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Abstract: This study was designed to determine the fragmentation of sub-lakes in winter and its
effects on wintering waterbirds in Poyang Lake. Poyang Lake becomes fragmented in winter, which
forms many seasonal sub-lakes every year, and have different environmental characteristics. These
sub-lakes significantly impact winter bird habitats and result in susceptibility to various changes,
because birds have different distribution responses. A total of 24 sub-lakes were surveyed from one
to five vantage points using point count methods in each sub-lake with binoculars, monocular, and
a spotting scope for four consecutive winter seasons. The multi-site dissimilarity Sorensen index
measures overlapped between two populations, and the R software “iNEXT” package was used to
evaluate the sample coverage test of the study area. We observed 58 wintering waterbird species
belonging to 9 orders and 15 families from 2016 to 2020. Spearman correlation analysis showed that
the species richness of wintering waterbirds was significantly positively correlated with the sub-lake
areas and associated with the richness of habitat type. The WNODF analyses were considerably
correlated for sites of waterbirds, mainly with the abundance of forage and conservation of habitat
form. The outcomes of this study showed that Maying Lake has the highest local beta diversity,
whereas Dacha Lake has the lowest local beta diversity contribution (0.007). This study’s findings
demonstrate Poyang Lake’s role in waterbird the habitat suitability of waterbirds, especially for
foraging and conservation.

Keywords: lake fragmentation; wintering waterbirds; Poyang Lake; China

1. Introduction

As a natural reserve of global significance, wetland ecosystems have been broadly
recognized as playing a key role in supporting global biodiversity by providing vital habitat
for frequent wildlife species [1]. Waterbirds, a group of bird species living together mostly
dependent on water, are widely distributed worldwide. Waterbirds entirely or partially
depend on wetlands for various activities such as foraging, loafing, and molting [2]. How-
ever, their populations are being influenced worldwide and have begun to fluctuate due to
widespread human activities and environ mental change [3]. The economic development
and the improvement of people’s living standards have changed the original land use mode
and environment characteristics, and the continuous natural landscape has been divided
into different green patches, aggravating the impact of habitat fragmentation, alien species
invasion, and human interference, resulting in an island effect of biodiversity [3]. Birds
are an important component of biodiversity and an indicator species for environmental
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monitoring [4]. They are common animal groups found everywhere and are important
in ecosystem service functions [5]. Previous studies have shown that the fragmentation
of natural landscape will lead to the homogenization of birds’ functional diversity and
the decline in their role in ecosystem service functions, as waterbirds’ reproductive life
history is linked to home range, which is particularly noteworthy [6]. Beta diversity refers
to the difference in species composition between different communities, which is widely
used in conservation biology. For a given level of regional species richness, as beta diver-
sity increases, individual localities differ more markedly from one another and a smaller
proportion of the species occur in the region [7]. Spatial turnover may be ascribed to
species replacement between assemblages fueled by environmental straining and dispersal
ability, allowing species to track their appropriate environments, while nestedness results
from species loss or gain associated with ordered extinction–colonization dynamics [8].
Determining and decomposing β-diversity results in testing hypotheses related to biodi-
versity distributions and assembly processes of biotic groups [8,9], providing visions for
the organization, preservation, and restoration of biodiversity [10,11]. It has subsequently
been frequently emphasized [8,12]. However, the effect of nestedness on similarities among
biotas has been known for a long time [13]. Whittaker’s definition emphasizes the variation
in species composition among sites within a geographic area. Baselga decomposes beta
diversity into the component of species turnover and the nested component [14]. Species
turnover indicates the replacement of species among different communities (i.e., changes
in species composition among local communities). A nested component demonstrates that
when the species richness is arranged in order along a gradient, the community with fewer
species is a subset of the community with more species [2], or it can be explained as the loss
of species at specific sites where there is a subset of sites with more prosperous species. Beta
diversity is affected by deterministic and random factors, such as environmental filtering,
geographical distance, intraspecific competition, and human interference [15]. Theoretically,
this is important in conservation biology and is often applied to biogeographic zoning and
reserve site selection. If nested components are dominant, the regions with high species
richness have high protection levels. Otherwise, it means that the contribution of all studied
areas to beta diversity is similar [16]. If the spatial turnover constituent is the main pattern
of beta diversity, more protected parts are essential to conserve regional biodiversity. In
contrast, if the nestedness component is the main pattern, a large protected area comprising
a high species richness could be sufficient [13]. Thus, beta diversity is an essential tool for
conservation planning.

