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Abstract: Fire in the Northern Alps is comparatively rare. Yet, previous human-ignited fire events in
subalpine forests up to the treeline have triggered severe fire damage to vegetation and soil. Here,
we investigate post-fire vegetation dynamics in the Northern Limestone Alps about 80 years after
disturbance. We observed higher species richness in burned compared to unburned vegetation
and clearly distinct floristic communities emerging after fire-driven forest removal, with several
alpine specialist species uniquely found in the burned subalpine sites. The functional composition of
vegetation was also distinct, with higher relative forb cover in burned plots. This difference was likely
driven by disturbance-related environmental changes, such as increased light availability, offering
safe sites for subalpine and alpine species. Due to a general lack of tree encroachment, we consider this
a case of arrested succession after fire. We conclude that the recovery of fire-affected subalpine forests
is modulated by complex interactions of climatic and biotic filters producing extreme site conditions,
controlling the recolonization of the disturbed areas by forest species while providing safe sites for
the establishment of a rich subalpine and alpine low-statured flora. The coupling of disturbance and
abiotic filters makes high-elevation treeline ecotones very vulnerable to climate change.

Keywords: vegetation dynamics; wildfire; recovery; alpine communities; calcareous alps; arrested
succession; microclimate; floristic survey; Pinus mugo; extreme site; diversity; high-elevation ecosystem

1. Introduction

The high montane regions of the European Alps are unfamiliar with fire as a distur-
bance [1], with reconstructed fire frequencies in northern Tyrol in the range of hundreds
of years [2,3]. Soil and microclimate variability, vegetation types, land use changes, and
the high heterogeneity of alpine relief resulting in landscape fragmentation are key fac-
tors in shaping fire regimes at high elevations [4–6], These factors themselves are closely
related to vegetation dynamics [2,7,8]. In these alpine systems, disturbance regimes are
often associated with climatic events such as extreme temperatures, wind, and ice, as well
as geomorphological events such as avalanches, rockslides, and permafrost, rather than
fire [9]. However, fire is known to occur occasionally in the European Alps, triggering
successional dynamics [10–14] and amplifying many of these geomorphological distur-
bances, with observed increases in soil erosion rates [15,16], debris flows [16], and avalanche
occurrences [17] after fire. In alpine regions, in particular, alterations to compounding
disturbances are expected with climate change [18], especially with changes such as the
projected temperature increase, the lengthening of the growing season, and change in snow
cover [19–21]. These projected changes are affecting the aridity and flammability of areas
already prone to fire: southern aspects [10,22]. Despite the growing body of research on the
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effects of fire on mountain forest ecosystems [23–26], the effects of the introduction of fire
on krummholz vegetation have been mostly neglected.

Krummholz vegetation, composed of dwarfed or stunted vegetation formed by the
continued pressure of wind and low temperatures, is found in treeline landscapes in the
subalpine and subarctic zones [27]. Due to the short stature of the woody vegetation in this
system, any unlikely fire consumes whole individuals from trunk to treetop, drastically
altering resource ratios and the nature of the limiting factor, i.e., moving the system from
nutrient limitation to water limitation [28]. Studies globally have found long-term effects
on post-fire vegetation dynamics in these krummholz systems, with burned areas reported
to more closely resemble the species composition of subalpine grasslands than their original
communities [29–32]. However, predicting post-fire forest recovery versus regime shift to
open montane grasslands remains an ecological challenge.

In the Northern Limestone Alps, krummholz vegetation is mostly composed of Pinus
mugo Turra individuals disrupted by vertical, gravity-dependent mechanical disturbance,
yielding a heterogeneous pattern, often with minimal understory community (Figure 1).
The removal of this layer of vegetation, either by fire or other disturbances, causes a
successional cascade with the recruitment of fast-growing pioneer forbs and graminoids
peaking within the first couple of years after disturbance, followed by slower recruitment
of woody vegetation [14]. These successional dynamics vary in speed and magnitude
with elevation and moisture availability—often affected by slope aspect [12,33]. When
conditions are particularly extreme, successional dynamics may pause or arrest at a stage
prior to that which existed pre-disturbance, raising questions about the system’s ability to
return to the former steady state, here, to subalpine forest dynamics.
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Figure 1. Treeline landscapes with krummholz patches forming woody patches on rocky outcrops,
i.e., Ammergebirge, or dense thickets on shallow soils, i.e., Wetterstein (@A.Jentsch).

