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Abstract: Dendrobium officinale Kimura & Migo in the genus Dendrobium of Orchidaceae is an im-
portant medicinal plant that produces various bibenzyl and phenanthrene derivatives. In some
orchids, these derivatives have been reported to increase with fungal infection. Bibenzyl biosynthesis
is regulated by bibenzyl synthase (BBS). Although six genes of the BBS family have been registered
from D. officinale, their gene regulation mechanisms are unclear. The infection of Dendrobium with
mycorrhizal fungi also reportedly increases the expression of genes involved in biosynthesis; however,
the effect of mycorrhizal fungi on bibenzyl production is unknown. The present study examined the
effects of three mycorrhizal fungi isolated from D. officinale on BBS gene expression and bibenzyl
production over time. One of the Tulasnellaceae operational taxonomic units induced BBS gene
expression and increased two representative bibenzyls, gigantol and dendrophenol, at specific time
points. Furthermore, 19 BBS sequences were cloned from 12 Dendrobium species, and a phylogenetic
analysis was performed. The results indicated that repeated BBS gene duplication occurred during
the evolution of the genus, and further duplication occurred after speciation. These results suggest
that it is possible to optimize metabolite production by selecting suitable symbiotic fungi.

Keywords: bibenzyl synthase; Dendrobium; mycorrhizal fungus; gigantol; dendrophenol

1. Introduction

Symbiotic relationships between plants and fungi play a crucial role in more than
80% of terrestrial plants. A previous study showed that plant secondary metabolites
facilitate beneficial symbiotic relationships with fungi by promoting mycorrhizal formation
or suppressing fungal growth [1]. For instance, Vierheiling et al. demonstrated that
flavonoids were involved in the regulation of symbiosis between plants and arbuscular
mycorrhizal fungi (AMF) [2]. Moreover, some plants form a unique symbiosis with specific
mycorrhizal fungi. For example, the symbiosis between orchids and mycorrhizal fungi is
essential for their nutrient acquisition during germination [3].

Bibenzyl and phenanthrene derivatives are secondary metabolites that have garnered
attention in recent years due to their structural diversity and beneficial biological activities,
such as antitumor, anti-inflammatory, and antimicrobial activities [4–6]. Several studies
have shown that the production of these derivatives is increased after fungal infection, in-
dicating their roles in protection against plant pathogens and inhibition of excessive fungal
growth [7,8]. However, despite their biological significance, these derivatives have been
isolated from a limited number of plants, including members of Orchidaceae, Ricciaceae,
Dioscoreaceae, and Cannabaceae [4,9–12]. As shown in Figure 1, the biosynthesis of biben-
zyl is regulated by bibenzyl synthase (BBS), which catalyzes condensation reactions with
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dihydro-m-coumaroyl-CoA and three malonyl-CoA as substrates, followed by cyclization
reactions [13,14]. Subsequent oxidative radical coupling of bibenzyl leads to the formation
of phenanthrene derivatives [13,14]. Although BBS is a type III polyketide synthase, only a
few genes encoding BBS have been identified [14–17].
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Figure 1. Putative bibenzyl biosynthetic pathway. Bibenzyl synthase (BBS) catalyzes the biosynthesis
of bibenzyl using dihydro-m-coumaroyl-CoA and three malonyl-CoA molecules. The subsequent
oxidative coupling leads to the formation of phenanthrene derivatives.

The genus Dendrobium (Orchidaceae) comprises approximately 1450 species [18] and
is divided into two major clades (Asian and Australasian) [19,20]. Various bibenzyl and
phenanthrene derivatives have been isolated from Dendrobium [5,6]. The members of this
genus exhibit medicinal properties [21]. Among these, D. officinale is an important medicinal
plant recorded in the Pharmacopoeia of the People’s Republic of China (2020 edition),
and its draft genome sequence was determined in 2016 [22]. Moreover, the metabolites
and biosynthetic pathways in D. officinale have been well studied [23,24]. It has recently
been reported that nitrogen uptake and NH4

+ assimilation in D. officinale are affected by
mycorrhizal fungi [25].

