Identifying Molecular Markers for Ficus erecta Thunb. Based on Complete Plastome Sequences of Korean Figs (Ficus L., Moraceae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Taxon Sampling, DNA Extraction, and Plastome Assembly
2.2. Phylogenetic Analysis
2.3. Relative Synonymous Codon Usage (RSCU) Analysis
2.4. Development of Molecular Markers for Ficus erecta
3. Results
3.1. Plastome Features of Korean Figs
3.2. Phylogenetic Relationships with Related Taxa
3.3. RSCU
3.4. MDCs and SNP Markers for Ficus erecta
4. Discussion
4.1. Complete Plastomes of Figs and Phylogenetic Relationships
4.2. RSCU
4.3. Implications of MDCs Data and Molecular Markers for Ficus erecta
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Clement, W.L.; Weiblen, G.D. Morphological Evolution in the Mulberry Family (Moraceae). Syst. Bot. 2009, 34, 530–552. [Google Scholar] [CrossRef]
- Harrison, R.D.; Shanahan, M. Seventy-seven ways to be a fig: Overview of a diverse plant assemblage. In Pollination Ecology and the Rain Forest; Springer: New York, NY, USA, 2005; pp. 111–127. [Google Scholar]
- Park, S.H.; Oh, T.-H.; Kim, S.S.; Kim, J.E.; Lee, S.J.; Lee, N.H. Constituents with tyrosinase inhibitory activities from branches of Ficus erecta var. sieboldii King. J. Enzym. Inhib. Med. Chem. 2012, 27, 390–394. [Google Scholar] [CrossRef]
- Al Faysal, A.; Mian, Y.; Rahman, M.M.; Akter, M.; Rahman, M.; Tuhin, T.H.; Bilkiss, M. In vitro thrombolytic activity, antioxidant and cytotoxic properties of fruit extracts of Ficus erecta (Thunb.). J. Med. Plants Res. 2018, 12, 50–54. [Google Scholar]
- Sohn, E.; Kim, Y.J.; Kim, J.H.; Jeong, S.J. Ficus erecta Thunb Leaves Alleviate Memory Loss Induced by Scopolamine in Mice via Regulation of Oxidative Stress and Cholinergic System. Mol. Neurobiol. 2021, 58, 3665–3676. [Google Scholar] [CrossRef]
- Sohn, E.; Kim, Y.J.; Kim, J.-H.; Jeong, S.-J. Ficus erecta Thunb. Leaves Ameliorate Cognitive Deficit and Neuronal Damage in a Mouse Model of Amyloid-β-Induced Alzheimer’s Disease. Front. Pharmacol. 2021, 12, 607403. [Google Scholar] [CrossRef] [PubMed]
- Do, H.D.K.; Jung, J.; Hyun, J.; Yoon, S.J.; Lim, C.; Park, K.; Kim, J.H. The newly developed single nucleotide polymorphism (SNP) markers for a potentially medicinal plant, Crepidiastrum denticulatum (Asteraceae), inferred from complete chloroplast genome data. Mol. Biol. Rep. 2019, 46, 3287–3297. [Google Scholar] [CrossRef] [PubMed]
- Dobrogojski, J.; Adamiec, M.; Luciński, R. The chloroplast genome: A review. Acta Physiol. Plant. 2020, 42, 98. [Google Scholar] [CrossRef]
- Jung, J.; Kim, C.; Kim, J.H. Insights into phylogenetic relationships and genome evolution of subfamily Commelinoideae (Commelinaceae Mirb.) inferred from complete chloroplast genomes. BMC Genom. 2021, 22, 231. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-H.; Kim, J.-H. Molecular Phylogeny and Historical Biogeography of Goodyera R. Br.(Orchidaceae): A Case of the Vicariance between East Asia and North America. Front. Plant Sci. 2022, 13, 1255. [Google Scholar] [CrossRef]
- Yang, H.-B.; Kang, W.-H.; Nahm, S.-H.; Kang, B.-C. Methods for developing molecular markers. In Current Technologies in Plant Molecular Breeding: A Guide Book of Plant Molecular Breeding for Researchers; Springer: Dordrecht, The Netherlands, 2015; pp. 15–50. [Google Scholar]
- Williams, J.G.; Kubelik, A.R.; Livak, K.J.; Rafalski, J.A.; Tingey, S.V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990, 18, 6531–6535. [Google Scholar] [CrossRef]
- Vos, P.; Hogers, R.; Bleeker, M.; Reijans, M.; Lee, T.v.d.; Hornes, M.; Friters, A.; Pot, J.; Paleman, J.; Kuiper, M. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res. 1995, 23, 4407–4414. [Google Scholar] [CrossRef]