The conservation potential of these open subalpine areas is significant both as a
refugia for species that are unable to outcompete others while tracking their climatic and
biotic niches and as clusters of high diversity [29,34]. Soon after disturbance, these open
sites provide habitat to important fauna as well, with the Bavarian Alps homing three
endangered species of grouse, namely Tetrao urogallus L., Tetrao tetrix L., and Tetrastes bonasia
L., which need a mix of open woodland and grassland to survive [35,36]. In part due to
this, the Arnspitze massif in the Northern Limestone Alps has been a designated nature
protection area (Naturschutzgebiet) since 1942, ironically five years before the first fire.
Drastic changes in vegetation and character could impact the region’s ability to effectively
serve this purpose of nature protection, making the understanding of these dynamics
more pressing.

Given the importance of nature conservation of these open krummholz stands and the
lack of studies on their post-fire recovery, we aim to investigate the vegetation dynamics
and their potential drivers 75 years after the fire in the Northern Limestone Alps. Here,
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we included halted regeneration and emerging plant species diversity. First, we tested
whether the plant communities on burned slopes were compositionally distinct from those
on unburned slopes and whether they had higher species diversity. We expected the
removal of woody, shading vegetation and the opening of new niches by fire to alter the
biotic and abiotic filters, enabling the colonization of novel species. Second, we used
species elevational range data to compare the ‘elevational niche space’ of burned and
unburned slopes, anticipating a preferential encroachment of alpine specialists or lowland
colonizer species in burned areas. We further disentangled these community differences
by comparing the environmental indicator values of the species. Third, we looked more
closely at the potential environmental drivers of these observed differences, including soil
depth and P. mugo cover as a proxy for light availability.

2. Materials and Methods
2.1. Study Site

Our study area is in the Wetterstein mountain range in the Northern Limestone Alps on
the southern and eastern slopes of the Große Arnspitze (2196 m a.s.l.; 47.40◦ N, 11.22◦ W),
hereafter referred to as Arnspitze. The peak is part of the Arnspitze massif located on
the border between Austria and Germany, approximately 20 km northwest of Innsbruck,
Austria (Figure 2). It lies between the suboceanic, cool, and humid northern edge of the
European Alps and the subcontinental, warm, and dry Tyrolean Inn Valley. The average
annual temperature in Innsbruck (574 m) and Mittenwald (915 m) is 8.6 ◦C and 6.5 ◦C,
respectively, and near zero at the elevation of the summit. The precipitation in the area has a
distinct summer maximum, characterized by frequent, intense thunderstorms, and a mean
annual precipitation of 850 mm and 1430 mm in Innsbruck and Mittenwald, respectively,
mirroring the expected elevational trend [10]. The mean annual precipitation for the
massif is approximated between 1500 and 1750 mm [37,38]. The area is characterized
by Wettersteinkalk limestone, a very pure limestone with a CaCO3 content of 95.6% [39],
which slows the rate of soil formation [40] and leads to karstification. The rapid drainage
of the karstified limestone coupled with the high annual evaporation results in very little
available surface water and a very dry environment [37,41].
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The treeline ecotone in the Northern Limestone Alps is at an elevation of 1800–2400 m,
lower than in the central Swiss Alps, in part due to the cooler conditions at this northern
fringe. It is characterized by a mix of open stands of Picea abies (L.) H.Karst. some-
times mixed with Larix decidua Mill. (Piceion excelsae Pawłowski et al. 1928) and P. mugo
krummholz vegetation, partly forming dense thickets (Erico-Pinion mugo Leibundgut 1948).
On these slopes, the krummholz vegetation is observed ranging from 1200 m to the ridges
at 2050 m of elevation [10], and the rocky slopes without scree cover are occupied by small
statured vegetation including dwarf shrubs such as Dryas octopetala L. and Daphne striata
Tratt., graminoids, forbs, and ferns. These taxa mostly belong to Seslerion caeruleae Br.-Bl. in
Br.-Bl. et Jenny, with some components of Potentillion caulescentis Br.-Bl. in Br.-Bl. et Jenny
1926, the latter presumably spread from nearby cliffs untouched by the fires.

