Prediction of Suitable Habitat of Alien Invasive Plant Ambrosia trifida in Northeast China under Various Climatic Scenarios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Processing
2.3. MaxEnt Model Optimization and Result Evaluation
2.4. Classification and Area Statistics
2.5. The Change of Spatial Pattern of Suitable Habitat
2.6. Center-of-Mass Transfer in Suitable Habitat
3. Results
3.1. Model Optimization Results and Accuracy Evaluation
3.2. The Main Environmental Factors Affecting the Distribution of Ambrosia trifida
3.3. Distribution of Ambrosia trifida Habitat under Different Climate Patterns
3.4. Spatial Pattern Changes of Ambrosia trifida Habitat under Different Climate Patterns
3.5. Centroid Migration in Ambrosia trifida Habitat under Different Climate Patterns
4. Discussion
4.1. Model Rationality Evaluation
4.2. Change in Potential Ambrosia trifida Distribution
4.3. The Dominant Environmental Variable Limiting the Distribution of Ambrosia trifida
4.4. Control Measures and Strategies of Invasive Plants
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wake, I.A.M.S.; Soeprobowati, T.R.; Jumari. The invasive alien plants threatened the balance of ecosystem in conservative area in Ontoloe Island, Flores-Indonesia. J. Phys. Conf. Ser. 2018, 1025, 012033. [Google Scholar] [CrossRef]
- Celine, B.; Wilfried, T.; Boris, L.; Piero, G.; Michel, B.; Franck, C. Will climate change promote future invasions? Glob. Chang. Biol. 2013, 19, 3740–3748. [Google Scholar]
- Monika, W.; Jassby, A.D.; Ralph, M.N. Synergies between climate anomalies and hydrological modifications facilitate estuarine biotic invasions. Ecol. Lett. 2011, 14, 749–757. [Google Scholar]
- Musarella, C.M.; Laface, V.L.A.; Angiolini, C.; Bacchetta, G.; Bajona, E.; Banfi, E.; Barone, G.; Biscotti, N.; Bonsanto, D.; Calvia, G.; et al. New Alien Plant Taxa for Italy and Europe: An Update. Plants 2024, 13, 620. [Google Scholar] [CrossRef]
- Nan, Q.; Li, C.; Li, X.; Zheng, D.; Li, Z.; Zhao, L. Modeling the Potential Distribution Patterns of the Invasive Plant Species Phytolacca americana in China in Response to Climate Change. Plants 2024, 13, 1082. [Google Scholar] [CrossRef]
- Rai, P.K.; Singh, J.S. Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecol. Indic. 2020, 111, 106020. [Google Scholar]
- Hu, J.H.; Wang, D.K. Current issues and its countermeasures of forestry pest control in Pengyang County. South China Agric. 2021, 15, 70–73. [Google Scholar]
- Yang, W.; Sun, S.; Wang, N.; Fan, P.; You, C.; Wang, R.; Zheng, P.; Wang, H. Dynamics of the distribution of invasive alien plants (Asteraceae) in China under climate change. Sci. Total Environ. 2023, 903, 166260. [Google Scholar] [CrossRef]
- Chen, B.X.; Sun, Y.F.; Han, Z.H.; Huang, H.K.; Zhang, H.B.; Li, Y.K.; Zhang, G.L.; Liu, W.X. Challenges in preventing and controlling invasive alien species in China. J. Biosaf. 2020, 29, 157–163. [Google Scholar]
- Li, G.Q.; Liu, C.C.; Liu, Y.G.; Yang, J.; Zhang, X.S.; Guo, K. Advances in theoretical issues of species distribution models. Acta Ecol. Sin. 2013, 33, 4827–4835. [Google Scholar]