- Litt, M.; Luty, J.A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet. 1989, 44, 397. [Google Scholar] [PubMed]
- Jacob, H.J.; Lindpaintner, K.; Lincoln, S.E.; Kusumi, K.; Bunker, R.K.; Mao, Y.-P.; Ganten, D.; Dzau, V.J.; Lander, E.S. Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 1991, 67, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Dwiningsih, Y.; Rahmaningsih, M.; Alkahtani, J. Development of single nucleotide polymorphism (SNP) markers in tropical crops. Adv. Sustain. Sci. Eng. Technol. 2020, 2, 343558. [Google Scholar] [CrossRef]
- Yoo, E.; Haile, M.; Ko, H.-C.; Choi, Y.-M.; Cho, G.-T.; Woo, H.-J.; Wang, X.; Sung, P.; Lee, J.; Lee, J. Development of SNP markers for Cucurbita species discrimination. Sci. Hortic. 2023, 318, 112089. [Google Scholar] [CrossRef]
- Merckelbach, L.M.; Borges, L.M. Make every species count: Fastachar software for rapid determination of molecular diagnostic characters to describe species. Mol. Ecol. Resour. 2020, 20, 1761–1768. [Google Scholar] [CrossRef]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Jin, J.-J.; Yu, W.-B.; Yang, J.-B.; Song, Y.; DePamphilis, C.W.; Yi, T.-S.; Li, D.-Z. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020, 21, 241. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef]
- Tillich, M.; Lehwark, P.; Pellizzer, T.; Ulbricht-Jones, E.S.; Fischer, A.; Bock, R.; Greiner, S. GeSeq–versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017, 45, W6–W11. [Google Scholar] [CrossRef]
- Chan, P.P.; Lowe, T.M. tRNAscan-SE: Searching for tRNA genes in genomic sequences. In Gene Prediction: Methods and Protocols; Humana: New York, NY, USA, 2019; pp. 1–14. [Google Scholar]
- Greiner, S.; Lehwark, P.; Bock, R. OrganellarGenomeDRAW (OGDRAW) version 1.3. 1: Expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019, 47, W59–W64. [Google Scholar] [CrossRef]
- Swofford, D. PAUP* 4.0 b. 4a. In Phylogenetic Analysis Using Parsimony*(and Other Methods); Sinauer: Sunderland, MA, USA, 2000. [Google Scholar]
- Trifinopoulos, J.; Nguyen, L.-T.; von Haeseler, A.; Minh, B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016, 44, W232–W235. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A. FigTree, a Graphical Viewer of Phylogenetic Trees (Version 1.4.4); Institute of evolutionary biology, University of Edinburgh: Edinburgh, UK, 2018. [Google Scholar]
- Xia, X.; Xie, Z. DAMBE: Software package for data analysis in molecular biology and evolution. J. Hered. 2001, 92, 371–373. [Google Scholar] [CrossRef]
- You, F.M.; Huo, N.; Gu, Y.Q.; Luo, M.-C.; Ma, Y.; Hane, D.; Lazo, G.R.; Dvorak, J.; Anderson, O.D. BatchPrimer3: A high throughput web application for PCR and sequencing primer design. BMC Bioinform. 2008, 9, 253. [Google Scholar] [CrossRef]
- Berg, C.C.; Corner, E.J.H. Moraceae: Ficeae. Flora Malesiana-Ser. 1 Spermatophyta 2005, 17, 1–702. [Google Scholar]
- Zhang, Z.-R.; Yang, X.; Li, W.-Y.; Peng, Y.-Q.; Gao, J. Comparative chloroplast genome analysis of Ficus (Moraceae): Insight into adaptive evolution and mutational hotspot regions. Front. Plant Sci. 2022, 13, 965335. [Google Scholar] [CrossRef]
- Ravi, V.; Khurana, J.P.; Tyagi, A.K.; Khurana, P. The chloroplast genome of mulberry: Complete nucleotide sequence, gene organization and comparative analysis. Tree Genet. Genomes 2006, 3, 49–59. [Google Scholar] [CrossRef]
- Yang, J.; Chu, Q.; Meng, G.; Kong, W. The complete chloroplast genome sequences of three Broussonetia species and comparative analysis within the Moraceae. PeerJ 2022, 10, e14293. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, D.-S.; Zou, L.; Yao, C.-Y. Comparison of chloroplast genomes and phylogenomics in the Ficus sarmentosa complex (Moraceae). PLoS ONE 2022, 17, e0279849. [Google Scholar] [CrossRef]
