Effects of Nitrogen on the Bacterial Microbiome Community of Oocystis borgei, an Alga Widely Used in Marine Aquaculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture and Maintenance
2.2. Experiment Design
2.3. Chlorophyll a Content Measurement
2.4. Sample Processing and Sequencing of Microbial Diversity
2.5. Data Analyses
3. Results
3.1. The Changes in Chlorophyll a Concentration of O. borgei under Different Nitrogen Concentrations
3.2. Changes in Nitrogen Concentrations during the Experiments
3.3. OTU and Beta Diversity Analyses of the Epiphytic Microbial Community of O. borgei
3.4. Analysis of the Species Composition of the Epiphytic Microbial Community of O. borgei
3.5. Analysis of Species Diversity in the Epiphytic Microbial Community of O. borgei
3.6. Functional Analysis and Prediction of the Epiphytic Bacterial Community in O. borgei
3.7. Analyses of the Correlation between Bacterial Communities Associated with O. borgei and Environmental Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seymour, J.R.; Amin, S.A.; Raina, J.-B.; Stocker, R. Zooming in on the phycosphere: The ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2017, 2, 17065. [Google Scholar] [CrossRef]
- Florez, J.Z.; Camus, C.; Hengst, M.B.; Marchant, F.; Buschmann, A.H. Structure of the epiphytic bacterial communities of macrocystis pyrifera in localities with contrasting nitrogen concentrations and temperature. Algal Res. 2019, 44, 101706. [Google Scholar] [CrossRef]
- You, X.; Xu, N.; Yang, X.; Sun, W. Pollutants affect algae-bacteria interactions: A critical review. Environ. Pollut. 2021, 276, 116723. [Google Scholar] [CrossRef] [PubMed]
- Dogs, M.; Wemheuer, B.; Wolter, L.; Bergen, N.; Daniel, R.; Simon, M.; Brinkhoff, T. Rhodobacteraceae on the marine brown alga fucus spiralis are abundant and show physiological adaptation to an epiphytic lifestyle. Syst. Appl. Microbiol. 2017, 40, 370–382. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.; Klotz, M.G. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. Biochim. Biophys. Acta BBA-Bioenerg. 2013, 1827, 114–135. [Google Scholar] [CrossRef] [PubMed]
- Mouget, J.-L.; Dakhama, A.; Lavoie, M.C.; de la Noüe, J. Algal growth enhancement by bacteria: Is consumption of photosynthetic oxygen involved? FEMS Microbiol. Ecol. 1995, 18, 35–43. [Google Scholar] [CrossRef]
- Ramanan, R.; Kim, B.H.; Cho, D.H.; Oh, H.M.; Kim, H.S. Algae-bacteria interactions: Evolution, ecology and emerging applications. Biotechnol. Adv. 2016, 34, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Piampiano, E.; Pini, F.; Biondi, N.; Pastorelli, R.; Giovannetti, L.; Viti, C. Analysis of microbiota in cultures of the green microalga Tetraselmis suecica. Eur. J. Phycol. 2019, 54, 497–508. [Google Scholar] [CrossRef]
- Tujula, N.A.; Crocetti, G.R.; Burke, C.; Thomas, T.; Holmström, C.; Kjelleberg, S. Variability and abundance of the epiphytic bacterial community associated with a green marine Ulvacean alga. ISME J. 2010, 4, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Lachnit, T.; Meske, D.; Wahl, M.; Harder, T.; Schmitz, R. Epibacterial community patterns on marine macroalgae are host-specific but temporally variable: Epiphytic communities on macroalgae. Environ. Microbiol. 2011, 13, 655–665. [Google Scholar] [CrossRef]
- Tam, N.F.Y.; Wong, Y.S. Wastewater nutrient removal by chlorella Pyrenoidosa and Pcenedesmus sp. Environ. Pollut. 1989, 58, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Apandi, N.; Mohamed, R.M.S.R.; Al-Gheethi, A.; Gani, P.; Ibrahim, A.; Kassim, A.H.M. Scenedesmus biomass productivity and nutrient removal from wet market wastewater, a bio-kinetic study. Waste Biomass Valorization 2019, 10, 2783–2800. [Google Scholar] [CrossRef]
