B in the 6′-position.

In the HMBC experiment, a correlation was observed between the proton H-6′ and
a carbon whose chemical shift (134.4 ppm) was comparable to those observed for other
catechins that present a methoxyl group in an aromatic carbon; therefore, this carbon
can be found in positions 2′, 4′, or 5′. The absence of an NOE effect in the NOESY-1D
experiment (Figure S5) affirms that the methoxyl group is bound to carbon 4′. According
to all the evidence observed in the spectroscopic analysis, compound 1 was identified as
2′-hydroxy-4′-methoxy-epigallocatechin, isolated from a natural source for the first time.

Compound 2 corresponded to elaeocyanidin, which was reported for the first time
in Elaeodendron balae root bark by Weeratunga G. et al. in 1985 [28]. Compound 3 was
identified as 4′-O-methylgallocatechin. The 2,3-trans configuration was obvious from the
large coupling constant (6 Hz) observed between H-2 and H-3. This compound was isolated
for the first time from Panda oleosa [29]. It has been also isolated from Stryphnodendron
obovatum [30], Parapiptadenia rigida [27], Elaeodendron schlechteranum [28], and between other
plants. Compound 4 was identified as afzelechin-(4β->8)-4′-O-methyl epigallocatechin,
reported from Ouratea spp. [31]. In this compound, H-2 on rings C and F occurs as a broad
singlet, which is in agreement with a small coupling constant (<2 Hz) between H-2 and H-3.
The 3,4-trans configuration in the C ring was established by the broad singlet appearance of
the H-3 and H-4 signals [32]. The afzelechin-(4β->8)-4′-O-methyl epigallocatechin has been
identified in Prionostemma aspera and M. rigida [33] and in the root bark of Elaeodendron
balae [28].

3.2. FIA/ESI/IT/MSn Analysis

The qualitative chemical composition of the EtOAc extract from stem barks of M.
elaeodendroides, was analyzed by FIA/ESI/IT/MSn. Negative mode spectra were selected
for their better sensitivity. The total ion mass spectra of EtOAc extract (Figure 2) shows
the [M-H]− ions of the major secondary metabolites present in the extract. Analysis
of this spectrum and ESI/IT/MSn experiments suggested the presence of deprotonated
molecules of 2′-hydroxy-4′-methyl-epigallocatechin (m/z 335; 1), elaeocyanidin (m/z 359;
2), 4’-methyl epigallocatechin (m/z 319; 3), and the monomers epigallocatechin (m/z 305)
and epicatechin (m/z 289). The MS2 of these ions show characteristic fragments of flavan-
3-ol compounds, which represent C-ring cleavage through a retro-Diels–Alder (RDA)
mechanism, loss of water with double-bond formation, and loss of B-ring. Product ions
formed by loss of B-ring and RDA fragmentation indicate the methyl group position in
compounds 3. The stereochemistry of C3 on the flavan-3-ol cannot be determined by mass
spectrometry [34]. Also, a dimer afzelechin-(4β->8)-4′-O-methyl epigallocatechin (m/z 591,
4) and other oligomers were detected. Deprotonated ions at m/z 365, 639, 911, 959, and 1183
were identified as adducts of ions at m/z 319, 593, 865, 913, and 1135, respectively, with
formic acid. The sequence of detected oligomers was determined through the three main
fragmentation pathways described for proanthocyanidins: retro-Diels–Alder (RDA) fission,
heterocyclic ring (HRF) fission, and quinone methide (QM) fission [34]. Mass spectrometric
techniques cannot provide information about the position and stereochemistry of the
interflavanoid linkage (4-6) or (4-8). It has been reported that proanthocyanidins with 4-8
linkage are stereochemically favored and require fragmentation energies lower (30%) than
proanthocyanidins with 4-6 linkage [34,35] (60%). Thus, the compounds identified in the
extract were assigned as presented in Table 1.
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Table 1. Monomers and oligomers identified in EtOAc extract from stem bark of Maytenus elaeodendroides.

[M-H]− m/z MS2 Main Fragments Proposed Names

Monomers

289 271, 137 (E)C

305 287, 137 (E)GC

319 301, 137 4-methyl-(E)GC (3)

335 317, 137 2′-hydroxy-4′-methyl-(E)GC (1)

359 341, 137 Elaeocyanidin (2)

Dimers

561 527, 425, 419, 407, 271, 289 (E)AZ-(E)C

577 559, 451, 425, 407, 289, 287 (E)C-(E)C

591 573, 465, 455, 437, 271, 319 (E)AZ-4´-methyl-(E)GC (4)

593 575, 467, 441, 423, 287, 305 (E)C-(E)GC

Trimers

863 845, 737, 591, 271 (E)AZ-(E)AZ-4´-methyl-(E)GC

865 739, 713, 695, 577, 425 (E)C-(E)C-(E)C

913 787, 609, 607, 305, 303 (E)GC-(E)GC-(E)GC

Tetramer

1137 863, 849, 575, 561, (E)C-(E)C-(E)C-(E)AZ
Abbreviation: (E)C: (epi) catechin, (E)GC: (epi) gallocatechin, (E)AZ: (epi) afzelechin.