In May 1946, the southern slope of the Arnspitze burned for about 11 days [42], con-
suming 5–6 ha of forest (dominated by P. abies) and approximately 100 ha of krummholz
stands (dominated by P. mugo) at elevations of 1200–2000 m (Figure 3). Large swaths of the
slope were left stripped of vegetation and humus soil [43]. Prior to the fire, the slope had
an even cover of either P. mugo at higher elevations or forest at lower elevations (compare
Figure 3a,b; see Sass, 2019). The effect of severe fires such as this on geomorphological pro-
cesses has been subject to several investigations [43,44], demonstrating that the measured
erosion rates on the burned, southern slope are about 10 times higher than on unburned
slopes [35]. Two more, probably less severe forest fires were discovered in the area using
radiocarbon dating [42]: one about 1266–1012 BCE, the other 1206–1292 CE [43].
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Figure 3. (a) Pre-fire eastern slope of the Arnspitze (Wetterstein, Northern Limestone Alps) harboring
subalpine forest and krummholz vegetation (@R.Rischreiter, before 1946) versus (b) post-fire Eastern
slope of the Arnspitze 80 years later devoid of woody vegetation exposing bare rock (@A.Jentsch
in 2023).

2.2. Sampling Design

A total of 41 plots were established over the span of two years 2020–2021 during
the months of July and August: 32 on the eastern slope and 9 on the southern slope of
Arnspitze. Each 3 × 3 m square plot was aligned so that the upper edge was parallel to the
contour line, thus pointing toward the summit or ridge. The plots were located between
1800 m and 1950 m of elevation, in areas that were safely accessible by the samplers. The
positions of the plots can be seen in the map (Figure 2).

The 20 plots established in 2020 were all located in the 1946–1947 fire scar, while
the 21 plots established in 2021 were partly in the fire scar, partly in the adjacent intact
krummholz pine or forested stands (fire history status seen in Figure 2). A total of 26 plots
were established in the fire scar, hereafter ‘burned plots’, and 15 in intact krummholz or
forested sites, hereafter ‘unburned plots’. The placement of the burned plots was random
within the former krummholz vegetation (taken from historical photographs), while the
unburned plots were preferentially selected to be characteristic of the unaffected slope,
both floristically and geophysically.
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2.3. Soil Depth

To determine the soil thickness in each plot, a 1 m long metal rod with 5 cm markings
was pushed into the soil until it encountered resistance. Measurements were taken using
5 cm intervals, rounding up (i.e., 12.8 cm of soil recorded as 15 cm), with shallow soils less
than 5 cm in depth categorized as 2.5 cm deep. A total of five of these measurements were
taken in each plot, one in the geometric center of the square and once along each diagonal,
halfway between the center and the corner. To account for potential within-plot variation
in soil depth, the median soil depth per plot was used for all subsequent analyses.

2.4. Species Composition

Vascular plant species composition and cover were assessed in each plot. Nomen-
clature was checked and updated according to Plants of the World Online [45]. Plant
individuals were identified in the field with 186 identified to the species level, 37 only
to the genus level, and 3 remained unidentified. For completeness, the entire species list
was only used in the species diversity and composition analyses. Species cover in percent
was assessed using the Londo scale [46], a decimal scale with an appropriate fine grain to
approximate cover separate from abundance.

Ecological indicator values (EIVs) for each taxon identified to the species level were ex-
tracted from both Ellenberg and Landolt repositories [47,48]. Ellenberg EIVs are commonly
used bioindicator values with a long-standing tradition in Central Europe. To balance
this with our study site location (in the Alps), we also included Landolt EIVs which were
formulated for Switzerland in particular and may have a more accurate representation
of the indicator values for the species we observed at higher elevations. We focused on
the following EIVs: temperature, light, moisture, moisture variability, nutrients, humus
content, reaction/soil pH, root depth, dominance in situ, and soil aeration.