- Azuma, H.; Harrison, R.D.; Nakamura, K.; Su, Z.-H. Molecular phylogenies of figs and fig-pollinating wasps in the Ryukyu and Bonin (Ogasawara) islands, Japan. Genes Genet. Syst. 2010, 85, 177–192. [Google Scholar] [CrossRef]
- Li, H.-Q.; Wang, S.; Chen, J.-Y.; Gui, P. Molecular phylogeny of Ficus section Ficus in China based on four DNA regions. J. Syst. Evol. 2012, 50, 422–432. [Google Scholar] [CrossRef]
- Cruaud, A.; Ronsted, N.; Chantarasuwan, B.; Chou, L.S.; Clement, W.L.; Couloux, A.; Cousins, B.; Genson, G.; Harrison, R.D.; Hanson, P.E.; et al. An extreme case of plant-insect codiversification: Figs and fig-pollinating wasps. Syst. Biol. 2012, 61, 1029–1047. [Google Scholar] [CrossRef]
- Bruun-Lund, S.; Clement, W.L.; Kjellberg, F.; Ronsted, N. First plastid phylogenomic study reveals potential cyto-nuclear discordance in the evolutionary history of Ficus L. (Moraceae). Mol. Phylogenet. Evol. 2017, 109, 93–104. [Google Scholar] [CrossRef]
- Clement, W.L.; Bruun-Lund, S.; Cohen, A.; Kjellberg, F.; Weiblen, G.D.; Rønsted, N. Evolution and classification of figs (Ficus, Moraceae) and their close relatives (Castilleae) united by involucral bracts. Bot. J. Linn. Soc. 2020, 193, 316–339. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, X.; Herre, E.A.; McKey, D.; Machado, C.A.; Yu, W.B.; Cannon, C.H.; Arnold, M.L.; Pereira, R.A.S.; Ming, R.; et al. Genomic evidence of prevalent hybridization throughout the evolutionary history of the fig-wasp pollination mutualism. Nat. Commun. 2021, 12, 718. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, J.; Yang, Z.; An, W.; Xie, C.; Liu, S.; Zheng, X. Comprehensive analysis of complete chloroplast genome and phylogenetic aspects of ten Ficus species. BMC Plant Biol. 2022, 22, 253. [Google Scholar] [CrossRef] [PubMed]
- Machado, C.A.; Robbins, N.; Gilbert, M.T.P.; Herre, E.A. Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism. Proc. Natl. Acad. Sci. USA 2005, 102, 6558–6565. [Google Scholar] [CrossRef]
- Govaerts, R.; Nic Lughadha, E.; Black, N.; Turner, R.; Paton, A. The World Checklist of Vascular Plants, a continuously updated resource for exploring global plant diversity. Sci. Data 2021, 8, 215. [Google Scholar] [CrossRef] [PubMed]
- Tsai, L.; Hayakawa, H.; Fukuda, T.; Yokoyama, J. A breakdown of obligate mutualism on a small island: An interspecific hybridization between closely related fig species (Ficus pumila and Ficus thunbergii) in Western Japan. Am. J. Plant Sci. 2015, 6, 126. [Google Scholar] [CrossRef]
- Sharp, P.M.; Tuohy, T.M.; Mosurski, K.R. Codon usage in yeast: Cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res. 1986, 14, 5125–5143. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Gonzales, N.R.; Gwadz, M.; Lu, S.; Marchler, G.H.; Song, J.S.; Thanki, N.; Yamashita, R.A. The conserved domain database in 2023. Nucleic Acids Res. 2023, 51, D384–D388. [Google Scholar] [CrossRef] [PubMed]
- Bi, D.; Chen, D.; Khayatnezhad, M.; Hashjin, Z.S.; Li, Z.; Ma, Y. Molecular identification and genetic diversity in Hypericum L.: A high value medicinal plant using RAPD markers markers. Genetika 2021, 53, 393–405. [Google Scholar] [CrossRef]
- Zheng, K.; Cai, Y.; Chen, W.; Gao, Y.; Jin, J.; Wang, H.; Feng, S.; Lu, J. Development, identification, and application of a germplasm specific SCAR Marker for Dendrobium officinale Kimura et Migo. Front. Plant Sci. 2021, 12, 669458. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Mishra, P.; Singh, S.C.; Sundaresan, V. Efficiency of ISSR and RAPD markers in genetic divergence analysis and conservation management of Justicia adhatoda L., a medicinal plant. Plant Syst. Evol. 2014, 300, 1409–1420. [Google Scholar] [CrossRef]