The quantity of useful bibenzyl and phenanthrene derivatives produced by Dendrobium
is insufficient for their multifaceted use [26]. BBS had only been identified from D. officinale
and D. sinense in the genus [17,22]. The regulation of bibenzyl biosynthesis, particularly the
expression and genetic diversity of BBS genes, remains poorly understood. Therefore, it is
desirable to understand the diversity of BBS and the regulation of bibenzyl biosynthesis to
increase the production of beneficial compounds.

The aim of the present study was to investigate the effect of three mycorrhizal fungi
isolated from D. officinale in Japan on BBS gene expression and bibenzyl production. Addi-
tionally, we cloned BBS genes from 12 Dendrobium species, presenting a genetically diverse
panel, and performed phylogenetic analysis to understand the similarity and duplication
of the BBS genes in this genus, and the phylogenetic relationships among the six genes of
the BBS family in D. officinale.

2. Materials and Methods
2.1. Biological Materials and Culture Conditions

Seeds of D. officinale (voucher: KNY91 in Tsukuba Botanical Garden) were treated
with 1% (v/v) sodium hypochlorite and sown in culture bottles containing H medium
(comprising 3% (w/v) sucrose, 0.3% (w/v) Hyponex® (Hyponex Japan Corp., Osaka, Japan),
0.2% (w/v) tryptone, and 1.3% (w/v) agar, pH 6). The culture bottles were then incubated
(BioTRON LH-220S) under 16 h light/8 h dark photoperiod conditions at 25 ◦C and an
illumination intensity of 3000 lx for four months.
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The Tulasnellaceae operational taxonomic units (OTUs) TU22 and TU27 and the
Serendipitaceae OTU SE1B, isolated from D. officinale in Japan [27], were used for symbiotic
cultures. The OTUs were defined at 97% sequence similarity for the internal transcribed
spacer region. The mycorrhizal fungi were precultured in potato dextrose agar (PDA)
medium comprising 2.4% (w/v) potato dextrose broth and 1.5% (w/v) agar for one week.
Next, the PDA medium was hollowed out with sterilized straws and placed on oatmeal
and agar medium (OMA medium: 0.25% (w/v) oatmeal and 1.5% (w/v) agar) in culture
bottles. Subsequently, the four-month-old D. officinale seedlings were transferred to culture
bottles containing OMA medium and grown for twelve weeks under the same conditions
described above. Young seedlings grown in the absence of mycorrhizal fungi were used as
the control.

2.2. RNA Extraction

RNA was extracted from young seedlings (0.2 g) grown on OMA medium for 2, 4,
8, and 12 weeks using a modified method of Liu et al. [28]. Briefly, the frozen young
seedlings were added to 300 µL of 8 M guanidine hydrochloride and crushed. The RNA
in the solution was precipitated by adding a 1.5-fold volume of high-salt solution (0.4 M
sodium citrate and 0.6 M NaCl), then gently mixed with a 2-fold volume of isopropanol,
followed by centrifugation. Next, the RNA was treated with DNase I using an RNase-free
DNase Set (Qiagen, Frankfurt, Germany) according to the manufacturer’s instructions. The
RNA was purified using phenol–chloroform, and the integrity of RNA was checked using
a 1.0% (w/v) agarose gel. The purity and quantity of the RNA were evaluated using a
NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) at
A260/230 and A260/280.

2.3. Analysis of Gene Expression by Reverse Transcription Quantitative PCR (RT-qPCR)

Reverse transcription was performed on DNase-treated RNA using a ReverTra AceTM

qPCR RT Kit (TOYOBO, Osaka, Japan) according to the manufacturer’s instructions. Briefly,
the RNA (500 ng) was incubated at 65 ◦C for 5 min and then immediately placed on ice. An
RT mixture containing buffer, reverse transcriptase, and primer mix (random primer and
oligo(dT) primer) was then added to it and incubated first at 37 ◦C for 15 min, and then at
98 ◦C for 5 min. Next, RT-qPCR was performed using GoTaq® qPCR Master Mix (Promega,
Madison, WI, USA), according to the manufacturer’s instructions, on an AriaMx Real-Time
PCR system (Agilent Technologies, Santa Clara, CA, USA). The cycling conditions were as
follows: hot start at 95 ◦C for 3 min, followed by 40 cycles of denaturation at 95 ◦C for 5 s,
annealing and extension at 60 ◦C for 30 s, denaturation by 1 cycle at 95 ◦C for 30 s, next
at 65 ◦C for 30 s, and finally at 95 ◦C for 30 s. The mRNA levels of the target genes were
normalized to those of Actin 1 [29] and calculated using the 2−∆∆Ct method. The primers
used in this study are listed in Table 1.

