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Abstract: Xishuangbanna, located in southern Yunnan, China, is a vital tropical rainforest reserve
supporting rich biodiversity, including the endangered Asian elephant (Elephas maximus). Increasing
human activities, such as urbanization and agricultural expansion, have degraded habitats and
intensified human–elephant conflicts, adding to the challenges of conservation. This study integrates
habitat quality assessment and conflict risk analysis using the InVEST model across 2128 villages,
considering land use and habitat threats like cropland and roads. The model reveals significant
overlap between high-conflict zones and low-quality habitats near key reserves, underscoring the
need for targeted conservation strategies. We propose establishing Ecological Source Areas (ESAs)
to protect high-quality habitats and Ecological Restoration Zones (ERZs) to improve ecological
conditions in low-quality, high-conflict zones. ESAs are essential for providing continuous ecosystem
services and ensuring ecological security, while ERZs focus resources on areas with high conflict
risk that urgently need restoration. Additionally, we recommend creating ecological corridors to
connect fragmented habitats, enhance connectivity, support herd interactions, and reduce conflicts by
expanding elephants’ safe roaming range. This integrated framework emphasizes habitat protection,
ecological restoration, and conflict mitigation while accounting for human dynamics to support
sustainable conservation. Reducing overlap between human and elephant activities remains a key
objective. Future research should refine these models with more detailed data and extend their
application to other regions, focusing on adaptive management and monitoring to address evolving
ecological and human dynamics.

Keywords: Xishuangbanna; Asian elephant; human–elephant conflict; habitat quality; InVEST model;
conservation planning

1. Introduction

The Asian elephant (Elephas maximus), a keystone species vital to the ecological bal-
ance of Asian tropical forests, faces increasing threats from habitat fragmentation and
human–elephant conflicts, particularly in the Xishuangbanna region of southern Yunnan,
China [1,2]. Since 1976, the Asian elephant population in Xishuangbanna has fluctuated
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(Table 1), impacted significantly by human activities, including extensive deforestation
for rubber plantation development [3–5]. Recent enhanced conservation measures have
brought the population to about double what it was in 2005–2006 [6]. However, the species
remains critically endangered. Habitat degradation and expanding human activity are
leading to increases in both the frequency and severity of conflicts [7–9]. This habitat
degradation and increased conflict put the recent elephant population gains and sustain-
able practices at risk, underscoring the urgent need for effective conservation strategies
that address both ecological and social dimensions [10,11]. There is not currently a target
elephant population value for Xishuangbanna. This is a gap that needs to be addressed
soon to further guide conservation measures and protect against human–elephant conflict.

Table 1. Estimated Asian elephant populations in Xishuangbanna from 1976 to 2014.

Year Population (Approx.)

1976 101
1983 213
1997 165 to 197
2003 187 to 217

2005–2006 132 to 149
2014 228 to 279

Habitat quality is a fundamental determinant of an ecosystem’s capacity to support
wildlife and maintain biodiversity [11,12]. Understanding how habitat quality is influenced
by various disturbances, both natural and anthropogenic, is important in planning and
prioritizing conservation strategies. Disturbances, whether natural or anthropogenic, play
a critical role in shaping ecosystems. Disturbances such as urbanization, agricultural expan-
sion, and infrastructure development can degrade habitats and fragment ecosystems [13].
Moderate disturbances can sometimes enhance biodiversity and species coexistence by
creating habitat mosaics and promoting ecological succession. However, excessive or
frequent disturbances often result in irreversible degradation [14].

In Xishuangbanna, rapid urbanization, agricultural expansion, and infrastructure
development have significantly transformed land use and land cover, resulting in habitat
loss and degradation [15]. Although substantial research has been conducted on habi-
tat fragmentation and human–wildlife conflicts, integrated assessments evaluating both
habitat quality and conflict risks are urgently needed in regions experiencing these rapid
environmental changes [16,17]. Innovative approaches combining spatial analysis, eco-
logical modeling, and conflict data provide avenues for developing targeted conservation
strategies that address both ecological and human dimensions [18].

There are currently many methods for evaluating habitat quality, but it is essential to
consider the influence of ecological disturbances in this process. Drawing on the theoretical
framework of disturbance ecology, this study integrates multiple threat factors, such as
cropland, roads, and villages, to assess their spatial impacts on habitat quality. These
insights align with the work of Salafsky et al. and Wohlgemuth et al., highlighting the
dynamic role of disturbances in shaping ecosystem resilience and biodiversity [13,14].

One commonly used method is conducting field surveys to construct habitat qual-
ity assessment indicators. This method requires a large amount of human and material
resources and is time-consuming and labor-intensive. As such, it is only suitable for
small-scale research. It is too difficult to use in large-scale habitat quality assessments [19].
Another commonly used method is to use models to evaluate habitat quality. This method
involves using various modern technological means, such as remote sensing technology
and GIS technology, to establish mathematical models to evaluate habitat quality [20,21].
The advantage of this method is that it can quickly obtain large-scale habitat ecosystem
quality information and can be evaluated at different scales according to needs. Among
these habitat quality models, the widely used InVEST model has the advantages of easy
parameter acquisition, the visualization of results, etc. [22,23]. Moran’s I spatial autocorre-
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lation analysis is used to identify clusters of high and low habitat quality, providing spatial
pattern insights to further guide priority conservation [24].