- Xu, Z.L.; Peng, H.H.; Peng, S.Z. The development and evaluation of species distribution models. Acta Ecol. Sin. 2015, 35, 557–567. [Google Scholar]
- Thakur, S.; Rai, I.D.; Singh, B.; Dutt, H.C.; Musarella, C.M. Predicting the suitable habitats of Elwendia persica (Boiss.) in the Indian Himalayan Region (IHR). Plant Biosyst. 2023, 157, 769–778. [Google Scholar] [CrossRef]
- Michalová, M.; Hrabovský, M.; Kubalová, S.; Miháliková, T. Modelling the Symphyotrichum lanceolatum invasion in Slovakia, Central Europe. Model. Earth Syst. Environ. 2024, 10, 2749–2759. [Google Scholar] [CrossRef]
- Tu, Z.Y.; Gou, X.H.; Zou, S.B. Potential distributions of Picea crassifolia on the north slope of Qilian Mountains. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2022, 46, 221–226. [Google Scholar]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Qin, X.; Li, M. Predicting the Potential Distribution of Oxalis debilis Kunth, an Invasive Species in China with a Maximum Entropy Model. Plants 2023, 12, 3999. [Google Scholar] [CrossRef]
- Anibaba, Q.A.; Dyderski, M.K.; Jagodziński, A.M. Predicted range shifts of invasive giant hogweed (Heracleum mantegazzianum) in Europe. Sci. Total Environ. 2022, 825, 154053. [Google Scholar] [CrossRef]
- Wan, F.H.; Guo, J.Y.; Wang, D.H. Alien invasive species in China: Their damages and management strategies. Biodivers. Sci. 2002, 1, 119–125. [Google Scholar]
- Shao, Y.L.; Cao, W. Prediction of the potential distribution area of invasive alien plant Ambrosia artemisiifolia in Northeast China. J. Arid Land Resour. Environ. 2017, 31, 172–176. [Google Scholar]
- Wang, D.; Feng, Y.L.; Liu, M.C.; Qu, B. Effect of Ambrosia trifida Invasion on Vegetation Succession and Soil Nutrients in the Enclosed Riparian Ecosystems—A Case Study of Liaohe River Main Stream. J. Shenyang Agric. Univ. 2022, 53, 520–531. [Google Scholar]
- Mushtaq, S.; Reshi, Z.A.; Shah, M.A.; Charles, B. Modelled distribution of an invasive alien plant species differs at different spatiotemporal scales under changing climate: A case study of Parthenium hysterophorus L. Trop. Ecol. 2021, 62, 1–20. [Google Scholar] [CrossRef]
- He, W.; Bu, R.C.; Xiong, Z.P.; Hu, Y.M. Characteristics of temperature and precipitation in Northeastern China from 1961 to 2005. Acta Ecol. Sin. 2013, 33, 519–531. [Google Scholar] [CrossRef]
- Ni, C.D. Study on Future Climate Scenario and Their Relationships with Forest Vegetation Patterns in Northeast. Ph.D. Thesis, Northeast Forestry University, Heilongjiang, China, 2011. [Google Scholar]
- Wang, D.; Qu, B.; Zhou, B.; Zhang, Y.R.; Liu, Z. Prediction of potential invasive region for Ambrosia trifida based on SDMs-toolbox with climate warming in Liaoning Province. Ecol. Sci. 2022, 41, 66–74. [Google Scholar]
- Wildlife Conservation Society—WCS, and Center for International Earth Science Information Network—CIESIN—Columbia University. Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Influence Index (HII) Dataset (Geographic); NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2005.