Table 1. Primers used for reverse transcription quantitative PCR (RT-qPCR).

Gene Symbol Gene
Description Forward Primer Reverse Primer Product

Size (bp) References

bibenzyl synthase LOC110115249 GTTTTTCCGTATCACCAACA TTATCCATGAAAGTGCTGAA 150 Original
bibenzyl synthase-like LOC110105072 TGAGGAGCACCAAGACGAT TCCAATAGCACCAGCAGAGT 163 Original
bibenzyl synthase-like LOC110105073 ATTTACCACGAGCAGCTACTG TTTCTGATGGATTCAAGGCT 90 Original
bibenzyl synthase-like LOC110115253 TTCGTATCACCAAAAGCGA TTCCATGAATGTGCTGAAG 143 Original
bibenzyl synthase-like LOC110105791 GGATGATTTGATTATCCAAGCT CTCTGAATTCGGCAGCAAA 139 Original
bibenzyl synthase-like LOC110093469 ATGTTGTTTCGTGGACCAT CGCTCACCAATAGTCTCGTT 119 Original

phenylalanine ammonia-lyase LOC110113904 TTCAGGAGGCGACACCTACG GTGATGGTTCCTCTCAGCGGCA 291 Original
phenylalanine ammonia-lyase-like LOC110115785 CAGATTCCTTAATGCAGGAA GGAGGCAAGGTGTGATATT 179 Original

actin LOC110102302 TGAGCGTGAGATTGTGAGAGAC GATTCCTGCTGCTTCCATACCA 211 An et al., 2016 [29]

2.4. Quantitative Analysis of Bibenzyl Using Liquid Chromatography–Mass Spectrometry
(LC-MS)

The amounts of the bibenzyls gigantol, dendrophenol (moscatilin), and erianin, which
have been isolated from D. officinale and reported to have antitumor activity, in the young
seedlings cultured for 6 and 12 weeks were quantified. Firstly, the young seedlings were
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freeze-dried and then ground to powder. An amount of 5 milligrams of powder was
extracted with 1.0 mL of 80% (v/v) aqueous methanol at 50 ◦C for 30 min under ultra-
sonication. After centrifugation, the supernatant was collected. The residue was again
extracted with 1.0 mL of 80% (v/v) aq. methanol, as mentioned above. After centrifuga-
tion, the supernatant was collected and combined with the supernatant described above.
The supernatant was passed through DISMIC®-13HP (ADVANTEC, Tokyo, Japan) and
evaporated in vacuo. The dried extract was suspended in methanol and water, and the final
methanol concentration was 5% (v/v). Next, the solution was purified using MonoSpin®

(GL Sciences, Tokyo, Japan). The methanol fraction from MonoSpin® was evaporated and
then suspended in methanol at a final concentration of 1 mg/mL (extract solution). The
same volume of internal standard (0.1 mg/L ethyl 4-aminophenylacetate) was added to
the extract solution and the mixture was subjected to LC-MS.