In addition, a GIS-based human–elephant conflict risk model was developed as part of
this study using insurance claim data to simulate the human–elephant conflict risk level of
the entire study area. The claim data included the location and extent of damage, making
it a good method for measuring conflict risk and impact. This integrated approach can
identify high-risk areas and provide a detailed understanding of the dynamics of conflict
space, which is crucial for developing targeted conservation strategies.

Through the innovative integration of NDVI, GIS, and the InVEST model, this study’s
aim is to improve the accuracy of habitat quality evaluation, providing valuable guidance
for regional conservation planning. These findings have broader implications for similar
conservation challenges worldwide, emphasizing the need for multifaceted approaches to
protect wildlife in rapidly changing landscapes.

This is not a study of the elephants themselves; it is a study of the elephant’s habitat
and of human–elephant conflict risks. The primary goal of this study is to assess habitat
quality and human–elephant conflict risk for Asian elephants in order to develop effective
conservation strategies that support the long-term survival of the species. While calcu-
lating human–elephant conflict risk, we focused on incident data, specifically insurance
claims data, as these directly reflect human–elephant conflict occurrences. However, in
constructing the model, we also included relevant variables such as cropland distribution,
open woodland areas adjacent to cropland, and slope. These factors have been validated
by previous studies as key areas where human–elephant conflicts are likely to occur [25].
Additionally, when assessing habitat quality for Asian elephants, we carefully considered
habitat suitability specific to this species. Parameter selection was guided by published
research on Asian elephant habitats in Xishuangbanna, incorporating primary threat factors
such as cropland, village roads, settlements, and orchards to evaluate habitat quality [26,27].
This ensures that the model accounts for environmental factors directly relevant to Asian
elephants and their habitat needs, rather than solely focusing on conflict-related variables.

2. Study Area

The Xishuangbanna Dai Autonomous Prefecture in the southern part of Yunnan,
China, is situated in the Hengduan Mountains (Figure 1). The geographic coordinates
range from 21◦08′ to 22◦36′ N latitude and 99◦56′ to 101◦50′ E longitude, encompassing an
area of approximately 19,100 km2. The topography of Xishuangbanna is characterized by
high elevations surrounding a lower central basin, creating significant terrain variations
across the region [28].

The region experiences a tropical monsoon climate with an average annual tempera-
ture exceeding 20 ◦C and annual precipitation reaching 2491 mm. These humid climatic
conditions are conducive to the growth of tropical rainforests. However, the rapid increase
in human population and the expansion of economic crops such as rubber, coffee, and
tea have substantially altered land use patterns, which in turn has led to the significant
fragmentation of the elephants’ original habitat areas [29].

The intensification of human activities, particularly agricultural expansion and in-
frastructure development, has directly impacted the range and distribution of the Asian
elephant, exacerbating human–elephant conflicts in the region. In response to these ecolog-
ical challenges, the Yunnan Xishuangbanna National Nature Reserve was established in
1958 to protect this critical ecosystem [30]. The reserve spans Menghai County, Jinghong
City, and Mengla County, comprising five geographically distinct sub-reserves: Mangao,
Mengla, Menglun, Mengyang, and Shangyong. These sub-reserves encompass extensive
areas of tropical rainforests and host the largest and most concentrated populations of Asian
elephants. Despite these conservation efforts, ongoing human encroachment and land
use changes continue to pose significant threats to habitat integrity and have intensified
human–elephant conflicts within and around the reserve [31].
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3. Data Sources and Research Methods
3.1. Data Sources

This study utilizes a diverse range of data sources, as detailed below. All raster data
were processed using ArcGIS 10.8, projected uniformly to the WGS_1984_UTM_Zone_48N
coordinate system and reclassified into a 1 km × 1 km grid format to ensure data consistency
and comparability.

Land Use Data: The land use data for the study area for the year 2020 were sourced
from the Resource and Environment Science and Data Center, Chinese Academy of Sciences
(https://www.resdc.cn, accessed 27 February 2023), with a resolution of 1 km × 1 km.

Normalized Difference Vegetation Index (NDVI) Data: NDVI data were sourced from
the Earthdata platform (https://earthdata.nasa.gov, accessed 16 April 2023) and used to
assess habitat quality.

Road Network Data: Road network information was derived from OpenStreetMap
(OSM) (https://www.openstreetmap.org, accessed 4 July 2023), covering all roads within
the study area.

Socioeconomic Data: The socioeconomic data of 2128 natural villages were sourced
from the Yunnan Digital Rural Network (http://www.ynszxc.gov.cn, accessed 6 May
2018), including information on population and economic activities. Natural villages are
settlements that form organically over a long period, with residents living close together
within a specific natural environment. Typically, villagers share the same surname and
lineage, descending from a common ancestor. Village point data were sourced from the
National Catalogue of Geographical Information Resources (https://www.webmap.cn,
accessed 10 May 2023). Administrative village boundaries were sourced from the National
Geographic Information Public Service Platform, Tianditu (http://www.tianditu.gov.cn,
accessed 10 May 2023). Administrative villages are the lowest level of governmental body
and often comprise multiple natural villages.