In spatial turnover, species are replaced from one site to another due to dispersal
or niche processes, which may occur contemporaneously or in the past. Contrary to
turnover, nestedness-resultant results (βnes) are determined by species losses and gains in
nested subsets caused by contemporary or historical processes, including passive sampling,
selective extinction, selective colonization, and habitat nestedness [17,18]. Range shifts and
phenological modification are two practices by which organisms respond to environmental
warming. Understanding the mechanisms that drive these changes is the key to the best
conservation and administration of population supervision, locally and across the species
range [19].

To explain the nested pattern, the passive sampling hypothesis including birds extinc-
tion hypothesis, selective colonization hypothesis, and habitat nestedness hypothesis, were
explored by many scholars. Thus, this hypothesis can reveal the ecological process [20].
Passive sampling (i.e., sampling from the species pool in proportion to species abundances)
describes a situation in which rare species are diminished in the community compared to
abundant species within a particular area [21,22]. Previous studies hypothesized and give
predictions that when systems are experiencing species loss or fauna relaxation (down-
sizing), the site should be the primary driver of nestedness because species with large
minimum area requirements have greater extinction risk, and a predictable sequence of
extinction might occur concerning island size [23,24]. Also, differential extinction could
result in nestedness if species exhibit specific area requirements and island areas differ
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in the analysis system. In such cases where local extinction affects community structure,
species tend to become extinct due to their specific extinction risk or vulnerabilities. For the
selective colonization hypothesis, species differ in their ability to colonize distant sites [25].
Differential colonization could result in nestedness if highly vagile species occupy most
islands and less vagile species inhabit only the closer, larger islands [25]. Finally, the habitat
nestedness hypothesis considers the nestedness of species assemblages and their reliance
on the distribution of nested habitats [26].

China’s largest freshwater lake, Poyang Lake is located on the south bank of the middle
Yangtze River. Although Poyang Lake supports the conservation of natural ecosystems and
multi-species habitats, land use, climate, and environmental characteristics have affected
bird species’ survival and spatial distribution [27].

Due to the natural hydrological law, Poyang Lake forms many sub-lakes with different
areas in the winter period every year [28]. Different sub-lakes equivalent and fragmented
to an island forms, have different environmental characteristics that provide habitat for
wintering waterbirds, and birds have different distribution responses based on forage
and bird preferences. Even though many previous studies have focused on the species
composition and spatial distribution pattern of the avian communities in Poyang lake
while the sub-lakes act as lake island due to fragmentation in the winter season, waterbird
communities have received less attention. Thus, this study discusses the lake island effect
due to fragmentation of lakes in the winter season and its effects on the wintering waterbird
community structure by beta diversity partitioning in Poyang Lake. In addition, this study
assesses the relationship between bird species richness and the sub-lake areas, between the
sub-lake area and the habitat type’s richness.

2. Material and Methods
2.1. Study Area and Study Design

The current study areas were sub-lakes located in two national nature reserves, Poyang
Lake National Nature Reserve (PNNR) and Nanji National Nature Reserve (NNNR), and
one provincial nature reserve, Duchang Provincial Nature Reserve (DPNR) in the Poyang
Lake Basin (Figure 1). The wintering waterbird data were from four winter seasons:
17–31 January in 2016, 9–26 January in 2017, 19–31 January in 2018, and 9–26 January in 2019,
when the population of birds was relatively stable [27,28]. This study on sub-lakes with an
area greater than 2 km2 was selected based on geographical representation for verifying the
waterbird community turnover component and nested component. Accordingly, 24 sub-
lakes were surveyed from one to five vantage points using point count methods in each
sub-lake with binoculars, monocular, and a spotting scope for four consecutive winter
seasons, commonly known as Bibby’s bird census counting methods [29]. The R software
4.2.3. “iNEXT” package is used to evaluate the sample coverage test of the study area [24].
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Figure 1. Location of study area: Poyang lake, Jiangxai Province, China. Note: Bang hu—1, Meixi 
Hu—2, Zengmizhou Hu—3, Dacha Hu—4, Sha Hu—5, Dahuchi—6, Chang Hu—7, Zhonghuchi 
Hu—8, Dong Hu—9, Fengwei Hu—10, Baisha Hu—11, Beishen Hu—12, Sani Hu—13, Zhanbei Hu—
14, Jishan—15, Maying Hu—16, Xinmiao Hu—17, DaMian Hu—18, Nanxi Hu—19, Zhudeye Hu—
20, Shipai Hu—21, ZhuTong Hu—22, Poyang Hu—23, HuaMiao Hu—24. DPNNR: Duchang Pro-
vincial National Nature Reserve, NNNR: Nanjishan Wetland National Nature, PNNR: Poyang Lake 
National Nature Reserve. The red box is the area where the Poyang Lake is located in the Main land 
of China. 