- Sillero, N. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods Ecol. Model. 2011, 222, 1343–1346. [Google Scholar]
- Kong, W.Y.; Li, X.H.; Zhou, H.F. Optimizing MaxEnt model in the prediction of species distribution. Chin. J. Appl. Ecol. 2019, 30, 2116–2128. [Google Scholar]
- Morales, N.S.; Fernández, I.C.; Baca-González, V. MaxEnt’s parameter configuration and small samples: Are we paying attention to recommendations? A systematic review. PeerJ 2017, 5, e3093. [Google Scholar] [CrossRef]
- Rong, S.; Luo, P.; Yi, H.; Yang, X.; Zhang, L.; Zeng, D.; Wang, L. Predicting Habitat Suitability and Adaptation Strategies of an Endangered Endemic Species, Camellia luteoflora Li ex Chang (Ericales: Theaceae) under Future Climate Change. Forests 2023, 14, 2177. [Google Scholar] [CrossRef]
- Miao, G.; Zhao, Y.; Wang, Y.; Yu, C.; Xiong, F.; Sun, Y.; Cao, Y. Suitable Habitat Prediction and Analysis of Dendrolimus houi and Its Host Cupressus funebris in the Chinese Region. Forests 2024, 15, 162. [Google Scholar] [CrossRef]
- Qin, Z.; Xiangbao, S.; Xiaolong, J.; Tingting, F.; Xiaocui, L.; Wende, Y. MaxEnt Modeling for Predicting Suitable Habitat for Endangered Tree Keteleeria davidiana (Pinaceae) in China. Forests 2023, 14, 394. [Google Scholar] [CrossRef]
- Liu, W.; Meng, H.; Dong, B.; Fan, J.; Zhu, X.; Zhou, H. Predicting potential distribution of the Rhinoncus sibiricus under climatic in China using MaxEnt. PLoS ONE 2024, 19, e0297126. [Google Scholar] [CrossRef]
- Hamdi, A.; Hassane, M.; Issam, T.; Juan, B.; Abdelhamid, K. Observed and Predicted Geographic Distribution of Acer monspessulanum L. Using the MaxEnt Model in the Context of Climate Change. Forests 2022, 13, 2049. [Google Scholar] [CrossRef]
- He, Y.; Ma, J.; Chen, G. Potential geographical distribution and its multi-factor analysis of Pinus massoniana in China based on the maxent model. Ecol. Indic. 2023, 154. [Google Scholar] [CrossRef]
- Hurtt, G.C.; Chini, L.P.; Frolking, S.; Betts, R.A.; Feddema, J.; Fischer, G.; Fisk, J.P.; Hibbard, K.; Houghton, R.A.; Janetos, A.; et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Chang. 2011, 109, 117–161. [Google Scholar] [CrossRef]
- Cobos, M.E.; Townsend, P.A.; Narayani, B.; Luis, O.-O. kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ 2019, 7, e6281. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yuan, C.; Matsushita, N.; Lian, C.; Geng, Q. Analysis of the distribution pattern of the ectomycorrhizal fungus Cenococcum geophilum under climate change using the optimized MaxEnt model. Ecol. Evol. 2023, 13, e10565. [Google Scholar] [CrossRef]
- Zhang, T.; Hu, W.; Jia, T.J.; Zhao, S.Z.; Kong, D.Y.; Liu, Y. Prediction of potential distribution of Sophora flavescens in China under climate change. Guihaia 2022, 42, 349–362. [Google Scholar]
- Ma, J.J.; Li, Y.Y.; Wang, H.Z.; Fan, R.R.; Li, M.; Yan, J.P.; Zhu, Y.; Duan, Y.F. Geographical Distribution and the Prediction of the Potential Distribution of Keteleeria. J. Northwest For. Univ. 2022, 37, 158–165. [Google Scholar]