Human–Elephant Conflict Compensation Data: Data on compensation for damages
caused by human–elephant conflicts were provided by the Xishuangbanna Branch of China
Pacific Property Insurance Co., Ltd., Xishuangbanna, China, and were used to analyze the
impacts of such conflicts.

https://www.resdc.cn
https://earthdata.nasa.gov
https://www.openstreetmap.org
http://www.ynszxc.gov.cn
https://www.webmap.cn
http://www.tianditu.gov.cn
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3.2. Research Methods
Habitat Quality Assessment Model

This study employed the Habitat Quality module of the Integrated Valuation of
Ecosystem Services and Tradeoffs (InVEST) model to evaluate habitat quality in the study
area. The InVEST model integrates land use and land cover data, the spatial distribution
of threat factors, their respective weights, and the maximum impact distances of threat
factors to calculate habitat degradation [32]. The primary threat factors selected for the
model were cropland, construction land, orchards, roads, and village development levels
due to their significant impacts on habitat quality [26,27].

(1) Evaluation of Village Impact on Habitat Quality through Development Indicators

To evaluate the impact of villages on habitat quality, data were collected from 2128 villages
in the study area using 28 development-related indicators across five indicator groups:
resources, population, economy, infrastructure, and energy (Table 2). Indicators were
standardized to ensure comparability and eliminate dimensional differences. The Entropy
Weight Method was subsequently used to calculate the weight of each indicator.

Table 2. Hierarchical structure of indicators for evaluating economic development and its impact on
habitat quality.

Indicator
Group Indicator Indicator

Code

Resource Indicators

Common cultivated land area X11
Paddy field area X12
Dry land area X13
Per capita cultivated land area X14
Forest area X15
Economic forest and orchard area X16
Per capital economic forest and orchard area X17

Population Indicators

Rural population X21
Agricultural population X22
Labor force X23
Number of people engaged in primary industry X24
Population with college degree or above X25
Population with secondary education X26
Population with primary education X27

Economic Indicators

Total rural economic income (per CNY 10,000 per year) X31
Income from cash (per CNY 10,000 per year) X32
Income from planting industry (per CNY 10,000 per year) X33
Income from animal husbandry (per CNY 10,000 per year) X34
Income from Secondary and Tertiary Industries (per CNY 10,000 per year) X35
Per capita net income of farmers (per CNY 1 per year) X36

Infrastructure Indicators

Distance to nearest station (km) X41
Distance to nearest market (km) X42
Number of cars X43
Number of agricultural transport vehicles X44
Number of motorcycles X45
Number of tractors X46

Energy Indicators Number of households with biogas pools X51
Number of households with solar energy X52

The specific steps performed are described below.
Data Normalization: The raw data were normalized to standardize all indicator values

to a comparable range.
Entropy Calculation: The entropy value ej for each indicator was calculated based on

the normalized data: ej = − 1
lnm ∑m

i=1 PijlnPij, where Pij represents the normalized value of
village i for indicator j, and m = 2128 is the total number of villages.



Diversity 2024, 16, 761 6 of 20

Weight Calculation: Using the entropy values, the weight Wj of each indicator j was

computed: Wj =
1−ej

∑m
j=1(1−ej)

, where m is the total number of indicators [33,34].

Indicator Standardization: Two different formulas were used to standardize the in-
dicators. zij represents the standardized value for indicator j in village i. For positive

indicators, the formula zij =
aij−min(aij)

max(aij)−min(aij)
was used. For negative indicators, the for-

mula zij =
max(aij)−aij

max(aij)−min(aij)
was used. In both formulas for zij, min

(
aij

)
is the minimum

value for a given indicator (j) across all villages, and max
(
aij

)
is the maximum value for a

given indicator (j) across all villages.
Using these weights, the Technique for Order Preference by Similarity to an Ideal

Solution (TOPSIS) was applied to calculate a comprehensive score for each village, deter-
mining their relative impact on habitat quality. A higher score indicates a greater negative
impact on habitat quality. Each village was assigned to one of five village groups (Village I
through Village V) based on this comprehensive score using the natural breaks classification
method. The villages with the lowest comprehensive scores were assigned to Village I and
the villages with the highest comprehensive scores were assigned to Village V.

(2) Determination of Maximum Impact Distances

Each threat factor, such as cropland or roads, impacts the habitat quality of the area
around it. This impact is felt not only in the immediate vicinity of the threat, but also
further way from the threat into the habitat area, though at diminishing magnitudes. A
road has a very significant impact on habitat quality a few meters from its side. An impact
on habitat quality is still felt 1 km away from the side of the road, though the magnitude
of this impact is less. A threat factor’s impact on habitat quality decreases either linearly
or exponentially with respect to distance. The maximum impact distance of a threat is the
distance at which the threat factor’s impact reaches its first inflection point.

To accurately estimate the maximum impact distances of various threat factors, the
Normalized Difference Vegetation Index (NDVI) was used as a proxy indicator for habitat
quality [35]. ArcGIS distance analysis tools were applied to examine the trend of NDVI
values in relation to increasing distances from the identified threat factors. The analysis
revealed that the maximum impact distances for different threat factors varied between
two and four kilometers (Figure 2) [36,37]. These calculated maximum impact distances
were incorporated into the model to capture the spatial influence of each threat factor on
habitat quality.
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The data for this calculation were based on previous research on Xishuangbanna
habitats conducted by our research group. To determine the maximum impact distance
of threat factors, the NDVI values for the habitat types (forest land, sparse forest land,
shrubland, grassland) were used. Using ArcGIS’s nearest neighbor analysis tool in the
distance analysis module, the shortest distance from each habitat point to a nearby threat
factor was calculated. Then, in Excel, the average NDVI values were calculated at intervals
of 500 m. These data were organized and summarized to create a trend graph showing
how NDVI changes with increasing distance from threat factors. According to the trend
graph, the maximum impact distance of a threat factor based on NDVI is determined by
identifying the first inflection point where NDVI begins to level off after showing a rising
trend with increased distance. Beyond this maximum impact distance, NDVI no longer
increases significantly, indicating that the influence of the threat factor on vegetation cover
in the habitat becomes negligible.