2.2. Methods and Data Analysis 
The species composition of wintering waterbirds in 24 sub-lakes was compared by 

beta diversity to understand the difference of species composition on wintering water-
birds in detail. To calculate the multi-site dissimilarity Sorensen index, including the total 
beta diversity (βsor), spatial turnover (βsim), and nesting component (βnes), the beta part in 
R was used [24]. Following Baselga, the total beta diversity was broken down into two 
separate components: the species turnover component, which is measured by the Simpson 
dissimilarity index (βsim), and the nestedness component (βnes) [30]. 

Thus, βsor was decomposed into βsim (spatial turnover) and βnes (nestedness), βsor = βsim 
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of species only present in the first and second areas. The Sorensen index ranges from 0 (no 
species are shared between the two areas) to 1 (all species are common between the two 

Figure 1. Location of study area: Poyang lake, Jiangxai Province, China. Note: Bang hu—1, Meixi
Hu—2, Zengmizhou Hu—3, Dacha Hu—4, Sha Hu—5, Dahuchi—6, Chang Hu—7, Zhonghuchi
Hu—8, Dong Hu—9, Fengwei Hu—10, Baisha Hu—11, Beishen Hu—12, Sani Hu—13, Zhanbei
Hu—14, Jishan—15, Maying Hu—16, Xinmiao Hu—17, DaMian Hu—18, Nanxi Hu—19, Zhudeye
Hu—20, Shipai Hu—21, ZhuTong Hu—22, Poyang Hu—23, HuaMiao Hu—24. DPNNR: Duchang
Provincial National Nature Reserve, NNNR: Nanjishan Wetland National Nature, PNNR: Poyang
Lake National Nature Reserve. The red box is the area where the Poyang Lake is located in the Main
land of China.

2.2. Methods and Data Analysis

The species composition of wintering waterbirds in 24 sub-lakes was compared by
beta diversity to understand the difference of species composition on wintering waterbirds
in detail. To calculate the multi-site dissimilarity Sorensen index, including the total beta
diversity (βsor), spatial turnover (βsim), and nesting component (βnes), the beta part in
R was used [24]. Following Baselga, the total beta diversity was broken down into two
separate components: the species turnover component, which is measured by the Simpson
dissimilarity index (βsim), and the nestedness component (βnes) [30].

Thus, βsor was decomposed into βsim (spatial turnover) and βnes (nestedness),
βsor = βsim + βnes.

βnes =
max(b, c)− min(b, c)

2a + b + c
a

a + min(b, c)

βnes =
min(b, c)

a + min(b, c)

where a is the number of shared bird species among two areas, and b and c are the number
of species only present in the first and second areas. The Sorensen index ranges from 0
(no species are shared between the two areas) to 1 (all species are common between the
two areas) [31]. The ratio of βsim/βsor can evaluate the relative contribution of turnover
to composition dissimilarity in each group (βratio = βsim/βsor) when βratio < 0.5, the beta
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diversity is mainly determined by the nestedness component (βnes) or species replacement
between assemblages (i.e., βsim or turnover component). Conversely, when βratio > 0.5,
the beta diversity is mainly determined by the spatial turnover component (βsim) or the
nestedness component (βnes) [30,32–34].

2.3. Statistical Analysis

Spearman correlation analysis was used to analyze the relationship between the bird
species richness and the sub-lake areas and between the sub-lake area and the habitat
birds’ richness [35]. Habitat variables such as species diversity and richness were measured
by sub-lake area, distance from the nearest large sub-lake, and the number of waterbird
habitat types. The distance between sub-lakes reflects the straight-line distance of birds
across nearby space [18]. As suggested in the previous study [26], the habitat types were
divided into 4 types, namely mudflats, vegetation, waterbody, and sands (bare land).
Spearman correlation analysis was used to analyze the factors affecting the nesting pattern
of waterbirds in Poyang Lake [16,26,36,37]. The WNODF analysis method can analyze not
only the whole matrix, species, and research site the whole matrix, but also analyze species
and research sites. It is insensitive to the filling size of the matrix as it can avoid type I
errors, unlike NODF, and can distinguish species incidence from species composition [17].
Thus, we used the metric WNODF to estimate nestedness in this study.