- Xia, P.; Yan, D.; Sun, R.; Song, X.; Lin, T.; Yi, Y. Community composition and correlations between bacteria and algae within epiphytic biofilms on submerged macrophytes in a plateau lake, southwest China. Sci. Total Environ. 2020, 727, 138398. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Kan, J.; He, C.; Shi, Q.; Liu, Y.-X.; Fan, Z.-C.; Sun, J. Epiphytic bacteria are essential for the production and transformation of algae-derived carboxyl-rich alicyclic molecule (CRAM)-like DOM. Microbiol. Spectr. 2021, 9, e01531-21. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, J.L.; Garbayo, I.; Cuaresma, M.; Montero, Z.; González-del-Valle, M.; Vílchez, C. Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Mar. Drugs 2016, 14, 100. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, Y.; Suzuki, M.; Kasai, H.; Shizuri, Y.; Harayama, S. Isolation and phylogenetic characterization of bacteria capable of inducing differentiation in the green alga Monostroma oxyspermum. Environ. Microbiol. 2003, 5, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Huang, X.-H.; Li, C.-L.; Gu, B. Study on the uptake of dissolved nitrogen by Oocystis borgei in prawn (Litopenaeus vannamei) aquaculture ponds and establishment of uptake model. Aquac. Int. 2020, 28, 1445–1458. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Li, C.; Huang, X.; Li, F.; Wang, X.; Li, G. Allelopathic effect of Oocystis borgei culture on Microcystis aeruginosa. Environ. Technol. 2022, 43, 1662–1671. [Google Scholar] [CrossRef]
- Huang, X.; Wei, S.; Zhou, M.; Jiang, D. Study on the tolerance and adsorption of Cu2+ and Zn2+ by Oocystis borgei. J. Shanghai Ocean Univ. 2012, 21, 374–381. [Google Scholar]
- Salim, A. The Complete Plastome of the Green Alga Oocystis borgei. Master’s Dissertation, The University of Texas at Austin, Austin, TX, USA, 2023. [Google Scholar]
- Xie, L. The Impact of Carbon and Nitrogen on the Biochemical Composition, Sedimentation, and Metabolic Groups of Oocystis borgei. Master’s Dissertation, Guangdong Ocean University, Zhanjiang, China, 2020. [Google Scholar] [CrossRef]
- Liu, M.; Huang, X.; Zhang, R.; Li, C.; Gu, B. Uptake of urea nitrogen by Oocystis borgei in prawn (litopenaeus vannamei) aquaculture ponds. Bull. Environ. Contam. Toxicol. 2018, 101, 586–591. [Google Scholar] [CrossRef]
- Yang, M.; Li, C.; Huang, X.; Wang, Q.; Chen, A. The influence of nitrogen concentration, temperature, and light intensity on the reproductive patterns of Oocystis borgei. J. Guangdong Ocean Univ. 2019, 39, 44–49. [Google Scholar]
- Ma, Y.; Luo, Z.; Zhong, J.; Zhang, H.; Huang, X.; Li, C.; Zhang, Y. Effect of environmental factors on nitrite nitrogen absorption in microalgae–bacteria consortia of Oocystis borgei and Rhodopseudomonas palustris. Water 2023, 15, 1722. [Google Scholar] [CrossRef]
- Huang, X.; Li, X.; Wang, Y.; Zhou, M. Effects of environmental factors on the uptake rates of dissolved nitrogen by a salt-water green alga (Oocystis Borgei Snow). Bull. Environ. Contam. Toxicol. 2012, 89, 905–909. [Google Scholar] [CrossRef] [PubMed]
- Tong, C.Y.; Honda, K.; Derek, C.J.C. A review on microalgal-bacterial co-culture: The multifaceted role of beneficial bacteria towards enhancement of microalgal metabolite production. Environ. Res. 2023, 228, 115872. [Google Scholar] [CrossRef] [PubMed]
- Jeffrey, S.W.; Humphrey, G.F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 1975, 167, 191–194. [Google Scholar] [CrossRef]