We tested whether burned and unburned sites differed in their species richness, plant
community composition, species’ elevational range, and species’ ecological indicator values.
We determined the alpha, beta, and gamma diversity across all plots and between fire
histories (burned vs. unburned). We calculated the Shannon index [49] as the alpha
diversity metric rather than the Simpson index to obtain a balanced weight of rare species,
using the diversity() function in the vegan R package. We used Whittaker’s multiplicative
beta diversity [50], which is determined as follows:

β =
S
m

where S is the number of species in a composite community, and m is the mean number of
species per plot. We used the total number of unique species present in each plot as the
species richness, testing the significance of this difference with a t-test using the function
t_test() in R.

To evaluate whether the two types of plots were occupied by distinctly different plant
communities, we compared the species composition of each plot. We tested this distinctness
with a PERMANOVA using distance matrices with the function adonis2() in the vegan
R package. We visualized these results with a non-multidimensional scaling (NMDS)
ordination of the Bray–Curtis dissimilarity in species space using the metaMDS() function
from the vegan R package.

To look at the abundance of each functional group—specifically forbs and
graminoids—we tested the difference between the relative cover of each group in the
burned and unburned plots with a t-test using the function t_test() in R. Relative cover was
calculated as the total functional group cover in a plot divided by the total vegetative cover
in the plot.

2.5. Species Elevational Ranges

To look at plant community composition as a function of elevation, we tested for a
difference in the elevational range of the species present in each site type, as well as the
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species occurring uniquely in each. The elevational range data were obtained from the
Swiss National Databank of Vascular Plants [51]. We tested for differences in maximum
elevation, minimum elevation, range breadth (maximum elevation − minimum elevation),
and relative elevational distance of the plot elevation from the species’ minimum elevation
(1900 − minimum elevation)/range breadth) for species in each site type with a t-test using
the function t_test() in R, and plotted using the helper package ggbreak [52].

2.6. Krummholz Species Recruitment

To investigate the edge changes in the present krummholz vegetation, we used freely
available orthophotos provided by the Land Tyrol (© TIRIS geoinformation system), com-
paring pictures taken in 1974, 2001, and 2016 with UAV images taken in situ (2021).

3. Results
3.1. Effect of Fire on Species Composition and Plant Functional Types

Across all 41 plots, the Shannon diversity index was 2.5 ± 0.8, while the average species
diversity in each plot (±SD) was 31.7 ± 10.8, beta diversity (total number of species/mean
number of species per site) was 89, and gamma diversity (total number of species across
all plots) was 226. Species richness varied significantly between burned and unburned
plots (Figure 4b, p = 0.05), with burned plots having the greatest species richness per plot
(average species/plot ± SD; 35.1 ± 8.8 vs. 25.8 ± 11.5). This pattern also carries across
the alpha, beta, and gamma diversity metrics, where we see burned plots having a higher
alpha Shannon index and gamma diversity but lower beta diversities, 4.2 vs. 2.8, 174 vs.
136, and 3.9 vs. 6.7, respectively.

The community composition was significantly different between the burned and
unburned sites (p-value < 0.001) (Figure 4a,b). Species unique to burned plots included
Carex curvula All., Ranunculus alpestris L., Rumex scutatus L., and Pedicularis kerneri Dalla
Torre. Species unique to unburned plots included Alchemilla flabellata Buser, Calamagrostis
varia (Schrad.) Host, and Trollius europaeus L. We observed a clustering of plots by fire
history with burned plots occupying a more circular cluster than unburned plots (orange
area on the NMDS, Figure 4a). This result is consistent with our earlier observation of beta
and gamma diversity, indicating a more uniform community composition among burned
plots than among unburned plots.

We were interested in looking at these compositional differences from a perspective
of functional type—specifically, differences in forb and graminoid cover (Figure 4c). Our
results indicate a significant difference in forb, graminoid, shrub, and tree cover in fire-
affected slopes (Figure 4c; p < 0.001, p = 0.035, p = 0.003, p < 0.001, respectively), with
relative forb and graminoid cover higher in burned plots (0.64 ± 0.20 vs. 0.20 ± 0.15 and
0.24 ± 0.12 vs. 0.12 ± 0.12, respectively). We observed an inversion of this pattern for
trees and shrubs, where burned plots had hardly any tree or shrub cover compared to
the 0.52 ± 0.24 and 0.16 ± 0.12 of the unburned plots (Figure 4c). The top three dominant
taxa in each of these categories are highlighted in Table 1. Excluding trees, of which there
were only three species present at our site, we observed two species that were dominant in
both burn categories: Dryas octopetala (Figure 5) and Rhododendron hirsutum. This hints at
either a slow homogenization of the communities 80 years after disturbance or the ability
of these taxa to colonize the disturbed terrain in an effective manner. The large differences
in mean plot covers of these taxa, coupled with the clear distinction of the communities
seen in Figure 4a and their unique functional composition, provide more support to the
latter suggestion.
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Table 1. Top three dominant taxa of each functional type (forb, graminoid, shrub, and tree) by mean
plot cover (percentage) in burned and unburned plots.