3. Results
3.1. Analysis of Winter Water Birds Composition and Species Richness

Fifty-eight wintering waterbird species belonging to 9 orders and 15 families were
observed at the study sites during the five winter seasons from 2016 to 2020. Overall
sample coverage was 0.96 ± 0.02, indicating enough sample size. Spearman correlation
analysis showed significant positive relationships between the species richness of wintering
waterbirds and the sub-lake areas (r = 67.55, p < 0.01), and between the sub lake area and
the habitat bird’s richness (r = 64.25, p < 0.01) (Table 1).

Table 1. Results of nesting analysis using NODF program for species by site matrix of wintering
waterbirds in Poyang Lake, China.

Metrics Nobs Nexp (SD) Z-Value p

WNODF 33.19 64.63 (2.68) −11.75 0.001
WNODFc 34.68 74.34 (3.09) −12.85 0.001
WNODFr 32.88 62.64 (3.09) −9.64 0.001

Abbreviations: NODF is used to measure the nesting pattern of birds; Nobs is observed NODF for sites. Nexp (SD)
is the expected NODF for sites with a standard deviation. p is Monte Carlo-derived probabilities. WNODFc is a
weighted nestedness metric based on overlapping and decreasing fill, columns, or sites. WNODFr is a weighted
nestedness metric based on overlapping and decreasing fill, rows, or species.

3.2. Analysis of Beta Diversity of Poyang and Sub-Lake Waterbirds

Beta diversity analysis showed that the species diversity of wintering waterbirds in
sub-lakes of Poyang Lake (βsim = 0.464) were greater than nested ones (βnes = 0.364). The
bird species composition in each sub-lake was different in the nestedness analysis using
WNODF, which showed that the waterbird numbers (Nobs = 33.19) were significantly lower
than expected from the null model (Nexp = 64.63, Z-value = −11.75, p = 0.001) as given
in Table 1. This indicated that there were more waterbird communities in non-nested
sites, which also means that the observed communities were less in number in the nested
sites than expected by null matrices (based on proportional-row and proportional-column
constraints with 1000 randomizations).

Spearman correlation analysis (Table 2) showed that in the lake area, the habitat types’
richness was significantly correlated with nesting rank (r = −0.644, p < 0.01 and r = −0.646,
p < 0.01), while the distance from the nearest large sub-lake was not significantly correlated
with nesting rank (r = 0.495, p > 0.05). Thus, the factors affecting the nesting pattern of
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waterbirds in the study area are related to sub-lake area and habitat bird richness, and have
no correlation with sub-lake connectivity. This conforms to the selective extinction hypoth-
esis and habitat nestedness hypothesis, and does not support the particular colonization
hypothesis. The comprehensive results showed that small- and medium-sized sub-lakes
are also experiencing biodiversity loss.

Table 2. Characteristic parameters of sub-lakes in Poyang Lake.

Sub-Lake Site Species
Richness

Sample
Coverage

Sub Lake Area
(km2)

Sub Lake
Connectivity (m)

Habitat Type
Richness

Nested
Rank

Zhanbei 30 0.99 140 716.00 4 1
Bang 28 0.98 260 800.00 4 2
Baisha 26 0.99 41 138.00 4 3
Dacha 24 0.99 180 1092.25 4 4
Sanniwan 23 1.00 16 445.00 4 5
Sha 23 1.00 7 1332.65 3 5
Poyang 23 1.00 129 664.00 4 5
Fengwei 20 0.96 13 280.00 3 6
Zhudeye 20 1.00 5 177.00 3 6
Chang 19 0.97 20 1165.00 4 7
Zhonghuchi 19 0.98 4 1044.56 4 7
Shipa 19 1.00 34 412.00 4 7
Beishen 18 0.99 3 228.00 4 8
Huamiao 18 0.99 13 334.00 4 8
Zengmizhou 16 0.98 2 1812.00 3 9
Maying 16 0.97 18 1331.26 3 9

Jishan 16 0.99 53 4071.79 3 9
Xinmiao 15 1.00 17 1331.26 3 10
Damian 15 1.00 3 4071.79 3 10
Meixi 14 0.99 2 1129.34 3 11
Nanxi 14 1.00 5 219.00 3 11
Dong 13 0.99 18 224.00 3 12
Dahuchi 13 1.00 2 1650.00 3 12
Zhutong 13 1.00 5 2255.00 3 12

This study showed that Maying Lake has the highest local beta diversity contribution
(0.062), whereas Dacha Lake has the lowest local beta diversity contribution (0.007) (Table 3).

Table 3. Local beta diversity contribution of 24 sub-lakes of Poyang Lake.