Acquity UPLC I-Class coupled with Xevo G2-S Q-TOF (Waters Co., Milford, MA, USA)
was used for the LC-MS analysis. MassLynxTM 4.1 software was used for LC-MS system
control and to collect spectral data (m/z 100–1000). Chromatographic separation was
carried out using a gradient elution of solvent A (water containing 0.1% (v/v) formic acid)
and solvent B (acetonitrile containing 0.1% (v/v) formic acid) at a flow rate of 0.25 mL/min,
as follows: solvent A 95% (0→0.5 min), solvent A 95→5% (0.5→20.0 min), solvent A
5% (20.0→25.0 min), solvent A 5→95% (25.0→26.0 min), solvent A 95% (26.0→30.0 min).
An ACQUITY UPLC Peptide BEH C18 Column (1.7 µm, 2.1 × 150 mm; Waters Co.) was
heated to 40 ◦C in a column oven. The MS conditions were as follows: desolvation gas flow
of 800 L/h, desolvation temperature of 450 ◦C, cone gas flow of 50 L/h, source temperature
of 120 ◦C, and capillary and cone voltages of 1.5 kV and 40 V, respectively. The TOF
mass spectrometer was calibrated routinely in positive electrospray ionization (ESI+) mode
using a sodium formate solution. The data were centralized during acquisition using
independent reference lock mass ions via the LockSpray interface to ensure mass accuracy
and reproducibility. A leucine enkephalin solution (Waters Co.) was used as the lock mass,
with an [M+H]+ ion of m/z 556.2771. The accurate mass and composition of the precursor
and fragment ions were calculated using MassLynx 4.1 (Waters Co.) incorporated in the
instrument. The amounts of gigantol (exact mass: 274.1205, m/z 275.1300), dendrophenol
(exact mass: 304.1311, m/z 305.1391), and erianin (exact mass: 318.1467, m/z 319.1541)
(Figure 1) in the extract were quantified using an internal standard method. Calibration
curves were prepared at eight points in the range of 0.84 ng/mL to 0.13 µg/mL for gigantol,
1.25 ng/mL to 0.20 µg/mL for dendrophenol, and 0.41 ng/mL to 0.065 µg/mL for erianin.

2.5. DNA Extraction and BBS Gene Cloning

In this study, we selected 12 important medicinal plants or representative horticultural
species based on phylogenetic analysis [30–32], morphological classification of the genus
Dendrobium [18,33], and the availability of plant specimens. Genomic DNA was extracted
from 0.1 g of fresh leaves using a DNeasy Plant Mini Kit (Qiagen) according to the manu-
facturer’s instructions, using a template for PCR amplification. The BBS gene regions were
amplified using the primer sets BBS-F (GAACARAGCRYYTWYCCDGA) and BBS-R (CRC-
TYGACATATTACCRTAYTCT), which were developed in the present study. The forward
primer BBS-F was designed for exon 1 and the reverse primer BBS-R was designed for exon
2. These primers were designed with reference to the BBS gene sequences from D. officinale,
Phalaenopsis equestris, and a Cymbidium hybrid cultivar. The amplification reactions were
performed using 2 × Ampdirect® Plus and BIOTAQTM HS DNA polymerase (Shimadzu,
Kyoto, Japan). The PCR profile consisted of an initial 10 min denaturation at 95 ◦C, 40 cycles
of 30 s at 94 ◦C (denaturation), 1.5 min at 55 ◦C (annealing), and 1 min at 72 ◦C (extension),
followed by a final extension at 72 ◦C for 7 min. The PCR products were confirmed by
agarose gel electrophoresis, followed by TA cloning using TArget CloneTM (TOYOBO), ac-
cording to the manufacturer’s instructions. DNA sequencing was performed using the T7-F
(TAATACGACTCACTATAGGG) and T3-R (ATTAACCCTCACTAAAGGGAA) primers.
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The plant voucher information and DDBJ accession numbers (LC771154–LC771172) for all
the sequences are shown in Table 2.

Table 2. List of Dendrobium spp. used for phylogenetic analysis.

Clade Species Section Plant ID Accession Number

Asian Dendrobium hercoglossum Rchb.f. Dendrobium De345 LC771164 LC771165
Asian Dendrobium nobile Lindl. Dendrobium De286 LC771154
Asian Dendrobium chrysotoxum Lindl. Dendrobium De268 LC771162 LC771163
Asian Dendrobium densiflorum Lindl. Dendrobium De395 LC771156 LC771157
Asian Dendrobium thyrsiflorum B.S.Williams Dendrobium De380 LC771155

Asian Dendrobium fimbriatum Hook. Dendrobium De351 LC771158 LC771159
LC771160 LC771161