Forb Graminoid Shrub Tree

B
ur

ne
d

D. octopetala
(14.4%)

Nardus stricta L.
(11.7%)

Rhododendron hirsutum L.
(2%)

P. abies
(5.2%)

Crepis foetida L.
(11%)

Carex humilis Leyss.
(5.75%)

Vaccinium vitis-idea L.
(1.3%)

L. decidua
(3%)

Gymnocarpium robertianum
(Hoffm.) Newman

(10%)

C. curvula
(4.85%)

Vaccinium myrtillus L.
(0.7%)

P. mugo
(1%)

U
nb

ur
ne

d

Viola biflora L.
(9.1%)

Alpagrostis alpina (Scop.) P.M. Peterson,
Romasch., Soreng & Sylvester

(20.0%)

Rhododendron ferrugineum L.
(15.2%)

P. mugo
(54.2%)

Erica carnea L.
(7.3%)

Carex sempervirens Vill.
(19.6%)

R. hirsutum
(12.3%)

P. abies
(23.1%)

D. octopetala
(5.4%)

Luzula campestris (L.) DC.
(15.0%)

Vaccinium uliginosum L.
(6.8%)

L. decidua
(14.3%)
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Figure 5. Characteristic open patch krummholz ecotone species, Dryas octopetala and Globularia
cordifolia, with Pinus mugo in the background, covering shallow soil in the Northern Limestone Alps
(@A.Jentsch in 2023).

The difference in relative cover of the functional types is likely driven by a change in
species diversity after fire, where forb species richness is significantly (p = 0.005) higher
in burned plots (27.9 ± 7.6) than in unburned plots (18.2 ± 10.6), as is graminoid species
richness (p = 0.029) between burned plots (5.2 ± 1.7) and unburned plots (3.37 ± 2.1).
However, this increase in richness does not seem to translate to a greater number of rare or
endangered species, as we see slightly fewer endangered taxa present in burned plots. As
seen in Figure 6, this does not insinuate a larger number of ruderal species in burned plots,
and the main ruderal taxa present (C. varia) is only present in unburned plots.
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3.2. Elevational Ranges of Colonizing Forbs and Graminoids

The elevational ranges of all the species present in both the burned and unburned
plots were very similar (Figure 6). While the species in unburned plots had generally lower
values (Figure 7a–d), we did not find a significant difference (Figure 7a–c) in minimum
elevation (323 m ± 109; 324 m ± 188), maximum elevation (2948 m ± 428; 2936 m ± 387),
and elevation range breadth (2625 m ± 438; 2612 m ± 404) between the species uniquely
present in burned or unburned plots. These results seem to indicate that the species growing
in burned areas do not have distinctly different elevational niches from those growing
in unburned areas. This is further supported by the lack of significant difference in the
relative distance of plot elevation from the range minima between the species in burned
and unburned plots (64.0% ± 43.8; 61.5% ± 10.9), as seen in Figure 7d.
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Figure 7. (a–d) Comparison of range extents of all species found in the burned and unburned plots;
species unique to each fire history are in orange and green, respectively, while species common to
both fire histories are in gray: (a) minimum limit of each species present; (b) maximum limit of each
species; (d) the elevation extent (calculated as maximum elevation − minimum elevation) for each
species; (c) location and relative elevational distance of the plot (1900 m) from the minimum elevation
limit of each species (calculated as (1900 − minimum elevation)/elevation extent); NS indicates
non-significant.