3.3. Antioxidant and Anti-Inflammatory Activities

The interest in health benefits of polyphenols has been well associated with their
antioxidant and free radical scavenging effects. There is evidence that supports a contribu-
tion of polyphenols to the prevention and control of different diseases [36,37]. The latest
advances in the role of diet in modulating gut microbiota, for example, have suggested a
new phase of food bioactives research along the phytochemicals–gut microbiota–intestinal
metabolites and low-grade inflammation–metabolic syndrome axis [38,39]. Plants used
in traditional medicine can provide diverse secondary metabolites with bioactive activ-
ities, where the antioxidant potential related to the presence of phenolic compounds is
relevant [35].
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The assay of scavenging the stable DPPH radical permit evaluation of the free radical
scavenging ability of compounds [40]. In this case, the antioxidant effect of the analyzed
sample on DPPH radical scavenging may be due to their hydrogen donating ability and to
reduce the stable violet DPPH radical to the yellow DPPH-H. Substances which are able to
perform this reaction can be considered as antioxidants and, therefore, radical scavengers.
On the way, the FRAP assay is based on the ability of antioxidant to reduce Fe3+ to Fe2+ in
the presence of tripyridyltriazine (TPTZ), forming the intense blue Fe2+–TPTZ complex,
then the absorbance increase is proportional to the antioxidant content [41]. Here, we
evaluated the antioxidant potential of the four extracts obtained from M.s eleaodendoides, an
endemic specie of Cuba, by use of DPPH and FRAP methods.

The percentage inhibition of DPPH activity of four extracts obtained from M. eleao-
dendoide stem bark and the dose–response curves of the sequestering capacity of DPPH
are shown in Figure S5. As can be seen, the highest percentage of inhibition of the radical
coloration (indicative of the sequestering capacity) was for the EtOH extract (ME-1) (76%),
reached from a concentration of 1000 µg/mL. This is in accordance with the IC50 value,
which was in the order of 6.23 µg/mL (Figure S6). It was expected as this extract is obtained
using ethanol as a solvent in the extraction process, a compound of high polarity that favors
the extraction of phenolic compounds, metabolites with recognized antioxidant activity [38].
Meanwhile, the EtOAc extract (ME-2) and n-BuOH extract (ME-3) also showed significant
DPPH radical reduction capacity, showing maximum inhibition values of 71% and 68%,
respectively. In the case of the diethyl ether/petroleum ether 1:1 extract (ME-4), although
it could reduce the DPPH radical, it showed the lowest activity (IC50 = 137.7 µg/mL),
showing an inhibition percentage in the order of 62% at the concentration of 2000 µg/mL
(Table 2). The IC50 values of the ME-1, ME-2, and ME-3 extracts were significantly lower
(p < 0.05) than the one of a tocopherol, the positive control of the experiment. A similar
trend in FRAP values was observed among the four extracts of M. eleaodendoide evaluated,
showing the highest ability to reduce Fe3+ to Fe2+ for ethanolic extract ME-1 (3156 µmol
ascorbic acid equivalent/g) (Table 2).

Table 2. Antioxidant activity of Maytenus elaeodendroides stem bark extract. Equal letters indicate no
significant differences.

Extracts
FRAP

(mM of Ascorbic Acid Equivalents
Per Gram of Extract)

DPPH
IC50 (mg/mL)

(% Maximal Inhibition)

ME-1 3156 ± 753 a 6.23 a ± 1.5 (76)

ME-2 2983 ± 675 a 18.71 b ± 4.3 (71)

ME-3 2865 ± 666 a 10.44 b ± 3.5 (68)

ME-4 2434 ± 537 b 137.7 c ± 6.1 (62)

α Tocopherol - 38.04 d ± 1.2 (77)

Compounds identified in M. eleaodendoide extracts are known to possess antioxidant
activity. Previous studies revealed that the antioxidant effectiveness of proanthocyanidins
increases with the degree of polymerization and the number of free hydroxyls [42]. Ac-
cording to that, polymeric proanthocyanidins have been verified to exhibit the highest
antioxidant activities [43]. Then, the antioxidant capacity observed for the extracts could be
associated with the presence of these bioactive compounds.