- Rendón-Anaya, M.; Ibarra-Laclette, E.; Méndez-Bravo, A.; Lan, T.; Zheng, C.; Carretero-Paulet, L.; Perez-Torres, C.A.; Chacón-López, A.; Hernandez-Guzmán, G.; Chang, T.-H. The avocado genome informs deep angiosperm phylogeny, highlights introgressive hybridization, and reveals pathogen-influenced gene space adaptation. Proc. Natl. Acad. Sci. USA 2019, 116, 17081–17089. [Google Scholar] [CrossRef]
- Slimp, M.; Williams, L.D.; Hale, H.; Johnson, M.G. On the potential of Angiosperms353 for population genomic studies. Appl. Plant Sci. 2021, 9, e11419. [Google Scholar] [CrossRef]
- Giang, V.N.L.; Waminal, N.E.; Park, H.-S.; Kim, N.-H.; Jang, W.; Lee, J.; Yang, T.-J. Comprehensive comparative analysis of chloroplast genomes from seven Panax species and development of an authentication system based on species-unique single nucleotide polymorphism markers. J. Ginseng Res. 2020, 44, 135–144. [Google Scholar]
- Hyun, J.; Do, H.D.K.; Jung, J.; Kim, J.-H. Development of molecular markers for invasive alien plants in Korea: A case study of a noxious weed, Cenchrus longispinus (Hack.) Fernald, based on next generation sequencing data. PeerJ 2019, 7, e7965. [Google Scholar] [CrossRef]
Primer | Sequence |
---|---|
Fic_ndhD_231F | 5′-CTG GAG ATT GGG AAT AGA TGG A-3′ |
Fic_ndhD_899R | 5′-TTA CGT TGA CCA GGA GAT GTT G-3′ |
Fic_ndhD_R | 5′-CGA TTT GAC AGC AAA AGC GAG-3′ |
Fic_petA_130F | 5′-TAT GAA AAT CCA CGA GAA GCG A-3′ |
Fic_petA_751R | 5′-AAA CAA GAA GTT CTG GTC CTG G-3′ |
Fic_petA_F | 5′-GAG GGG TTT GAA TTA GCC CTT A-3′ |
Fic_rbcL_5F | 5′-CAC CAC AAA CAG AGA CTA AAG CA-3′ |
Fic_rbcL_565R | 5′-CTG CTC TAC CGT AAT TCT TAG CG-3′ |
Fic_rbcL_F | 5′-GAA TCT TCT ACT GGT ACA TGG AAA G-3′ |
Taxa | Subgenus | Length and G + C Content | GenBank Accession No. | Voucher | |||
---|---|---|---|---|---|---|---|
LSC bp (G + C%) | SSC bp (G + C%) | IR bp (G + C%) | Total bp (G + C%) | ||||
Ficus erecta Thunb. | Ficus | 88,640 (33.5) | 20,165 (28.9) | 25,899 (42.6) | 160,603 (35.9) | PP291718 | JH220720001 |
Ficus erecta var. sieboldii (Miq.) King | Ficus | 88,641 (33.5) | 20,165 (28.9) | 25,899 (42.6) | 160,603 (35.9) | PP291717 | JH220720003 |
Ficus sarmentosa var. nipponica (Franch. & Sav.) Corner | Synoecia | 88,456 (33.6) | 20,087 (29.1) | 25,897 (42.6) | 160,337 (36.0) | PP291719 | JH190502001 |
Ficus sarmentosa var. thunbergii (Maxim.) Corner | Synoecia | 88,397 (33.6) | 20,101 (29.1) | 25,889 (42.7) | 160,276 (36.0) | PP291720 | TH190616001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, J.; Kim, T.-H.; Kwon, S.W.; Park, H.J.; Choi, I.S.; Kim, J.-H. Identifying Molecular Markers for Ficus erecta Thunb. Based on Complete Plastome Sequences of Korean Figs (Ficus L., Moraceae). Diversity 2024, 16, 129. https://doi.org/10.3390/d16030129
Jung J, Kim T-H, Kwon SW, Park HJ, Choi IS, Kim J-H. Identifying Molecular Markers for Ficus erecta Thunb. Based on Complete Plastome Sequences of Korean Figs (Ficus L., Moraceae). Diversity. 2024; 16(3):129. https://doi.org/10.3390/d16030129
Chicago/Turabian StyleJung, Joonhyung, Tae-Hee Kim, Seog Woo Kwon, Hyun Ji Park, In Suk Choi, and Joo-Hwan Kim. 2024. "Identifying Molecular Markers for Ficus erecta Thunb. Based on Complete Plastome Sequences of Korean Figs (Ficus L., Moraceae)" Diversity 16, no. 3: 129. https://doi.org/10.3390/d16030129
APA StyleJung, J., Kim, T. -H., Kwon, S. W., Park, H. J., Choi, I. S., & Kim, J. -H. (2024). Identifying Molecular Markers for Ficus erecta Thunb. Based on Complete Plastome Sequences of Korean Figs (Ficus L., Moraceae). Diversity, 16(3), 129. https://doi.org/10.3390/d16030129