(3) Calculation of Habitat Degradation and Quality

Based on the analysis results, the weights and spatial decay types for each threat
factor were determined (Table 3). These weights were determined by referring to published
studies on Xishuangbanna habitats, from which an average weight was calculated [38,39].
The classification was tailored to the specific conditions of Xishuangbanna, with sensitivity
parameters established for each threat factor based on local conditions and relevant litera-
ture (Table 4). The sensitivity of the threat factors was based on related published research
on Xishuangbanna habitats [26,38–40].

Table 3. Maximum impact distance and weight of threat factors.

Threat
Factors

Maximum
Impact Distance (km) Weight Spatial Decay Type

Road 3 0.6 Linear
Crop 2.5 0.4 Exponential
Field 3 0.7 Exponential

Construction 4 0.9 Exponential
Village I 2 0.4 Exponential
Village II 2 0.5 Exponential
Village III 2 0.6 Exponential
Village IV 2 0.7 Exponential
Village V 2 0.8 Exponential

Table 4. Sensitivity of land use types to threat factors.

Land Cover
Habitat

Suitability
Threat Sensitivity

Rd Crp Fld Cnstrct V-I V-II V-III V-IV V-V

Crop 0.3 0.6 0 0.4 0.6 0.6 0.6 0.75 0.8 0.9
Woodland 0.9 0.65 0.6 0.9 0.75 0.5 0.55 0.65 0.7 0.8

Shrub 1 0.6 0.5 0.6 0.8 0.5 0.5 0.55 0.6 0.7
Spares Woodland 0.8 0.7 0.6 0.7 0.8 0.6 0.6 0.75 0.8 0.9

Field 0.3 0.5 0.4 0 0.7 0.5 0.55 0.6 0.65 0.7
Grassland 0.6 0.5 0.6 0.5 0.65 0.6 0.6 0.75 0.8 0.9

Water 0.7 0.4 0.45 0.45 0.7 0.45 0.45 0.55 0.6 0.7
Construction 0 0 0 0 0 0 0 0 0 0
Unused Land 0.35 0.2 0.15 0.3 0.3 0.2 0.2 0.35 0.4 0.5

Note: The habitat suitability values indicate the relative suitability of each land cover type for supporting high-
quality habitat, while the threat sensitivity values denote the degree to which each land cover type is affected
by specific threats. (Rd = road, Crp = crop, Fld = field, Cntrct = construction, V-I = Village I, V-II = Village II,
V-III = Village III, V-IV = Village IV, V-V = Village V).
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(4) Calculation of the habitat quality index

The habitat quality index was calculated using the following formula [41,42]:

Qx =
Hx

Hx + Dx + k

where Qx is the habitat quality index for a specific location, Hx is the habitat suitability
score (indicating the inherent ability of a location to support habitat quality), Dx is the
habitat degradation index (reflecting the cumulative impact of all threat factors on habitat
quality), and k is the half-saturation constant (controlling the smoothness of the transition
of quality values between zero (poor habitat quality) and one (high habitat quality)).

The habitat suitability score (Hx) was derived from the sensitivity of different land use
types to various threat factors (Table 3). The habitat degradation index (Dx) was computed
by integrating the weights and spatial decay types of the identified threat factors, using the
maximum impact distances obtained from the analysis. These maximum impact distances
were crucial in determining how far the effects of each threat factor extended spatially,
thereby influencing the calculation of degradation.

To classify habitat quality into different levels, the equidistance method was employed.
This method categorized the habitat quality index (Qx) into five distinct levels: lowest
(<0.2), low (≥0.2 and <0.4), medium (≥0.4 and <0.6), high (≥0.6 and <0.8), and highest
(≥0.8) [43].

After calculating the habitat quality index (Qx) and identifying areas with varying
habitat suitability and degradation levels, the next step involved assessing the spatial
patterns of habitat quality across the landscape.

3.3. Spatial Autocorrelation Analysis

To further analyze the spatial distribution of habitat quality, Moran’s I statistic was
employed to identify clustering patterns [44,45]. Both Global Moran’s I and Local Moran’s
I were utilized to provide a comprehensive analysis of spatial dependencies across the
landscape. Global Moran’s I was applied to measure the overall spatial autocorrelation of
habitat quality throughout the study area. This global measure assesses whether habitat
quality values are randomly distributed or exhibit a pattern of spatial clustering. A sta-
tistically significant Global Moran’s I value indicates a non-random spatial distribution,
suggesting that similar habitat quality values tend to cluster together [43]. Local Moran’s
I was used to identify specific clusters and spatial outliers, such as high–high clusters
(areas of high habitat quality surrounded by similar areas of high habitat quality) and
low–low clusters (areas of low habitat quality surrounded by similar areas of low habitat
quality). This local indicator of spatial association (LISA) allows for the detection of local-
ized patterns of spatial clustering or dispersion that may not be apparent from the global
analysis alone.

The spatial autocorrelation analysis was conducted using a 1 km × 1 km grid across
the study area in ArcGIS 10.8 [46]. The 1 km grid size was chosen to balance the resolu-
tion of the analysis with computational efficiency, providing sufficient detail to capture
spatial patterns while maintaining manageable data processing requirements, as well as to
maintain consistency in reporting the results. A finer grid could offer more precise local
patterns but would significantly increase computational load, whereas a coarser grid might
overlook important spatial details.