The same trends were seen in the elevational ranges of the subset of species unique
to each fire history (burned vs. unburned): They did not vary significantly in minimum
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elevation (334 m ± 206; 334 m ± 194), maximum elevation (2853 m ± 573; 2748 m ± 417),
elevation range breadth (2519 m ± 556; 2404 m ± 425), or relative elevational distance
of plot location from range minima (71.9% ± 43.8; 66.9% ± 10.9). These results indicate
that species colonizing the burned sites come from similar elevational ranges rather than
representing a net upward shift of valley-dwelling species or a downward shift of alpine
species. This is likely due to abiotic filters preventing their immigration and establishment.
The 29 species unique to unburned plots include A. flabellata and T. europaeus, but also C.
varia (a grass that commonly thrives after disturbance). The 47 species unique to burned
plots include subalpine–alpine specialists, such as Antennaria dioica (L.) Gaertn., C. curvula,
R. alpestris, Gentiana nivalis L., and P. kerneri, as well as the two outliers Asplenium obovatum
ssp. billotii (F.W.Schultz) O.Bolòs, Vigo, Masalles & Ninot, and Jucus stygius L., which have
documented elevational ranges of 200–450 m and 870–1470 m, respectively [53].

3.3. Effect of Fire on Community Ecologic Indicator Values

The temperature indicator value of the species supports the results found above, with
inconclusive results due to the mismatch between the temperature Ellenberg and Landolt
indicator values between species present in burned and unburned plots (Table 2). Similarly,
the species indicative of nutrient availability (both Ellenberg and Landolt) did not vary
significantly between burned and unburned plots. The species present in the burned area
had significantly higher soil aeration (3.07, 2.61, p < 0.001), light (3.80, 3.46, p < 0.001), and
pH (3.45, 3.28, p = 0.024) Landolt indicator values (Table 2). This contrasted with their
significantly lower dominance in situ (2.36, 2.59, p < 0.001), humus content (3.00, 3.53,
p < 0.001), moisture (2.75, 2.85, p = 0.043) Landolt indicator values compared to unburned
plots. These results are robust to the exclusion of trees in the analyses, which, due to their
very different rooting architecture and physiological requirements, could cause skewing of
the data. Species present in burned plots are thus indicative of dryer, rockier, more basic
soils that receive a high amount of sunlight. Taken with the inconclusive results of the
temperature indicator value, this implies that the species present in these communities
vary in their physical requirements rather than elevational provenance.

Table 2. Table of significance in variation in Ellenberg and Landolt indicator values for communities
in burned and unburned plots. Significance levels indicated by “****” = 0.0001, “**” = 0.01, and
“*” = 0.05; ns and grayed-out rows indicate non-significant results.

Indicator Source Mean Burned Mean Unburned Statistic p-Value Significance

Aeration Landolt 3.07 2.61 5.09 <<0.001 ****

Dominance in situ Landolt 2.36 2.59 −3.99 <<0.001 ****

Humus content Landolt 3.00 3.53 −6.53 <<0.001 ****

Light Ellenberg 7.44 6.91 5.50 <<0.001 ****
Landolt 3.80 3.46 5.74 <<0.001 ****

Moisture
Ellenberg 4.71 4.93 −2.44 0.015 *
Landolt 2.75 2.85 −2.02 0.043 *

Moisture variability Landolt 1.50 1.57 −1.45 0.148 ns

Nutrients
Ellenberg 2.96 3.02 −0.57 0.571 ns
Landolt 2.29 2.28 0.12 0.902 ns

Reaction/Soil pH Ellenberg 6.61 6.12 2.81 0.005 **
Landolt 3.45 3.28 2.27 0.024 *

Root depth Landolt 1.82 1.90 −1.08 0.279 ns

Temperature Ellenberg 2.91 3.05 −1.64 0.102 ns
Landolt 2.35 2.26 2.03 0.043 *
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These results can be seen visually affecting the community composition NMDS in
Figure 4a, with the burned community shifting along the light indicator value vector and
the unburned community shifting along the humus content and dominance in situ indicator
value vectors.

3.4. Krummholz Species Recruitment

We observed no clear evidence of tree regeneration (both individual species and
combined) in the burned sites. Changes in woody canopy cover in time occurred only in
unburned areas (Figure 8), visible in the filling of canopy gaps, with no discernable change
in the canopy boundary. This is supported by the lack of tree cover in burned plots, where
the mean tree cover per plot was less than 0.08% (Figure 4c).
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Figure 8. Patterns of P. mugo growth on a section of the southern slope of the Arnspitze at approxi-
mately 1600 m a.s.l. in (a) 1974, (b) 2001, (c) 2020, and (d) overview (section of interest outlined in
red) data: (a,b,d) orthophotos (LBA.TIROL.GV.AT, DATA.TIROL.GV.AT), (c) orthomosaic created
from project UAV data.