- Guo, L.; Wang, X.; Lin, Y.; Yang, X.; Ni, K.; Yang, F. Microorganisms that are critical for the fermentation quality of paper mulberry silage. Food Energy Secur. 2021, 10, e304. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Grice, E.A.; Kong, H.H.; Conlan, S.; Deming, C.B.; Davis, J.; Young, A.C.; Bouffard, G.G.; Blakesley, R.W.; Murray, P.R. Topographical and temporal diversity of the human skin microbiome. Science 2009, 324, 1190–1192. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z. The Impact of Temperature, Light Intensity, and Nitrogen on the Reproductive Cycle of Oocystis borgei. Master’s Dissertation, Guangdong Ocean University, Zhanjiang, China, 2019. [Google Scholar]
- Nedashkovskaya, O.I.; Kukhlevskiy, A.D.; Zhukova, N.V. Winogradskyella Ulvae sp. nov., an epiphyte of a pacific seaweed, and emended descriptions of the genus Winogradskyella and Winogradskyella thalassocola, Winogradskyella echinorum, Winogradskyella exilis and Winogradskyella eximia. Int. J. Syst. Evol. Microbiol. 2012, 62, 1450–1456. [Google Scholar] [CrossRef]
- Cai, Z. Study on Microbial Community Characteristics of Main Seagrass Beds in Wenchang and the Impact of Two Types of Land-Based Pollutants and Vibrio on the Bacterial Community of Thalassia. Doctoral Dissertation, Hainan University, Haikou, China, 2021. [Google Scholar]
- Zhu, W.; Xu, F.; Ye, Y.; Yang, Q.; Zhang, X. Comparative genomics reveals insights into phylogenomic taxonomy and potential algae-bacteria interactions of novel versatile Mameliella alba strain LZ-28 Isolated from highly-toxic marine phycosphere. bioRxiv 2021. [Google Scholar] [CrossRef]
- Florez, J.Z.; Camus, C.; Hengst, M.B.; Buschmann, A.H. A functional perspective analysis of macroalgae and epiphytic bacterial community interaction. Front. Microbiol. 2017, 8, 2561. [Google Scholar] [CrossRef]
- Lian, J.; Wijffels, R.H.; Smidt, H.; Sipkema, D. The effect of the algal microbiome on industrial production of microalgae. Microb. Biotechnol. 2018, 11, 806–818. [Google Scholar] [CrossRef]
- González-Camejo, J.; Barat, R.; Pachés, M.; Murgui, M.; Seco, A.; Ferrer, J. Wastewater nutrient removal in a mixed microalgae–bacteria culture: Effect of light and temperature on the microalgae–bacteria competition. Environ. Technol. 2018, 39, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Benno, Y.; Mitsuoka, T. Utilization of ammonia nitrogen by intestinal bacteria isolated from pigs. Appl. Environ. Microbiol. 1980, 39, 30–35. [Google Scholar] [CrossRef]
- Qi, Y.; Zhong, Y.; Luo, L.; He, J.; Feng, B.; Wei, Q.; Zhang, K.; Ren, H. Subsurface constructed wetlands with modified biochar added for advanced treatment of tailwater: Performance and microbial communities. Sci. Total Environ. 2024, 906, 167533. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Huang, X.; Zhu, C.; Mo, F.; Wen, Q.; Zhang, Y. Isolation and identification of a microalgal symbiotic bacterium strain and nitrogen uptake characteristics of the algal-bacterial consortium. J. Guangdong Ocean Univ. 2022, 42, 49–63. [Google Scholar] [CrossRef]
- Wei, X.; Shi, F.; Chen, Z.; Feng, J.; Zhu, L. Response of the triangle brown alga and its algal-bacterial consortia to different inorganic nitrogen sources. Mar. Sci. 2022, 46, 10–21. [Google Scholar] [CrossRef]
- Lupette, J.; Lami, R.; Krasovec, M.; Grimsley, N.; Moreau, H.; Piganeau, G.; Sanchez-Ferandin, S. Marinobacter dominates the bacterial community of the Ostreococcus tauri phycosphere in culture. Front. Microbiol. 2016, 7, 1414. [Google Scholar] [CrossRef]
- Ling, T.; Zhang, Y.F.; Cao, J.Y.; Xu, J.L.; Kong, Z.Y.; Zhang, L.; Liao, K.; Zhou, C.-X.; Yan, X.-J. Analysis of bacterial community diversity within seven bait-microalgae. Algal Res. 2020, 51, 102033. [Google Scholar] [CrossRef]