To create the spatial weights matrix required for Moran’s I calculations, an inverse
distance weighting approach was used, assigning higher weights to closer habitat patches
to reflect stronger spatial interactions. This approach ensured that the analysis adequately
captured local spatial dependencies, which are critical for understanding the distribution
of habitat quality throughout the landscape. By applying both Global and Local Moran’s I,
this study aimed to identify the presence of spatial autocorrelation in habitat quality and
detect specific clusters to inform targeted conservation strategies. The identification of
high-quality clusters highlights areas where conservation efforts should be prioritized, and
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the identification of low-quality clusters highlights areas where restoration efforts should
be prioritized.

3.4. Establishment of Risk Assessment Model for Human–Elephant Conflicts

Building on the spatial analyses of habitat quality, this section focuses on developing a
risk assessment model for human–elephant conflicts. Understanding how these conflicts
correlate with habitat conditions and land use patterns is critical for effective conservation
planning and conflict mitigation.

3.4.1. Data Collection and Sources

To develop a comprehensive risk assessment model, this study utilized data collected
from two primary sources spanning different time periods. For the period from 2010 to
2016, data were obtained from insurance claim records provided by insurance companies.
These records detailed incidents involving Asian elephants, including the locations of
impacted households, dates of incidents, and types of losses (e.g., damaged crop areas, tree
species affected, livestock losses, casualties, and property damage) [29,47]. This dataset was
instrumental in understanding the spatial and temporal distribution of human–elephant
conflicts during this timeframe. For the period from 2016 to 2022, additional data were
extracted from the published literature, focusing on studies documenting human–elephant
conflict incidents and their impacts. This dataset provided insights into the proportion
of different land types affected by conflicts, such as cropland, forest areas, and other
land use categories. By combining these two data sources, we were able to conduct a
detailed analysis of how human–elephant conflicts impacted various land use types over
different periods.

3.4.2. Identification and Spatial Analysis of Conflict Points

The collected conflict data were georeferenced to specific villages, leading to the
identification of 339 human–elephant conflict points across the study area. These spatial
data points were essential for pinpointing the areas most affected by Asian elephants and
for analyzing the spatial patterns of conflicts over time. The distribution of these conflict
points provided critical insights into the areas most vulnerable to human–elephant conflicts,
aiding in targeting conservation efforts.

3.4.3. Risk Assessment Model Development

To assess the risk of human–elephant conflicts, the analysis drew on previous research
findings indicating that conflicts predominantly occur in croplands, low-slope areas, and
sparsely wooded regions adjacent to croplands [29]. A 1 km × 1 km fishnet grid was created
in ArcGIS 10.8, serving as the foundational unit for analysis [46]. The model incorporated
cropland data from 2020, applying the natural breaks (Jenks) classification method to
categorize the proportion of cropland and establish thresholds for different levels of conflict
risk. These were grouped into four risk grades: no risk [0–0.1094), low risk [0.1094–0.3336),
medium risk [0.3336–0.6362), and high risk [0.6362–1] [48].

Additional spatial layers, such as sparsely wooded areas adjacent to high-risk zones
and slope data, were integrated to refine risk area definitions [29,49]. Areas with a higher
likelihood of conflicts were identified based on their proximity to cropland and lower slope
gradients. The spatial join tool in ArcGIS linked conflict records to grid units, enabling the
calculation of conflict points within each risk area.

3.4.4. Model Validation and Accuracy

The risk assessment model was validated using spatial overlay analysis to evaluate its
accuracy. The validation compared model-predicted high-risk areas with actual conflict
points from field data. The spatial join tool in ArcGIS was used to calculate the percentage
of actual conflict points that fell within the predicted high-risk zones. Further, the Receiver
Operating Characteristic (ROC) curve and the Area Under the Curve (AUC) metrics were
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employed to assess the model’s predictive power and accuracy [50]. The ROC curve
visually represented the model’s ability to differentiate between high-risk and low-risk
areas, while the AUC metric quantified the overall accuracy of the model’s predictions.

3.5. Development of Conservation Planning Strategies

Based on the findings from habitat quality assessments and human–elephant conflict
risk analyses, this study developed conservation strategies to mitigate conflicts and enhance
habitat connectivity in Xishuangbanna. The study area was divided into three zones: Eco-
logical Source Areas, which are high-quality habitats prioritized for protection; Ecological
Restoration Zones, which require habitat restoration to improve ecological conditions; and
Ecological Transition Zones, which serve as buffers to reduce conflicts between high-quality
habitats and human settlements. To enhance landscape connectivity and facilitate the
safe movement of Asian elephants, ecological corridors were strategically planned using
GIS tools to connect fragmented habitats while avoiding high-conflict and low-quality
zones. These corridors were designed to minimize disturbances and promote connectivity
among key conservation areas, including the Mengyang, Mengla, and Shangyong reserves.
Restoration zones were identified near conflict hotspots and targeted for reforestation and
habitat enhancement to improve degraded areas. Conservation strategies aim to optimize
habitat quality, enhance landscape connectivity, and mitigate human–elephant conflicts,
supporting the long-term survival of Asian elephants and maintaining the ecological
integrity of the region.

