Roseateles agri sp. nov., a New Species Isolated from Fresh Soil in Uiwang, South Korea
Abstract
:1. Introduction
2. Material and Methods
2.1. Isolation and Cultivation
2.2. Physiology and Chemotaxonomy
2.3. 16S RNA Gene Phylogeny
2.4. Genome Features
3. Results and Discussion
3.1. Physiology and Chemotaxonomy
3.2. Molecular and Genome Characteristics
4. Conclusions
Description of Roseateles agri sp. nov.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Suyama, T.; Shigematsu, T.; Takaichi, S.; Nodasaka, Y.; Fujikawa, S.; Hosoya, H.; Hanada, S. Roseateles depolymerans gen. nov., sp. nov., a new bacteriochlorophyll a-containing obligate aerobe belonging to the beta-subclass of the Proteobacteria. Int. J. Syst. Bacteriol. 1999, 49, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Parte, A.C. LPSN—List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int. J. Syst. Evol. Microbiol. 2018, 68, 1825–1829. [Google Scholar] [CrossRef] [PubMed]
- Guliayeva, D.; Akhremchuk, A.; Sikolenko, M.; Evdokimova, O.; Valentovich, L.; Sidarenka, A. Roseateles amylovorans sp. nov., isolated from freshwater. Int. J. Syst. Evol. Microbiol. 2023, 73, 006133. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Du, J.; Pei, T.; Du, H.; Feng, G.-D.; Zhu, H. Genome-based taxonomic classification of the closest-to-Comamonadaceae group supports a new family Sphaerotilaceae fam. nov. and taxonomic revisions. Syst. Appl. Microbiol. 2022, 45, 126352. [Google Scholar] [CrossRef] [PubMed]
- Gomila, M.; Bowien, B.; Falsen, E.; Moore, E.R.B.; Lalucat, J. Description of Roseateles aquatilis sp. nov. and Roseateles terrae sp. nov., in the class Betaproteobacteria, and emended descriptionof the genus Roseateles. Int. J. Syst. Evol. Microbiol. 2008, 58, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Rapala, J.; Berg, K.A.; Lyra, C.; Niemi, R.M.; Manz, W.; Suomalainen, S.; Paulin, L.; Lahti, K. Paucibacter toxinivorans gen. nov., sp. nov., a bacterium that degrades cyclic cyanobacterial hepatotoxins microcystins and nodularin. Int. J. Syst. Evol. Microbiol. 2005, 55, 1563–1568. [Google Scholar] [CrossRef] [PubMed]
- Pheng, S.; Lee, J.J.; Eom, M.K.; Lee, K.H.; Kim, S.G. Paucibacter oligotrophus sp. nov., isolated from fresh water, and emended description of the genus Paucibacter. Int. J. Syst. Evol. Microbiol. 2017, 67, 2231–2235. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, I.; Chhetri, G.; So, Y.; Jung, Y.; Woo, H.; Seo, T. Roseateles albus sp. nov., Roseateles koreensis sp. nov. and Janthinobacterium fluminis sp. nov., isolated from freshwater at Jucheon River, and emended description of Roseateles aquaticus comb. nov. Int. J. Syst. Evol. Microbiol. 2023, 73, 006043. [Google Scholar] [CrossRef] [PubMed]
- Gomila, M.; Pinhassi, J.; Falsen, E.; Moore, E.R.B. Kinneretia asaccharophila gen. nov., sp. nov., isolated from a freshwater lake, a member of the Rubrivivax branch of the family Comamonadaceae. Int. J. Syst. Evol. Microbiol. 2010, 60, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Gomila, M.; Bowien, B.; Falsen, E.; Moore, E.R.; Lalucat, J. Description of Pelomonas aquatica sp. nov. and Pelomonas puraquae sp. nov., isolated from industrial and haemodialysis water. Int. J.Syst. Evol. Microbiol. 2007, 57, 2629–2635. [Google Scholar] [CrossRef] [PubMed]
- Sisinthy, S.; Gundlapally, S.R. Mitsuaria chitinivorans sp. nov. a potential candidate for bioremediation: Emended description of the Genera Mitsuaria, Roseateles and Pelomonas. Arch. Microbiol. 2020, 202, 1839–1848. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.H.; Yokota, A. Reclassification of Alcaligenes latus strains IAM 12599T and IAM 12664 and Pseudomonas saccharophila as Azohydromonas lata gen. nov., comb. nov., Azohydromonas australica sp. nov. and Pelomonas saccharophila gen. nov., comb. nov., respectively. Int. J. Syst. Evol. Microbiol. 2005, 55, 2419–2425. [Google Scholar] [CrossRef] [PubMed]
- Amakata, D.; Matsuo, Y.; Shimono, K.; Park, J.K.; Yun, C.S.; Matsuda, H.; Kawamukai, M. Mitsuaria chitosanitabida gen. nov., sp. nov., an aerobic, chitosanase-producing member of the “Betaproteobacteria”. Int. J. Syst. Evol. Microbiol. 2005, 55, 1927–1932. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.C.; Nan, L.J.; Zhu, Y.M.; Chen, W.M.; Wei, G.H.; Lin, Y.B. Mitsuaria noduli sp. nov., isolated from the root nodules of Robinia pseudoacacia in a lead-zinc mine. Int. J. Syst. Evol. Microbiol. 2018, 68, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Lányi, B. Classical and Rapid Identification Method for Medically Important Bacteria. In Method in Microbiology 19; Cowell, R., Ed.; Academic Press: Oak Ridge, TN, USA, 1987; pp. 1–65. [Google Scholar]
- Schaeffer, A.B.; Fulton, M. A simplified method of staining endospores. Science 1933, 77, 194. [Google Scholar] [CrossRef] [PubMed]