- Fu, Y.; An, H.J.; Gao, M.L.; Li, H.X.; Zhang, R. Prediction of Potential Distribution Area of Empetrum nigrum var. japonicum Based on Climate Change Background. J. Northwest For. Univ. 2023, 38, 49–56. [Google Scholar]
- Liu, W.; Zhao, R.N.; Sheng, Q.Q.; Geng, X.M.; Zhu, Z.L. Geographical distribution and potential distribution area prediction of Paeonia jishanensis in China. J. Beijing For. Univ. 2021, 43, 83–92. [Google Scholar]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef]
- Rasmussen, K.; Thyrring, J.; Muscarella, R.; Borchsenius, F. Climate-change-induced range shifts of three allergenic Ambrosia trifidas (Ambrosia L.) in Europe and their potential impact on human health. PeerJ 2017, 5, e3104. [Google Scholar] [CrossRef]
- Ma, Q.Q.; Liu, T.; Dong, H.G.; Wang, H.Y.; Zhao, W.X.; Wang, R.L.; Liu, Y.; Chen, L. Potential geographical distribution of Ambrosia trifida in Xinjiang under climate change. Acta Prataculturae Sin. 2020, 29, 73–85. [Google Scholar]
- Huang, Q.Q.; Shen, Y.D.; Li, X.X.; Cheng, H.T.; Song, X.; Fan, Z.W. Research progress on the distribution and invasiveness of alien invasive plants in China. Ecol. Environ. Sci. 2012, 21, 977–985. [Google Scholar]
- Feng, J.M.; Xu, C.D. Spatial Distribution Pattern of Alien Plants in Yunnan Province and Its Relationship with Environmental Factors and Human Activities. J. Southwest Univ. (Nat. Sci. Ed.) 2009, 31, 78–83. [Google Scholar]
- Silvia, F.; Marco, M.; Fernando, D.P.; Francesco, V. The effect of various after-ripening temperature regimens on the germination behaviour of Ambrosia artemisiifolia. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2020, 154, 165–172. [Google Scholar]
- Wu, H.R.; Qiang, S.; Duan, H.; Lin, J.C. Ragweed (Ambrosia artemisiifolia L.). Weed Sci. 2004, 2, 52–54. [Google Scholar]
- Kang, F.F.; Wei, Y.D.; Yang, F.; Zhang, R.F.; Cheng, Y.; Liu, Y.; Yin, L.P. Effects of different treatments on seed dormancy and germination of Ambrosia artemisiifolia L. Plant Quar. 2010, 24, 14–16. [Google Scholar]
- Liu, X.Y.; Li, J.S.; Zhao, C.Y.; Quan, Z.J.; Zhao, X.J.; Gong, L. Prediction of potential suitable area of Ambrosia artemisiifolia L. in China based on MAXENT and ArcGIS. Acta Phytophylacica Sin. 2016, 43, 1041–1048. [Google Scholar]
- Ding, S.Q. Study on the Occurrence and Distribution of Ambrosia trifida, Growth Limiting Ecological Factors and Chemical Control Technologies. Master’s Thesis, Xinjiang Agricultural University, Xinjiang, China, 2021. [Google Scholar]
- Tang, S.C.; Li, X.Q.; Wei, C.Q.; Pan, Y.M.; Lv, H.S. Current Status and Research Progress of Alien Invasive Plants in Guangxi. J. Guangxi Acad. Sci. 2023, 39, 146–155. [Google Scholar]
- Liang, W.M.; Wang, S.W. Damage and Prevention and Control Measures of Ambrosia trifida. XianDai NongYe KeJi 2010, 24, 160–161. [Google Scholar]
- Guo, C.L.; Ma, Y.F.; Qin, J.L.; Ma, Y.L. Chemical control effects of 30 kinds of herbicides on Ambrosia artemisiifolia and Mikania micrantha. Plant Prot. 2014, 40, 179–183. [Google Scholar]
- Ding, S.Q.; Fu, K.Y.; Ding, X.H.; He, J.; Tuerxun, A.; Zhang, G.L.; Fu, W.D.; Wen, J.; Jiamaliding, W.; Guo, W.C. Screeing of herbicides for controlling Ambrosia artemisiifolia L. in Xinjiang, China. J. Biosaf. 2021, 30, 126–131. [Google Scholar]