Asian Dendrobium moschatum (Banks) Sw. Dendrobium De209 LC771166
Australasian Dendrobium kingianum Bidwill ex Lindl. Dendrocoryne De134 LC771172
Australasian Dendrobium speciosum Sm. Dendrocoryne De343 LC771170
Australasian Dendrobium amboinense Hook. Fugacia De344 LC771168 LC771169
Australasian Dendrobium macrophyllum A.Rich. Latouria De451 LC771171
Australasian Dendrobium spectabile (Blume) Miq. Latouria De324 LC771167

2.6. Phylogenetic Analysis of BBS Sequences

A total of 31 sequences were aligned using ClustalW in MEGA-X [34]. This dataset
included 19 sequences obtained in this study, 6 genes registered as BBS or BBS-like in
the D. officinale draft genome sequence [22], 4 BBS or BBS-like genes in the Phalaenopsis
equestris draft genome sequence [35], and 2 BBS cDNA sequences in D. sinense (OP887149
and OP887150). The 10 DNA sequences of D. officinale and P. equestris and the 2 cDNA
sequences of D. sinense were obtained from GenBank. Maximum likelihood analysis
(1000 bootstrap replicates) was performed using RAxML-NG ver. 1.1.0 [36], implemented
in raxmlGUI 2.0.10 [37]. The best-fitting model (GTR + G4) was selected by ModelTest-NG
v0.1.7 [38], according to the Akaike information criterion.

2.7. Statistical Analysis

Statistical analysis of the RT-qPCR data was performed using IBM SPSS Statistics
29 (IBM Corp., Armonk, NY, USA). Dunnett’s multiple comparisons test was used to
analyze the differences between the control (no inoculation) and the plants inoculated with
each fungus, as well as the time course of gene expression after inoculation.

3. Results
3.1. Effects of Mycorrhizal Fungi on Plant Growth

The fresh weight of the young seedlings inoculated with each fungal strain (TU22,
TU27, and SE1B) after 12 weeks showed an increasing trend compared to that of the
seedlings without fungal inoculation (control). Among the three fungal strains, the cultiva-
tion with SE1B showed the greatest increase in fresh plant weight (Supplementary Table S1
and Figure 2).
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3.2. Effects of Mycorrhizal Fungi on BBS Gene Expression

There was one BBS gene and five BBS-like genes in the D. officinale genome. To
clarify the effect of the three fungal strains on the gene expression of the BBS family in
D. officinale, we analyzed the expression of the six genes, namely, LOC110115249 (DoBBS),
LOC110105072 (DoBBS-like1), LOC110105073 (DoBBS-like2), LOC110115253 (DoBBS-like3),
LOC110105791 (DoBBS-like4), and LOC110093469 (DoBBS-like5), using RT-qPCR. The results
showed that the variation in gene expression differed between the control and symbiotic
seedlings (Figure 3). Additionally, the effect of symbiosis on their gene expression was
dependent on the fungal strain.
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Figure 3. Reverse transcription quantitative PCR (RT-qPCR) analysis of bibenzyl synthase (BBS)
genes. The y-axis values are presented as the mean ± SD of three independent experiments, and
the x-axis labels represent the duration of the symbiotic cultures (in weeks). Statistical significance
was evaluated using Dunnett’s multiple comparisons test; * p < 0.05 vs. control in the same weeks,
# p < 0.05 vs. 2-week sample with the same treatment.

In the control, the gene expression of DoBBS, DoBBS-like1, and DoBBS-like3 increased
with plant growth, peaking at 12 weeks. In contrast, the expression of DoBBS-like2, DoBBS-
like4, and DoBBS-like5 experienced no significant change. Compared to the gene expression
in the control, those of DoBBS, DoBBS-like1, DoBBS-like2, and DoBBS-like3 were upregulated
at two or four weeks, wherein those of DoBBS-like4 and DoBBS-like5 were significantly
upregulated at twelve weeks in the TU22-inoculated seedlings. TU27 inoculation also
increased the gene expression of DoBBS, DoBBS-like1, DoBBS-like2, and DoBBS-like3 in the
young seedlings two or four weeks after inoculation compared to the control. Furthermore,
in contrast to the effects of TU22, the expression of DoBBS-like4 showed no significant
change in the TU27-inoculated seedlings. Conversely, the expression of DoBBS-like5 was
upregulated transiently at four weeks in the TU27-inoculated seedlings. SE1B had a
different effect on the BBS gene expression compared to TU22 and TU27. The DoBBS,
DoBBS-like3, and DoBBS-like4 genes had a constant expression level in the SE1B-inoculated
seedlings, whereas the expression of DoBBS-like1 and DoBBS-like2 was increased slightly
at 12 weeks compared to at 2 weeks. In addition, the gene expression of DoBBS-like5 was
upregulated two and four weeks after SE1B inoculation in comparison to the control.