- Tindall, B.J.; Sikorski, J.; Smibert, R.A.; Krieg, N.R. Phenotypic Characterization and the Principles of Comparative Systematics. In Methods for General and Molecular Microbiology; Reddy, C.A., Ed.; ASM Press: Washington, DC, USA, 2007; pp. 330–393. [Google Scholar]
- Smibert, R.M.; Krieg, N.R. Phenotypic characterization. In Methods for General and MolecularBacteriology; Gerhardt, P., Murray, R.G.E., Wood, W.A., Krieg, N.R., Eds.; American Societyfor Microbiology: Washington, DC, USA, 1994; pp. 607–654. [Google Scholar]
- Minnikin, D.; O’Donnell, A.; Goodfellow, M.; Alderson, G.; Athalye, M.; Schaal, A.; Parlett, J. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 1984, 2, 233–241. [Google Scholar] [CrossRef]
- Sasser, M. Identification of bacteria by gas chromatography of cellular fatty acids. Technol. Note 2001, 101, 1–6. [Google Scholar]
- Yoon, S.-H.; Ha, S.-M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Pevzner, P.A. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Na, S.-I.; Kim, Y.O.; Yoon, S.-H.; Ha, S.-M.; Baek, I.; Chun, J. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J. Microbiol. 2018, 56, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.H.; Ha, S.M.; Lim, J.; Kwon, S.; Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017, 110, 1281–1286. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef] [PubMed]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Xu, L.; Dong, Z.; Fang, L.; Luo, Y.; Wei, Z.; Guo, H.; Zhang, G.; Gu, Y.Q.; Coleman-Derr, D.; Xia, Q.; et al. OrthoVenn2: A web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 2019, 47, W52–W58. [Google Scholar] [CrossRef] [PubMed]
- Hassler, H.B.; Probert, B.; Moore, C.; Lawson, E.; Jackson, R.W.; Russell, B.T.; Richards, V.P. Phylogenies of the 16S rRNA gene and its hypervariable regions lack concordance with core genome phylogenies. Microbiome 2022, 10, 104. [Google Scholar] [CrossRef] [PubMed]
- Chun, J.; Oren, A.; Ventosa, A.; Christensen, H.; Arahal, D.R.; da Costa, M.S.; Rooney, A.P.; Yi, H.; Xu, X.-W.; De Meyer, S.; et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 2018, 68, 461–466. [Google Scholar] [CrossRef] [PubMed]
Characteristics | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Isolation source | Fresh soil | Fresh soil | Lake sediment | Fresh water | Fresh water | Fresh water |
Temperature range for growth (°C) | 10–35 | 10–35 | 10–35 | 15–35 | 15–28 | 15–30 |
Optimal growth temperature (°C) | 25–30 | 25–30 | 25–30 | 30 | 25 | 25 |
pH range for growth | 5.5–9.5 | 5.0–9.5 | 6.0–9.0 | 6.0–11.0 | 7.0–12.0 | 6.0–9.0 |
pH optimum for growth | 7.0–9.0 | 7.0–9.0 | 7.0 | 9.0 | 9.0 | 7.0 |
Highest salt tolerance (%, w/v) | 0.5 | 0.5 | 0 | 0 | 0 | 1 |
Nitrate reduction | − | − | + | + | + | + |
Hydrolysis of | ||||||
Chitin | − | − | − | − | − | − |
Casein | − | − | + | − | + | − |
Gelatin | − | − | − | − | + | − |
Tween 80 | + | + | + | + | + | + |
Enzymatic reaction | ||||||
Leucine arylamidase | + | + | + | − | + | + |
Valine arylamidase | w | w | w | − | − | + |
Crystine arylamidase | − | − | w | − | − | + |
Alpha chymotrypsin | + | + | + | − | − | + |
Acid phosphatase | + | + | w | w | − | + |
Naphthol-AS-BI-phosphate | + | + | w | w | w | w |
Beta galactosidase | + | + | − | − | − | − |
Alpha glucosidase | + | + | − | − | − | − |
Beta glucosidase | w | + | − | − | − | + |
Alpha monosidase | w | + | − | − | − | − |
Assimilation of | ||||||
D-Glucose | − | − | − | + | − | − |
L-Arabinose | + | + | − | − | − | + |
D-Mannitol | + | + | − | − | − | − |
D-Maltose | + | + | + | − | − | − |
Potassium gluconate | − | − | + | − | − | − |
Phenylacetic acid | − | w | + | nd | nd | nd |
The major fatty acids (>9%) | C16:0, summed feature 3, summed feature 8 | C16:0, summed feature 3, summed feature 8 | C16:0, summed feature 4, summed feature 7 | C16:0, summed feature 3 | C16:0, summed feature 3 | C16:0, summed feature 3 |
DNA G+C content (mol%) | 67.5 | nd | 66.9 | 61.7 | 61.8 | 62.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, Y.; Kim, J. Roseateles agri sp. nov., a New Species Isolated from Fresh Soil in Uiwang, South Korea. Diversity 2024, 16, 279. https://doi.org/10.3390/d16050279
You Y, Kim J. Roseateles agri sp. nov., a New Species Isolated from Fresh Soil in Uiwang, South Korea. Diversity. 2024; 16(5):279. https://doi.org/10.3390/d16050279
Chicago/Turabian StyleYou, Yelim, and Jaisoo Kim. 2024. "Roseateles agri sp. nov., a New Species Isolated from Fresh Soil in Uiwang, South Korea" Diversity 16, no. 5: 279. https://doi.org/10.3390/d16050279
APA StyleYou, Y., & Kim, J. (2024). Roseateles agri sp. nov., a New Species Isolated from Fresh Soil in Uiwang, South Korea. Diversity, 16(5), 279. https://doi.org/10.3390/d16050279