3.5. Potential Drivers of Post-Fire Regime Shift

Evidence from plot proxy data and measured environmental data suggests that the
trend of increased forb diversity after fire is driven mostly by increasing light availability
and partly by decreasing soil depth. As a proxy of light extinction, we recorded P. mugo
cover, which was strongly related to fire history with burned plots having no cover and
unburned plots an average of 32% cover (p < 0.001). Forb richness varied significantly with
P. mugo cover (Figure 9a). Plots with low P. mugo cover (<25%) had significantly higher forb
diversity than plots with higher cover (28.3 ± 9.0; 18.6 ± 8.8; p = 0.018), but we observed no
significant variation in graminoid diversity with P. mugo cover (4.8 ± 1.9; 4.1 ± 2.2; p > 0.05).
While forb richness responded to P. mugo cover, we observed no significant response in the
relative cover of forbs and graminoids (Figure 9b).
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Figure 9. (a) Comparison of plots with high vs. low Pinus mugo cover in species richness and
(b) relative cover by the functional group of plots grouped by P. mugo cover class. Significance levels
indicated by “*” = 0.05; NS indicates non-significant.

Though burned and unburned plots did not vary significantly in elevation, aspect,
or slope, they showed distinctly different community compositions (Figure 4a) and forb
species relative cover (Figure 4c). Soil depth and variability also changed significantly as
a function of fire history, with 27.4 cm ± 18.6 mean soil depth in burned plots compared
to 41.2 cm ± 21.0 in unburned plots. Forb species diversity varied significantly with soil
depth, with diversity decreasing with an increase in the substrate (Figure 10a). Plots with
the shallowest soils had the greatest richness per plot (30.8 ± 8.2), significantly greater than
the mid-depth (19.8 ± 9.0; p = 0.007) and deepest soils (21.4 ± 5.2, p = 0.009). However, we
did not observe a significant difference in species diversity between the deeper two soil
depths (Figure 10b).
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4. Discussion

Understanding the dynamics of fire recovery in the subalpine and alpine belt is be-
coming increasingly important as these zones are becoming hotspots for change [18,20]
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and priorities for biodiversity conservation [34]. The long-term fire recovery of subalpine
krummholz—including evidence of arrested succession—is not well studied and is an issue
that needs to be monitored to help address pressing ecological and safety concerns in the
mountains. These studies need to be held in the context of changing climate and disturbance
regimes [54], shifting snow [20,21] and growing periods [20], as well as water availability
affected by changing temperature and summer precipitation regimes [19], increased fire
risk and natural fire occurrence [55], and the subsequent risk of soil erosion [15,16] and
avalanche occurrence [17]. Critically, these environmental changes may have already al-
tered baseline climatic conditions necessary for the complete post-fire recovery of subalpine
systems and the recruitment of currently absent woody vegetation. These halted succes-
sional subalpine krummholz dynamics can trigger a regime shift to open, high-elevation
tundra [31,56] generating novel habitats for biodiversity of high nature value.

In the Northern Limestone Alps, fire seems to have a distinct impact on the plant com-
munity in the krummholz zone: entirely removing woody, krummholz vegetation—here
P. mugo—and shifting the community toward a herbaceously dominated, species-rich,
subalpine grassland. This is a more homogeneous community, as seen by the lower beta di-
versity and closer clustering of the burned plots (compare Figure 4a). This homogenization
toward species-rich subalpine grassland or tundra has also been observed in other stud-
ies, where previously krummholz or shrubby subalpine vegetation gained richness while
losing woody dominance and spatial heterogeneity after fire [29,31]. This plant species
diversity is gained mostly through forb and graminoid diversity, which is significantly
higher in burned plots than in unburned plots (Figure 4c). The ecological indicator values
of the species present in the communities also indicate a shift toward plant species that are
associated with drier, brighter sites with shallower soils in burned areas (Table 2), likely
driven by the removal of the P. mugo biotic filter by fire, providing more light and freeing
substrate for potential herbaceous colonizers.