4. Result
4.1. Assessing Habitat Degradation and Human–Elephant Conflict Risk Using InVEST and
GIS-Based Models

Using the InVEST model, this study integrates land use and land cover data, spa-
tial distributions of threat factors, and their respective weights and maximum impact
distances to calculate habitat degradation [22]. Key threat factors, including cropland,
construction land, orchards, roads, and village development levels, were identified for
their significant impact on habitat quality [26,27]. The Normalized Difference Vegetation
Index (NDVI) was employed to refine the maximum impact distances for these factors,
providing a more precise analysis of their spatial influence on habitat conditions [23,51].
Furthermore, Moran’s I spatial autocorrelation analysis was applied to identify clusters
of high habitat and low habitat quality, offering insights into the spatial patterns that can
guide conservation priorities [24].

Additionally, a GIS-based conflict risk model was developed using insurance claim
data to simulate human–elephant conflict risk levels across the study area. The claim data
include the location and extent of damage and hence are a good measure of conflict risk
and impact.

4.2. Habitat Quality Assessment

The spatial distribution of habitat degradation and scarcity across the study area shows
a heterogeneous pattern, with both high and low degradation levels observed (Figure 3).
Establishing habitat degradation in the InVEST model involves mapping the impact of
threats (roads, cropland, etc.) on the existing landcover; it is not a reflection of the change in
habitat over two points in time. Higher degradation is predominantly found in the central
and southern regions, where intensive land use and human activities are concentrated,
particularly around high-grade administrative villages, croplands, and orchards. These
areas exhibit degradation levels reaching up to 0.164, suggesting significant ecological stress.
In contrast, the northern region generally displays lower degradation levels, indicating less
impact from anthropogenic activities.
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Habitat scarcity is also notably high throughout the study area, particularly in the
western and southern regions. These regions are characterized by both high degradation
and high scarcity, identifying them as vulnerable areas that might require urgent ecological
protection measures. The central region shows lower habitat scarcity but is adjacent to high
degradation zones, suggesting a potential risk for further ecological decline.

The analysis of habitat quality indicates an average habitat quality index of 0.4191
across the study area, reflecting a moderate level of overall habitat quality. The spatial
distribution of habitat quality (Figure 4) reveals that low-grade habitats (quality scores
below 0.4) dominate the landscape, accounting for 51.58% of the total area. The lowest
quality class (scores below 0.2) spans 3427 km2, or 17.90% of the study area, while the
highest quality class (scores above 0.8) is limited to 992 km2, representing 5.18% of the area
(Table 5).

Table 5. Area and proportion of different habitat quality classes (year 2020).

Habitat Quality Status Score Range Area (km2) % of Total Area

Lowest <0.2 3427 17.90
Low ≥0.2, <0.4 6447 33.68

Medium ≥0.4, <0.6 4513 23.58
High ≥0.6, <0.8 3763 19.66

Highest ≥0.8 992 5.18

Higher habitat quality is generally observed in the northern region, whereas the
southern and central regions exhibit lower-quality habitats. The lowest-quality areas are
primarily found along major roads, particularly in the southeastern and southwestern
parts of the study area. These regions are in close proximity to orchards, high-grade
administrative villages, and croplands, indicating a clear correlation between intensive
land use and reduced habitat quality.
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4.3. Risk Assessment of Human–Elephant Conflicts

The risk assessment of human–elephant conflicts (HEC) across Xishuangbanna identi-
fied significant spatial patterns in the distribution of conflict points, derived from insurance
claim data and the literature as described earlier, and analyzed using spatial methods. The
spatial distribution map (Figure 5) shows that conflicts are predominantly concentrated
around key protected areas, including Mengyang (MY), Mengla (MLa), and Shangyong
(SY), as well as along major roads and in regions with high levels of human activity. Areas
with no risk account for 68.35% of the total study area (13,084 km2), while low-risk areas
account for 17.40% (3330 km2), medium-risk areas for 10.46% (2003 km2), and high-risk
areas for 3.79% (725 km2) (Table 6). Although high-risk areas are relatively small in size,
they exhibit a high frequency of conflicts and generally lower habitat quality. Zones with
a high frequency of conflict were identified in the western, southeastern, central, and
northern regions of Xishuangbanna, with these areas characterized by proximity to agricul-
tural lands (particularly croplands) and densely populated human settlements. The data
indicate that conflicts are more prevalent where natural habitats intersect with agricultural
and developed lands, with areas near croplands and adjacent to protected areas reporting
higher conflict rates due to elephants moving into these regions, resulting in crop damage
and other human–elephant interactions.

The risk assessment model demonstrated strong predictive accuracy, correctly identify-
ing approximately 87% of high-risk zones and achieving a Receiver Operating Characteristic-
Area Under Curve (ROC-AUC) score of 0.9, which indicates excellent model perfor-
mance [52]. The sensitivity analysis further validated the model’s robustness, showing
consistent results under varying parameter settings. These results confirm the model’s
capability to accurately identify areas at high risk for human–elephant conflicts, providing
a reliable foundation for future conflict mitigation strategies.
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Figure 5. Spatial distribution of human–elephant conflict (HEC) risk in Xishuangbanna
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Table 6. Area and proportion of different human–elephant conflict (HEC) levels (year 2020).