Values represent the mean ± SEM of ascorbic acid equivalents per gram of M. elaeo-
dendroides extracts, as the capacity to reduce Fe3+ to Fe2+. IC50 values were calculated as
the extract concentration required to scavenge 50% of DPPH•; α-Tocopherol was used as
standard for the DPPH• assay. Different letters represent statistical differences between the
products (ANOVA, Bonferroni test a posteriori, p < 0.05). Three independent assays were
performed and samples were analyzed in triplicate.
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Inflammation is a process involved in the pathogenesis and progression of many
diseases. It is a physiological response that protects the body against tissue damage or
microorganisms [44]. The inflammatory response serves as a defense tool for the organism,
but if it occurs in an exacerbated way, different pathological disorders can take place [45].
For suppressing the inflammatory reaction, it is necessary to use anti-inflammatory drugs.
The conventional anti-inflammatory drugs used in clinical practice usually have adverse
side effects, making it necessary to search for new alternative substances [46]. In this way,
natural products can be an important source for the development of new therapeutic agents.
Here, the extracts from M. elaeodendoides species were also evaluated to verify their possible
anti-inflammatory effects in the model of edema induced by croton oil in the ear of the
mouse (Figure 3). As our data showed, the four extracts tested prevented ear inflammation
at doses of 4 mg/ear (p < 0.05) compared to the negative control (acetone). Meanwhile,
the ME-1 extract showed the highest inhibitory effect. Indomethacin (3 mg/ear), a non-
selective inhibitor of cyclooxygenase (COX) that reduces the production of prostaglandins,
promoting pain and the inflammation, was used as a positive control of the experiment
and as it was expected it produced a significant inhibition (p < 0.05) of edema (96%).
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M. elaeodendroides derivates have been used for many years in Cuban traditional
medicine for the treatment of different inflammatory disorders [16]. In this study, we used a
simple, but well stabilised in vivo model for verifying these properties. Topical application
of phorbol esters (like croton oil) induces a long-lasting inflammatory response associated
with a transient increase in prostanoid production and marked cellular influx [47]. Our
results showed the four extracts at the higher doses tested attenuated the oedema induced
by croton oil on the ear of the mice, suggesting anti-inflammatory activity. The inhibitory
effects of epicatechin, a compound found in M. elaeodendoides extract, on lipopolysaccha-
ride (LPS)-induced production of pro-inflammatory mediators in RAW264.7 cells have
been shown [48]. Reports show epicatechin could down-regulate the expressions of in-
ducible nitric oxide synthase and cyclooxygenase-2, as well as the production of nitric
oxide, prostaglandin E2, and some pro-inflammatory cytokines in LPS-induced RAW264.7
cells. The authors correlated the attenuation of inflammatory responses by epicatechin
with the inhibition of activation of an inhibitor of κB kinase α/β, the sequential translo-
cation of nuclear factor-κB (NF-κB) p50/P65 subunits, to the suppression of activation of
mitogen-activated protein kinases, Janus kinase 2 (JAK2)/signal transducer, and activator
of transcription 3 (STAT3) [48].

The extracts could exert dual action due their observed antioxidant activity. It has
been shown that the treatment of mouse skin with protein kinase C promoters, such as
phorbol esters, promotes the formation of free radicals. Reactive oxidative species (ROS)
are also relevant for the synthesis of some inflammation mediators. It is known that ROS
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may regulate the production of TNF in the inflammatory response [49]. M. elaeodendroides
extracts, particularly the ME-1 extract, could decrease tissue damage caused by hydrolytic
enzymes and by some oxidant species.

4. Conclusions

In this study, the isolation of the 2′-hydroxy-4′-methoxy-epigallocatechin is reported
for the first time. This study provides phytochemical information and data about the
bioactive effects of stem bark from Maytenus elaeodendoides extracts grown in Cuba and em-
phasizes the rationale for using medicinal plants in folk medicine. The activities found for
M. elaeodendoides extracts, particularly, in the ethanolic extract, may validate the traditional
use of the plant in the treatment of health problems that derive from the consequence of
oxidative stress and the inflammation process in the organism. Meanwhile, further tests are
needed before this plant species and its metabolites can be considered as new therapeutic
agents.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d16110694/s1, Figure S1. NMR 1H spectrum of compound
1; Figure S2: COSY experiment of compound 1; Figure S3: gHMBC experiment of compound 1;
Figure S4: gHMQC experiment of compound 1; Figure S5: NOESY-1D experiment of compound 1;
Figure S6: Dose–response curves for the scavenging capacity of the DPPH radical of the extracts
from Maytenus elaeodendroides evaluated. Table S1. Chemical shifts and correlations observed for
compound 1.
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