- Morales, M.; Sánchez, L.; Revah, S. The impact of environmental factors on carbon dioxide fixation by microalgae. FEMS Microbiol. Lett. 2018, 365, fnx262. [Google Scholar] [CrossRef]
- Moreno-Garcia, L.; Gariépy, Y.; Barnabé, S.; Raghavan, G.S.V. Effect of environmental factors on the biomass and lipid production of microalgae grown in wastewaters. Algal Res. 2019, 41, 101521. [Google Scholar] [CrossRef]
- Voolstra, C.R.; Ziegler, M. Adapting with microbial help: Microbiome flexibility facilitates rapid responses to environmental change. BioEssays 2020, 42, 2000004. [Google Scholar] [CrossRef] [PubMed]
- Pei, P.; Aslam, M.; Du, H.; Liang, H.; Wang, H.; Liu, X.; Chen, W. Environmental factors shape the epiphytic bacterial communities of Gracilariopsis lemaneiformis. Sci. Rep. 2021, 11, 8671. [Google Scholar] [CrossRef] [PubMed]
Groups | Shannon | Simpson | Chao1 | Ace | Goods Coverage |
---|---|---|---|---|---|
N2.5 | 2.4395 ± 0.0727 a | 0.7646 ± 0.0101 a | 26.6 ± 1.04 a | 27.0659 ± 1.13 a | 0.994 |
N10 | 2.5517 ± 0.0687 a | 0.7884 ± 0.0259 a | 27.2 ± 4.44 a | 33.1921 ± 7.52 a | 0.991 |
N50 | 2.7465 ± 0.1441 a | 0.7765 ± 0.0358 a | 25.5 ± 0.28 a | 25,9643 ± 0.39 a | 0.995 |
N100 | 2.5516 ± 0.1824 a | 0.7491 ± 0.0378 a | 25.37 ± 1.8 a | 25.8426 ± 1.83 a | 0.995 |
Metabolic Pathway | Relative Abundance (%) | |||
---|---|---|---|---|
N2.5 | N10 | N50 | N100 | |
Carbohydrate metabolism | 8.0902 | 8.1068 | 8.2332 | 8.2556 |
Amino acid metabolism | 7.5447 | 7.6083 | 7.8652 | 8.0011 |
Energy metabolism | 5.1494 | 4.8409 | 4.3580 | 4.4572 |
Metabolism of cofactors and vitamins | 4.4687 | 4.3447 | 4.1259 | 4.2060 |
Membrane transport | 3.7884 | 3.9076 | 3.9641 | 3.6052 |
Nucleotide metabolism | 3.2365 | 3.1508 | 2.9315 | 3.1590 |
Translation | 2.8134 | 2.7598 | 2.5738 | 2.7517 |
Signal transduction | 2.3212 | 2.5617 | 2.8944 | 2.5860 |
Replication and repair | 2.2637 | 2.3211 | 2.3190 | 2.4119 |
Lipid metabolism | 1.9184 | 2.1738 | 2.5424 | 2.3327 |
Metabolism of other amino acids | 1.6856 | 1.7012 | 1.7591 | 1.7179 |
Xenobiotic biodegradation and metabolism | 1.5943 | 1.7062 | 2.0626 | 1.7842 |
Cellular community—prokaryotes | 1.4692 | 1.4941 | 1.4809 | 1.3579 |
Folding, sorting and degradation | 1.4302 | 1.4621 | 1.4385 | 1.4352 |
Metabolism of terpenoids and polyketides | 1.1921 | 1.2432 | 1.3259 | 1.2921 |
Glycan biosynthesis and metabolism | 1.0470 | 1.0416 | 1.0139 | 1.1266 |
Biosynthesis of other secondary metabolites | 0.8590 | 0.8426 | 0.8383 | 0.8742 |
Cell growth and death | 0.6440 | 0.6293 | 0.6253 | 0.6180 |
Endocrine system | 0.5637 | 0.5446 | 0.5353 | 0.5320 |
Cell motility | 0.5313 | 0.9154 | 1.3997 | 0.9964 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Hu, Z.; Li, C.; Huang, X.; Zhang, Y. Effects of Nitrogen on the Bacterial Microbiome Community of Oocystis borgei, an Alga Widely Used in Marine Aquaculture. Diversity 2024, 16, 100. https://doi.org/10.3390/d16020100
Liu B, Hu Z, Li C, Huang X, Zhang Y. Effects of Nitrogen on the Bacterial Microbiome Community of Oocystis borgei, an Alga Widely Used in Marine Aquaculture. Diversity. 2024; 16(2):100. https://doi.org/10.3390/d16020100
Chicago/Turabian StyleLiu, Bihong, Zhangxi Hu, Changling Li, Xianghu Huang, and Yulei Zhang. 2024. "Effects of Nitrogen on the Bacterial Microbiome Community of Oocystis borgei, an Alga Widely Used in Marine Aquaculture" Diversity 16, no. 2: 100. https://doi.org/10.3390/d16020100
APA StyleLiu, B., Hu, Z., Li, C., Huang, X., & Zhang, Y. (2024). Effects of Nitrogen on the Bacterial Microbiome Community of Oocystis borgei, an Alga Widely Used in Marine Aquaculture. Diversity, 16(2), 100. https://doi.org/10.3390/d16020100