3.3. Effects of Mycorrhizal Fungi on PAL Gene Expression

Phenylalanine ammonia-lyase (PAL) is the first key enzyme in the phenylpropanoid
pathway responsible for the biosynthesis of many secondary metabolites such as bibenzyl
and phenanthrene (Figure 1). To clarify the effects of the three fungal strains on the gene
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expression of the PAL family in D. officinale, we analyzed the expression of two genes,
namely, LOC110113904 (PAL) and LOC110115785 (PAL-like). In the control, the expression
of PAL increased with growth (Figure 4). Symbioses with TU22 increased PAL expression
at 2 weeks, which decreased at 12 weeks, compared to that in the control. In contrast, the
PAL expression in the TU27-inoculated seedlings did not show significant changes at two,
four, or eight weeks, and it decreased at twelve weeks, compared to that in the control.
In SE1B-inoculated seedlings, PAL expression was significantly increased at 2 weeks and
significantly reduced at 12 weeks compared to that in the control. The PAL-like expression
did not change significantly in the control, while its expression in the TU22-inoculated
seedlings decreased with growth. The PAL-like expression in the TU27-inoculated seedlings
was not consistent, that is, its expression decreased at 4 and 12 weeks compared to that
in the control. In the SE1B-inoculated seedlings, the PAL-like expression was increased at
8 weeks and significantly reduced at 12 weeks. These results show that the expression of
PAL and PAL-like was reduced at 12 weeks in young seedlings inoculated with TU22, TU27,
and SE1B.
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3.4. Effects of Mycorrhizal Fungi on Bibenzyl Production

The contents of gigantol, dendrophenol, and erianin (Figure 1) in the extracts from
young seedlings were analyzed (Figure 5). Erianin was not detected in any sample. The
TU22-inoculated seedlings had the highest gigantol content at six weeks, 3.6-fold higher
than that in the control (Figure 5A). As for TU22 inoculation, the 12-week seedlings had
a lower gigantol content than the 6-week seedlings. The dendrophenol content was the
highest in the TU22-inoculated seedlings 12 weeks after inoculation, 3.3-fold higher than
that in the control (Figure 5B). Meanwhile, no significant changes in the gigantol and
dendrophenol contents were observed in the young seedlings inoculated with TU27 or
SE1B (Figure 5).
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Several other metabolites, which had the same molecular weight as gigantol, den-
drophenol, and erianin, were detected in the LC-MS chromatograms (Figure 6). Therefore,
the chromatograms were compared to determine whether there were characteristic metabo-
lites in the young seedlings inoculated with TU27 and SE1B. The SE1B-inoculated seedlings
had higher signals at a retention time (Rt) of 11.53 min (Figure 6A) and Rt of 16.72 min
(Figure 6E). Conversely, no significant metabolites specific to the TU27-inoculated seedlings
were detected. In addition to gigantol and dendrophenol, several signals in the TU22-
inoculated seedlings were higher than those in the other young seedlings (Rt of 10.01, 10.27,
and 11.53 min in Figure 6B and Rt of 11.60 min in Figure 6F).
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3.5. Phylogenetic Analysis of the BBS Gene in the Genus Dendrobium

The above results indicate that the gene expression of the BBS family is affected
by mycorrhizal fungi and participates in plant–fungus interactions. However, only six
genes from D. officinale and two cDNA from D. sinense had been registered in the genus
Dendrobium. To clarify the diversity of the BBS genes in this genus, we cloned DNA
fragments containing first exon, intron and second exon from 12 Dendrobium spp. using
BBS gene-specific primers. Nineteen DNA sequences homologous to the BBS gene family
in D. officinale were identified (Table 2). Several homologous sequences were identified
from the same individuals of D. amboinese, D. chrysotoxum, D. densiflorum, D. fimbriatum,
and D. hercoglossum, respectively. For example, four homologous sequences were identified
from D. fimbriatum.