Risk Class Area (km2) % of Total Area

No risk 13,084 68.35
Low risk 3330 17.40

Medium risk 2003 10.46
High risk 725 3.79

4.4. Integration of Habitat Quality and Conflict Risk Models for Conservation Planning

The integration of habitat quality and human–elephant conflict (HEC) risk models
offers a robust foundation for conservation planning in Xishuangbanna, pinpointing areas
where interventions are most urgently needed. Spatial analysis reveals a notable overlap
between high-risk HEC zones and regions of low habitat quality, particularly in the western,
southeastern, central, and some northern parts of the study area. These high-risk zones are
primarily located around key protected areas, such as the Mengyang (MY), Mengla (MLa),
and Shangyong (SY) reserves, where there is a significant intersection between human
activities and elephant habitats. The HEC risk map indicates that approximately 90% of
conflict points are situated within designated risk zones, highlighting the need for targeted
management strategies in these areas (Figure 5).

Further spatial analysis using Moran’s I reveals that high-quality habitats which form
high–high spatial clusters are predominantly located in the northern and peripheral regions
near protected areas such as Mengyang (MY). These areas, identified as Ecological Source
Areas, are prioritized for strict protection to maintain ecological integrity (Figure 6). In
contrast, areas categorized as low–low spatial clusters, which indicate substantial habitat
degradation, are concentrated around Shangyong (SY), Mangao (MG), and Menglun (ML).
These zones, characterized by low habitat quality and high conflict risk, are designated as
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Ecological Restoration Zones, necessitating focused restoration efforts to enhance habitat
conditions and mitigate human–elephant conflicts (Table 7, Figure 6). High–high clusters
are areas of high habitat quality surrounded by similar areas of high habitat quality. Low–
low clusters are areas of low habitat quality surrounded by similar areas of low habitat
quality. High–low outliers are areas of high habitat quality surrounded by contradictory
areas of low habitat quality. Low–high outliers are areas of low habitat quality surrounded
by contradictory areas of high habitat quality.
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Figure 6. The spatial clustering of different habitat quality levels, highlighting the locations of
high–high clusters near the Mengyang protected areas and low–low clusters in the western and south-
eastern regions. (MG = Mangao, MY = Mengyang, ML = Menglun, MLa = Mengla, SY = Shangyong).

Table 7. Area and proportion of local spatial autocorrelation of habitat quality (year 2020).

Local Spatial Autocorrelation Area (km2) % of Total Area

Not Significant 12,607 65.86
High–High Cluster 3144 16.42
Low–Low Cluster 3058 15.98
High–Low Outlier 81 0.42
Low–High Outlier 252 1.32

Additionally, integrating habitat quality and conflict risk data is instrumental in
planning ecological corridors to enhance habitat connectivity while minimizing conflict
risk (Figure 7). These corridors are strategically mapped to connect high-quality habitats,
such as those in Mengyang (MY), Mengla (MLa), and Shangyong (SY), while avoiding the
high-risk zones identified in the conflict risk model. This strategic placement supports
the safe movement of elephants and reduces landscape fragmentation, aligning with
conservation goals to protect biodiversity, improve habitat connectivity, and minimize
human–elephant conflicts.
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5. Discussion

Globally, wildlife and biodiversity conservation has become an increasingly urgent
issue. With the expansion of human activities, wildlife habitats and biodiversity face severe
challenges [53]. Xishuangbanna, located in Yunnan, China, is a critical tropical rainforest
reserve essential for biodiversity conservation, particularly for the Asian elephant [15,54].
However, expanding human activities have led to habitat degradation and increased
human–elephant conflicts in the region [16,55]. This study provides new insights into these
challenges by integrating habitat quality assessments with the spatial analysis of conflict
risks, offering a novel framework for conservation planning.

Human activities, including urbanization, agriculture, and infrastructure develop-
ment, are the primary drivers of large-scale ecological disturbances in Xishuangbanna. Our
findings highlight that agricultural expansion for cash crops (e.g., rubber and tea) and in-
frastructure development are key contributors to habitat degradation and human–elephant
conflicts. For example, the conversion of forest lands in agricultural areas and the construc-
tion of roads to service these areas is an issue. These roads cut into habitats and corridors,
driving fragmentation. This fragmentation in turn impedes natural elephant movement
and increases human–wildlife interactions. This is backed up by our spatial analysis,
which revealed significant habitat fragmentation and clusters of low-quality habitats near
high-conflict zones, particularly in areas adjacent to reserves such as Mengyang, Mengla,
and Shangyong. These results align with previous studies showing that agricultural in-
tensification reduces forest cover and fragments habitats, intensifying human–wildlife
conflicts [56,57].
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Moreover, habitat fragmentation is exacerbated by infrastructure projects, such as
constructing roads to increase human accessibility to remote areas. This disrupts elephant
movement corridors, creating ecological traps [26,58]. Elephants are often attracted to
human-dominated landscapes due to the availability of high-energy crops such as rubber,
tea, and rice, leading to frequent conflicts [16,59]. These interactions underscore the urgency
of the need for strategies that mitigate the dual challenges of habitat degradation and
human–elephant conflicts.

The concept of disturbance regimes—i.e., the patterns and intensities of disruptions,
both natural and anthropogenic, to ecosystem structure, function, and biodiversity—is vital
for understanding the cumulative impacts of human activities on ecosystems [60]. Agri-
cultural and infrastructure developments in Xishuangbanna have fundamentally altered
disturbance regimes, as evidenced by our spatial analysis. The InVEST model indicates
that intensive cropland use and proximity to roads increases habitat degradation indices,
leading to ecological thresholds being exceeded. Combining that with our conflict data,
we see, for example, areas near the Shangyong and Mengla reserves exhibiting both high
human–elephant conflict and low habitat quality. As with this example, this adverse im-
pact on disturbance regimes is particularly evident in areas where high-intensity human
activities coincide with poor habitat quality and high conflict risks.