Site Local Beta Diversity
Contribution Site Local Beta Diversity

Contribution

Maying 0.062 Zhudeye 0.043
Sanniwan 0.061 Changhuchi 0.039
Damian 0.059 Zengmizhou 0.038
Bang 0.059 Meixi 0.036
Dong 0.058 Beishen 0.033
Huamiao 0.052 Zhanbei 0.028
Xinmiao 0.051 Baisha 0.025
Sha 0.049 Poyang 0.023
Nanxi 0.048 Jishan 0.021
Zhutong 0.046 Shipa 0.020
Fengwei 0.045 Dahuchi 0.010
Zhonghuchi 0.044 Dacha 0.007

4. Discussion

This study demonstrates that the area of each sub-lake has a significant positive
correlation with the richness of waterbird species, indicating that the larger sub-lake area
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showed higher bird richness as it offers more suitable habitat, which is consistent with the
theory of island biogeography [21,38]. The study highlighted the importance of individual
sub-lakes through the Local Contribution to Beta Diversity (LCBD) metric [39]. According
to the beta diversity analysis, the turnover processes significantly influenced the overall
beta diversity of wintering waterbirds of the Poyang lake and the sub-lakes. Some sub-
lakes demonstrated higher ecological uniqueness in contributing to the beta diversity,
while others showed lower contributions. The turnover dominance showed variations in
bird species among different sub-lakes. Beta diversity analysis showed that the diversity
turnover components of waterbirds in Poyang Lake (βsim = 0.464) were more significant
than nested components (βsne = 0.364), and the bird species composition in each sub-lake
was different. Interestingly, even smaller sub-lakes play a role in protecting waterbirds,
which highlights the importance of diverse habitats within an ecosystem.

This study showed that Maying Lake has the highest local beta diversity contribution
(0.062), whereas Dachahu Lake has the lowest local beta diversity contribution (0.007).
In line with the habitat nestedness hypothesis, the factors affecting the nesting pattern
of waterbird diversity in Poyang Lake are particularly associated with the habitat type’s
richness. The nestedness analysis showed a significant nesting pattern distribution of
wintering waterbirds in Poyang Lake. Similarly, the study sites (WNODFc, p < 0.01)
also produced a significant nesting pattern, which further supports the habitat nesting
hypothesis, which is consistent with the previous studies [18,21]. Therefore, habitat nesting,
recognized as a concise explanation for species nesting distributions, focuses directly
on the relationship between species and their habitats without delving into population
dynamics or life histories and directly points to the relationship between species and their
habitats [40,41]. While this study did not prove the dominance of environmental factors,
such as area or habitat diversity, in determining nesting patterns, it strongly supported
the idea that larger study areas and landscapes with high heterogeneity could contribute
significantly to protecting and maintaining waterbird diversity within the Poyang Lake
ecosystem. It underscored the significance of diverse habitats and landscape characteristics
in species conservation of wintering waterbird populations in wetland ecosystems.

5. Suggestions

The results of the study showed that many waterbirds spend the winter at Poyang
Lake. Thus, a comprehensive conservation action involving harmonized and protected
potential wintering sites should be implemented. Many wintering waterbirds should be
more monitored and need more attention. These lakes were the winter sites that harbored
the most species of birds, including endangered birds. It is necessary to enlighten the public
about the importance of bird conservation.

Similarly, to better understand the variation of bird distribution and impact of land-
scape patterns in Poyang Lake, future research should pay more attention to using remote
sensing technology and landscape metrics. Wetland restoration projects should emphasize
on the northern edge, easterly on the northerly edge, and eastern aspect on the northern
and eastern direction. The Poyang Lake Basin’s northern edge and eastern areas have more
blank habitats and potential suitable habitats and can carry out more wetland restoration
projects for wintering waterbirds.

6. Conclusions

This study investigated the diversity of waterbirds, evaluated the turnover component
in the nested component of waterbird communities and nesting patterns in the diversity
of wintering waterbirds in Poyang Lake and wintering sub-lakes, and investigated the
waterbird’s beta and functional diversity. A total of 58 wintering waterbird species were
grouped into nine orders and 15 families and were recorded in the study sites during the
five winter seasons from 2016 to 2020.

The lake island effect significantly influences bird species richness, correlating strongly
with the sub-lake area, which, in turn, substantially correlates with habitat type richness.
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Investigating waterbird nesting patterns indicates a significant correlation between sub-
lake area, richness of habitat types, and nesting rank, aligning with selective extinction
and habitat nestedness hypotheses. Beta diversity analysis underscores Maying Lake’s
substantial contribution to local beta diversity. Overall, the study provides valuable in-
sights into the intricate dynamics of wintering waterbird communities in the Poyang Lake
Basin, elucidating spatial distributions, habitat preferences, and ecological mechanisms
influencing their presence and nesting patterns.
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