Phylogenetic analysis was performed using these 19 sequences, along with 6 genes
from D. officinale, 4 genes (LOC110018892, LOC110018893, LOC110018896, and LOC110032208)
from Phalaenopsis equestris, and 2 cDNA sequences (OP887149 and OP887150) from D.
sinense (Figure 7). The phylogenetic tree of 31 sequences showed that the BBS gene family
diverged into three major groups (Groups I, II, and III). Group I included two sequences
from D. amboinese in the Australasian clade, eight sequences from four species (D. chryso-
toxum, D. fimbriatum, D. moschatum, and D. officinale), and one cDNA sequence from D.
sinense (OP887149) in the Asian clade. Group II included four sequences from four species
(D. kingianum, D. speciosum, D. macrophyllum, and D. spectabile) in the Australasian clade,
nine sequences from six species (D. densiflorum, D. fimbriatum, D. hercoglossum, D. nobile, D.
officinale, and D. thyrsiflorum), and one cDNA sequence (OP887150) from D. sinense in the
Asian clade. The six genes of D. officinale were divided into Groups I, II, and III (bold font
in Figure 7). The sequences of D. fimbriatum and D. sinense were also divided into Groups I
and II.
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4. Discussion

The present study focused on the symbiotic relationship between mycorrhizal fungi
and D. officinale, exploring the effects of three fungi on the gene expression of the BBS family
during plant growth. Our results demonstrated that each fungus had distinct effects on the
BBS gene expression. Moreover, the amounts of metabolites in the young seedlings differed
depending on the mycorrhizal fungus. The results indicated that the fungi selected in this
study increased specific secondary metabolites through interaction with the plant. This
highlights the importance of selecting suitable symbiotic fungi for optimizing metabolite
production. Furthermore, phylogenetic analysis of BBS genes in Dendrobium shed light on
their diversity.

Zhang et al. performed symbiotic cultures of three Dendrobium species and nine fungal
strains, including the three strains (TU22, TU27, and SE1B) used in this study, to investigate
the effect of fungi on plant germination and growth [39]. Consistent with their study, our
results demonstrated that D. officinale seedlings inoculated with SE1B had the highest fresh
and dry weights. In contrast, their study showed that the fresh and dry weights of D.
moniliforme and D. okinawense increased when inoculated with other fungi [39]. Together,
these results suggest that the effect of SE1B on plant growth might be species-specific.

Previous studies have investigated the effects of fungal infection on the activity of
BBS. For example, the treatment of sliced rhizomes of Epipactis palustris with Rhizoctonia
fungal mycelium increased BBS activity [40]. Moreover, infection with Rhizoctonia sp.
and Botrytis cinerea increased the amount and enzyme activity of BBS in young sterile
Phalaenopsis plants [41]. BBS gene expression was upregulated transiently when Botrytis
cinerea infected Phalaenopsis sp. [14]. In this study, we investigated the variation in BBS
gene expression during the growth of D. officinale inoculated with mycorrhizal fungi and
clarified the following: (1) each fungus had a different effect on the BBS gene expression
and (2) the variation pattern of gene expression differed for each gene.

The effects of TU22 and TU27 on the BBS gene expression were similar. However,
the effects of SE1B were different. Chen et al. performed a comparative transcriptome
analysis for D. officinale inoculated with members of Tulasnellaceae and Serendipitaceae and
showed that the genes related to plant hormone signal transduction and phenylpropanoid
biosynthesis were upregulated in plants inoculated with Tulasnellaceae fungi [42].

DoBBS, DoBBS-like1, DoBBS-like2, and DoBBS-like3 exhibited similar expression pat-
terns in the young seedlings inoculated with TU22 and TU27, i.e., the BBS expression
increased two or four weeks after inoculation compared to that in the control. In contrast,
DoBBS-like4 and DoBBS-like5 expression was increased at a specific time in the TU22- or
TU27-inoculated seedlings. A previous study showed that methyl jasmonate treatment
increases the expression of DoBBS, DoBBS-like1, and DoBBS-like2 in D. officinale [26]. Their
and our findings suggest that there is a common gene regulation mechanism for DoBBS,
DoBBS-like1, and DoBBS-like2.