- van Wilgen, B.W.; Raghu, S.; Sheppard, A.W.; Schaffner, U. Quantifying the social and economic benefits of the biological control of invasive alien plants in natural ecosystems. Curr. Opin. Insect Sci. 2020, 38, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Morais, E.G.F.; Pican, M.C.; Seme, A.A.; Barreto, R.W.; Rosado, J.F.; Martins, J.C. Lepidopterans as Potential Agents for the Biological Control of the Invasive Plant, Miconia calvescens. J. Insect Sci. 2012, 12, 1–17. [Google Scholar] [CrossRef]
Type of Variable | Variable Name | Variable Description |
---|---|---|
Bio-climatic factors | Bio1 | Average Annual Temperature |
Bio2 | Mean Diurnal Range | |
Bio3 | Isothermality | |
Bio4 | Temperature Seasonality | |
Bio6 | Min Temperature of Coldest Month | |
Bio8 | Mean Temperature of Wettest Quarter | |
Bio10 | Mean Temperature of Warmest Quarter | |
Bio11 | Mean Temperature of Coldest Quarter | |
Bio13 | Precipitation of Wettest Month | |
Bio14 | Precipitation of Driest Month | |
Bio15 | Precipitation Seasonality | |
Bio17 | Precipitation of Driest Quarter | |
Bio18 | Precipitation of Warmest Quarter | |
Human factors | HII | Human Impact Index |
Type | RM | FC | Mean AUC Ratio | Omission Rate at 5% | Delta–AICc |
---|---|---|---|---|---|
Default | 1 | LQPH | 1.8290 | 0.0796 | 110.112 |
Optimization | 0.1 | LQ | 1.9642 | 0.0385 | 0 |
Variable | Percent Contribution | Permutation Importance |
---|---|---|
HII | 22.8 | 0.2 |
Bio11 | 19.5 | 35.3 |
Bio1 | 13.5 | 3.3 |
Bio18 | 10.8 | 24.6 |
Bio4 | 6.7 | 11.2 |
Bio13 | 9.7 | 2.5 |
Period | Climate Patterns | Area of Non-Suitable Habitat (104 km2) | Area of Low Suitability Habitat (104 km2) | Area of Medium Suitability Habitat (104 km2) | High Area of Suitability Habitat (104 km2) |
---|---|---|---|---|---|
2050s | RCP2.6 | 76.71 | 28.61 | 26.67 | 20.01 |
RCP4.5 | 66.52 | 20.58 | 33.70 | 31.20 | |
RCP8.5 | 59.51 | 15.00 | 35.76 | 41.73 | |
2070s | RCP2.6 | 84.02 | 26.71 | 22.07 | 19.20 |
RCP4.5 | 63.07 | 20.36 | 38.10 | 30.48 | |
RCP8.5 | 42..83 | 7.34 | 20.82 | 81.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Bai, X.; Ye, J.; Chen, W.; Xu, G. Prediction of Suitable Habitat of Alien Invasive Plant Ambrosia trifida in Northeast China under Various Climatic Scenarios. Diversity 2024, 16, 322. https://doi.org/10.3390/d16060322
Chen S, Bai X, Ye J, Chen W, Xu G. Prediction of Suitable Habitat of Alien Invasive Plant Ambrosia trifida in Northeast China under Various Climatic Scenarios. Diversity. 2024; 16(6):322. https://doi.org/10.3390/d16060322
Chicago/Turabian StyleChen, Shengjie, Xuejiao Bai, Ji Ye, Weiwei Chen, and Guanghao Xu. 2024. "Prediction of Suitable Habitat of Alien Invasive Plant Ambrosia trifida in Northeast China under Various Climatic Scenarios" Diversity 16, no. 6: 322. https://doi.org/10.3390/d16060322
APA StyleChen, S., Bai, X., Ye, J., Chen, W., & Xu, G. (2024). Prediction of Suitable Habitat of Alien Invasive Plant Ambrosia trifida in Northeast China under Various Climatic Scenarios. Diversity, 16(6), 322. https://doi.org/10.3390/d16060322