Though this shift in species composition could also open niches for lowland distur-
bance specialists or ruderal invasives [57,58], we did not see a variation in the elevation
ranges of the species between burned and unburned sites (Figure 6) or the presence of
“weeds” in burned plots (Figure 4). By contrast, certain alpine specialist species were
found only in burned plots, such as C. curvula, P. kerneri, Plantago atrata Hoppe, Veronica
fruticans Jacq., and Poa supina Schrad., while others such as Festuca alpina Suter, D. striata,
and Veronica aphylla L. were observed growing in both burned and unburned plots. This,
coupled with other species found only in unburned sites such as Gentiana acaulis L., Gentiana
bavarica L., and Globularia nudicaulis L., which appeared to be unable to colonize the burned
sites, seems to indicate that the new community is not composed of species novel to these
elevations, rather a new grouping of species already present at these elevations.

The homogeneity and richness of the post-fire communities give us a potential insight
into the duration of recovery. Our survey was conducted just under 80 years after the latest
occurrence of fire on these slopes. Though these systems are known to take decades or even
centuries to recover [3], the complete lack of P. mugo seedlings indicates that the herbaceous
vegetative recovery is temporally different from that of woody species. This observation is
consistent with other studies that observed little to no woody species regeneration within
the first half-century after fire and reconstructed a recovery time of over 150 years for
the restocking of woody krummholz vegetation [29–31]. However, sites recovering from
fire in subalpine forests in the Valais in the Central Alps see a significant rewooding after
only 10 years, with aspect playing a significant role in the successful reestablishment of
seedlings: northern aspects had a 17-fold increase in stem density compared to southern
aspects 19 years after fire [14,33].

Potential drivers of this arrested succession could be three-fold. Here, we have shown
a lack of tree seedling recruitment in burned areas (Figure 8), likely due to prolonged
periods with frozen soil and the potential of extreme temperatures, in line with Walker
et al. 2010 [59]. We have also uncovered that limited substrate availability (in the form
of soil depth) is a key driver of forb diversity and can thus be key to supporting a viable
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herbaceous recovery while preventing the establishment of P. mugo seedlings [60]. The
third factor, not discussed in this paper, that prevents the establishment of seedlings could
be linked to browsing or grazing pressure from ungulates [61].

Climate change is bringing other abiotic stressors into the picture, though with predic-
tions for the Eastern Alps indicating increases in summer and autumn temperatures as well
as in the frequency and severity of heatwaves [62,63]. Beniston et al. (2004) [62] forecast a
shift in precipitation expected in the northern Eastern Alps from large summer events to
spring and autumn rainfall. Combined with forecasted earlier snowmelt dates [20,21,64],
these stressors will expose vegetation to longer, likely more intense, dry conditions, leading
to increased fire risk in much of this zone [10,22]. While in the past, fire management
strategies may not have been considered necessary in these areas, the projected increase in
fire risk coupled with the long-term impacts of fire on vegetation analyzed in this study, as
well as on other abiotic factors [10–18], necessitates bringing this management strategy to
the forefront.

5. Conclusions

Albeit potentially temporary, these post-fire subalpine herbaceous communities are
vital for the protection of diversity in our mountains and can be useful to help mitigate
the negative effects of our changing alpine climates by acting as refugia for an array of
threatened and endangered species. To further understand the dynamics of recovery in
these systems and decipher whether the community shift we have observed is a plateau
in the successional return to the previously woody krummholz vegetation or rather an
alternate subalpine grassland steady state, it is important to look at the system as a whole—
combining biotic and abiotic factors and placing this one site within the context of many
others. Studies in other such sites are scarce (but see [14] for more forested sites in the Euro-
pean Alps and [30,31] for sites in Japan and the USA, respectively), and a thorough analysis
of the abiotic elements present in these extreme post-fire habitats is lacking (see [42]). Given
this gap, we recommend further investigation into understanding the causes of P. mugo
regeneration failure in these scenarios with a focus on micrometeorological factors and seed,
seedling, and sapling physiology, as well as the impact of ungulate browsing. Management
of these areas should include these results in their assessment of new conservation goals,
making sure to balance the ability of fire to create more open systems with the likelihood
that these changes may be permanent.
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