In bibenzyl biosynthesis, PAL works upstream of BBS (Figure 1). The gene expression
of PAL, DoBBS, DoBBS-like1, and DoBBS-like3 increased with growth in the control. However,
we did not find any commonality between PAL and BBS gene expression in the young
seedlings inoculated with mycorrhizal fungi. One common feature in the young seedlings
inoculated with each fungus is that the expression of PAL and PAL-like decreased 12 weeks
after inoculation. Similar trends of reduced PAL mRNA levels and PAL activities have been
demonstrated in Medicago sativa L. inoculated with AMF [43,44]. Moreover, a transient
increase in PAL activity has been reported in Piper nigrum L. ‘Bragantina’ upon inoculation
with AMF [45]. Overall, the findings indicate that infection with mycorrhizal fungi might
have a common effect on PAL expression in a wide range of plant species. Additionally,
our observations demonstrated that BBS and PAL expression varied with growth in young
seedlings of D. officinale. Consistent with the results, Li et al. reported the upregulation of
several genes at specific times from one to nine weeks of symbiotic culture while analyzing
the expression of genes associated with the mevalonate pathway in D. nobile inoculated
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with Mycena sp. [46]. Collectively, a time course analysis of plant growth is warranted to
reveal the effects of fungal symbiosis on gene expression in plants.

To reveal the effect of each fungus on the bibenzyl production in D. officinale, the
contents of gigantol and dendrophenol were compared in young seedlings cultured for
6 and 12 weeks. The results showed that the gigantol and dendrophenol contents were
higher in the TU22-inoculated seedlings than in the other seedlings. In particular, the
gigantol and dendrophenol contents were the highest in the TU22-inoculated seedlings
6 and 12 weeks after inoculation, respectively. Bibenzyl production may change over time.
DoBBS and DoBBS-like3 exhibited high expression in the TU22-inoculated seedlings two and
four weeks after inoculation. Meanwhile, the expression of DoBBS-like4 and DoBBS-like5
was increased in the TU22-inoculated seedlings 12 weeks after inoculation. Chen et al.
showed that BBS gene expression was positively related to bibenzyl contents [17]. It is
necessary to determine whether such variations in BBS expression cause changes in bibenzyl
production. To this end, a wide range of metabolite analyses should be performed to
determine the fungus-specific effects on plants. In addition to BBS, the effects of mycorrhizal
fungi on enzymes that add substituents such as hydroxyl and methyl groups to bibenzyl
need to be clarified. As for erianin, we could not detect it in any samples. The production of
erianin in D. officinale may require different environmental conditions to those of gigantol
and dendrophenol.

Although BBS duplication and its diversity were previously unknown in Dendrobium
species other than D. officinale, we isolated multiple BBS genes from D. amboinese, D.
chrysotoxum, D. densiflorum, D. fimbriatum, and D. hercoglossum. Notably, D. amboinese,
D. densiflorum, and D. fimbriatum had two highly similar sequences. This suggests that
duplication of BBS genes occurred after speciation. In addition, six genes from D. officinale
were divided into Groups I, II, and III, while four genes from D. fimbriatum were divided
into Groups I and II. Therefore, it is presumed that the BBS genes of Dendrobium diverged
into several lineages prior to speciation. The next step is to investigate whether Dendrobium
species with BBS genes belonging to the same lineages have common metabolites and
whether the same fungus has similar effects on the gene expression of BBS in the same
lineages. This will provide a clue to clarify the relationship among BBS gene evolution,
metabolite diversification, and mycorrhizal fungi in Dendrobium.

Considering previous studies and our results, mycorrhizal fungi with symbiosis capac-
ity have potentially specific effects on the expression of genes involved in plant metabolite
biosynthesis. Therefore, screening for suitable symbiotic fungi is essential to increase the
production of target metabolites through Dendrobium–fungus interactions. In the future, a
comprehensive analysis of BBS genes, clarification of the catalytic function and products of
BBS, and further elucidation of downstream biosynthetic pathways are required.
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