The Intermediate Disturbance Hypothesis further supports these findings, suggesting
that moderate disturbances foster biodiversity by creating spatial and resource heterogene-
ity, whereas when disturbances exceed ecosystem resilience thresholds, as in the case of
continuous deforestation for plantations, they lead to irreversible degradation [14]. This
study extends this hypothesis by using spatially integrated analysis to demonstrate a
link between high-intensity disturbances and increased conflict risks. For instance, the
Mengyang reserve is surrounded by dense agricultural activities and road networks. It
also shows a high concentration of human–elephant conflict incidents. GIS-based conflict
risk models reveal that areas adjacent to croplands with steep degradation gradients are
hotspots for such conflicts. The overlap of high-risk conflict zones and low-quality habitat
areas, as shown in Figure 5, further supports this connection. These findings highlight the
cascading effects of habitat degradation and fragmentation, where reduced habitat quality
amplifies the frequency and intensity of human–elephant conflicts.

The innovation of this study lies in the integration of the InVEST model with GIS-
based spatial analysis to address conservation challenges in Xishuangbanna. By identifying
specific areas where habitat quality is low and conflict risks are high (e.g., Mengyang
reserve), this approach provides actionable insights for targeted interventions such as
ecological corridors and restoration zones. Unlike conventional methods, this integrated
framework quantifies habitat quality and conflict risks simultaneously, offering a more
holistic perspective for conservation planning.

However, there are limitations to this study. For instance, using insurance claim data to
model conflict risk may not capture all incidents, potentially underestimating the frequency
and severity of conflicts. Additionally, relying on village-level development indicators may
not fully account for the finer-scale impacts of human activities on habitat quality. Future
research should consider more granular data and incorporate additional factors such as
climate change, land-use scenario modeling, and socio-economic dynamics to enhance the
applicability and predictive accuracy of the model. These enhancements could improve the
precision and effectiveness of conservation decisions.

In comparison to other studies, this research offers valuable insights into developing
integrated conservation strategies that address both ecological and social challenges. Pre-
vious studies indicate that many protected areas face similar challenges, such as habitat
loss and wildlife endangerment, as observed in conservation areas in Africa [61,62] and
regions in Indonesia, including Borneo [63] and Sulawesi [64]. However, these ecosystems
are facing severe degradation due to threats such as logging, oil palm plantations, min-
ing, and forest fires. According to our findings, establishing ESAs, ERZs, and ecological
corridors could effectively address these challenges. Furthermore, the InVEST model and
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ArcGIS analysis provide a robust platform for sustainable conservation. The InVEST model
aids in objectively assessing ecosystem service values and integrates multi-source data,
while ArcGIS modeling provides accurate spatial information to support more effective
conservation strategies.

6. Conclusions

The integration of habitat quality and human–elephant conflict (HEC) risk models
has provided a comprehensive framework for conservation planning in Xishuangbanna,
highlighting critical areas where targeted interventions are necessary. The spatial analysis
revealed significant overlap between high-risk HEC zones and regions of low habitat
quality, particularly around key protected areas, such as the Mengyang (MY), Mengla
(MLa), and Shangyong (SY) reserves. These findings indicate that areas with intensive
human activity and degraded habitats are at the highest risk for human–elephant conflicts,
underscoring the urgent need for focused management strategies in these regions.

By identifying Ecological Source Areas and Ecological Restoration Zones, this study
offers a strategic approach to prioritizing conservation efforts. Ecological Source Areas
were identified in places of high-quality habitats, mainly situated in the northern and
peripheral regions. These require strict protection to preserve their ecological integrity.
Ecological Restoration Zones were identified in areas of significant habitat degradation
and high conflict risk, as described in Section 4.3. Specifically, areas classified as low–
low clusters indicate severe habitat degradation, and are primarily concentrated around
Shangyong (SY), Menggao (MG), and Menglun (ML) (Figure 6), with significant overlap
with high-risk conflict (Figure 5). These require targeted restoration actions to improve
habitat quality and mitigate conflict risks. From these, ecological corridors were proposed
to strategically connect high-quality habitats while avoiding high-risk zones. These are
crucial for enhancing habitat connectivity and reducing landscape fragmentation, thereby
supporting the safe movement of Asian elephants and other wildlife.

This study’s findings demonstrate the importance of integrating habitat quality assess-
ments with conflict risk analyses to guide effective conservation planning. By leveraging
spatial models and data-driven approaches, conservation efforts can be more precisely
targeted, ensuring resources are allocated where they are most needed to achieve both
ecological and social objectives. The model validation results, with high predictive accu-
racy for identifying high-risk areas, provide confidence in the utility of these models for
informing future conservation policies and strategies in Xishuangbanna.

In conclusion, this research highlights the critical need for a multi-faceted approach
to conservation planning that combines habitat protection, ecological restoration, and
conflict mitigation. The integrated use of habitat quality and conflict risk models offers
a powerful tool for conservationists and policymakers to prioritize actions that protect
biodiversity, enhance habitat connectivity, and foster coexistence between humans and
wildlife. Future research should focus on refining these models with more granular data
and exploring their applicability in other regions with similar conservation challenges.
Ongoing monitoring and adaptive management are essential to respond effectively to
changing ecological conditions and human dynamics in Xishuangbanna.
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