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Abstract: The increasing prevalence of species that are detrimental to biodiversity is a major concern,
particularly for managers of national parks. To develop effective programmes for controlling weeds,
it is essential to have a thorough understanding of the extent and severity of infestations, as well
as the contributing factors such as temperature, rainfall, and disturbance. Predicting these factors
on a regional scale requires models that can incorporate a wide range of variables in a quantifiable
manner, while also assisting with on-ground operations. In this study, we present two Bayesian
Network models specifically designed for six significant weed species found along the southern
coast of Australia. Our models are based on empirical data collected during a coastal weed survey
conducted in 2015 and repeated in 2016. We applied these models to the coastal national parks in the
isolated and pristine East Gippsland region. Importantly, the prediction models were developed at
two different spatial scales that directly corresponded to the scale of the observations. Our findings
indicate that coastal habitats, with their vulnerable environments and prevalence of open dune
systems, are particularly susceptible to weed infestations. Moreover, adjacent regions also have the
potential for colonization if these infestations are not effectively controlled. Climate-related factors
play a role in moderating the potential for colonization, which is a significant concern for weed
control efforts in the context of global climate change.

Keywords: weeds; Bayesian Networks; biodiversity management; coastal systems

1. Introduction

The management of biodiversity within conservation reserves requires the control
of species that expand their range at the detriment of other species. In regions that are
relatively pristine in terms of disturbance, this change is inherently obvious as so-called
‘weeds’ colonize available space rapidly [1]. Often, this process is assisted by the disturbance
generated by external factors such as fires, animals, and humans. Direct control of the
weeds becomes a priority before the system is beyond repair and the ecosystems are
required to accept the change to a novel ecosystem [2].

Early intervention is difficult when the vast area of the conservation area is inaccessible
except by foot, and weed control requires significant physical and chemical effort to have
any noticeable effect [3]. This translates directly to high yearly expenditure on weed
control and detection with significant demands to spatially prioritize efforts [4]. The
development of a strategic plan to ensure the greatest effectiveness of control efforts is
essential but these plans are often constructed in the face of high data uncertainty and
inadequate weed behaviour models. On-ground surveys need to be fully leveraged to
expand and interpolate weed presence/absence observations to regions that were unable
to be surveyed. Supporting data, such as the spatial extent of vulnerable vegetation
communities, are required to provide a regional assessment. However, combining expert
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opinion with survey data and remotely sensed imagery for the purpose of estimating the
probability of a particular weed occurring is not trivial [3,5].

Utilizing the theories of an ecological niche and environmental gradients is the foun-
dation of habitat suitability probability modelling [6,7]. In this framework, the observation
of the presence of weeds is statistically correlated to a suite of environmental conditions.
For many applications of this approach, the assumption is that the system is in equilibrium
and the absence of a species at an observed location indicates the likelihood of unsuitable
environmental conditions [7]. However, for emerging weeds that are in the early stages of
colonization, the observation of ‘species absent’ has an additional meaning that the survey
space may simply have avoided colonization due mainly to stochastic events. This habitat
suitability dynamic is also complicated when survey results are incomplete due to resource
limitations. The statistical correlations then will be ‘weak’ for weed species that may only
occur in small fractions of the available habitat. It may even be possible that a suitable
habitat is incorrectly classified as ‘unsuitable’ because the correlation has not been observed.
Increased sampling effort combined with systematic sampling design will assist [6] but
expert opinion on specific weed species preferences may also be required. This expertise
can often be acquired from weed occurrences in adjunct regions.

With such uncertainty regarding the impact and colonization success of weeds in a
conservation area, the use of an adaptive management framework is important [8]. Routine
field work such as track maintenance and visitor facility upkeep can be combined with bio-
diversity actions such as weed control and surveying [9]. Ideally, the feedback mechanisms
in place for conservation managers, from weed observations to modelled vulnerability, can
assist with a dynamic prioritization of targeted control actions. Equipping land managers
with both the tools and knowledge to capture weed observations and environmental condi-
tions is optimal to modelling the extent of the issues in the region [6]. Habitat suitability
modelling will require a sophisticated capacity to integrate disparate data and provide
rapid updates of the infestation extent and intensity including previous measures of success
in infestation control and contributing factors (i.e., soil disturbance). Adaptive manage-
ment of the conservation areas requires a close linkage between monitoring, objectives, and
action [10]. Critically, conservation managers require a model of the vulnerability of weed
infestations across a range of habitat types (to assist in survey strategies) combined with
another model of site-level contributing factors that can be physically controlled.

Models suitable for this environment management need to be able to combine disparate
data and require a common ‘currency’ to determine the relationships within the model.
Simply combining the presence/absence of a weed with the coincident observation of a suite
of environmental parameters ignores the complexities of the multicollinearity relationships
between dependent variables [11], i.e., rainfall, soil type, and disturbance. In order to
restrain the model complexity to maintain predictive power while negotiating uncertainty
limits and yet offer spatially valid estimations of vegetation dynamics, alternative modelling
approaches will be required [12]. One such approach is to base the probabilistic predictions
on correlations between observations over space and time rather than formulate a set of
precise interaction equations [13]. Correlations in a trophodynamic system do not necessarily
directly equate to metabolic, behavioural, or ecological processes but the tradeoff is the
ability to predict with increased precision in a diverse and uncertain environment [14].

Bayesian Networks (BNs) are one such modelling technique that is particularly popu-
lar in ecology due to the capacity to support both complexity and uncertainty simultane-
ously [15,16]. BNs offer the capacity to encompass complex interactions of disparate data
types within a probabilistic framework with only a few limitations [17–20]. The Bayes rule,
combined with the chain rule, enables the efficient propagation of conditional probability
throughout a network structure [21,22]. The network design is typically the result of ex-
pert opinion although machine learning algorithms exist to formulate a possible network
structure through an analysis of correlations [20]. The parameterization of a BN model is
through the inclusion of observational cases that fully or partly describe a system state.
The more cases used to inform the conditional probabilities, within the model, the more
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accurate the predictions [13]. Algorithms, such as expectation maximization, can assist in
adjusting for missing data [23]. Expert opinion, equations, numerical (continuous, discrete,
and censored) data, and categorical data can be included in the model, which is particularly
useful for socioecological models [15].

Limitations relevant to ecosystem models include the prohibition of feedback loops
and the inability to predict outside of the observational space [16]. Feedback loops, in
particular, have severely limited the application of BN to trophic dynamics but recent
advances in network analyses [18] and time aggregation have established an acceptable
compromise. Eklöf et al. [18] demonstrated the application of BN to extinction rates in food
web models via the simplification and retention of fundamental pathways between groups
of species. The BN is able to predict the likelihood of a system being in a particular state
given additional evidence. However, this requires that the conditional probabilities (from
observed cases) have been previously included in the model parameters. Predicting how
the system will respond to conditions outside of the observation space requires the inclusion
of expert-derived predictions, often in the form of equations, generated from models such
as IPCC climate models or experiments on metabolic thresholds. Even with such input,
the propagation of predictions to unobserved biotic interactions becomes uncertain with a
significant loss of accuracy.

Interestingly, the primary concepts behind BNs are familiar to the general population.
For example, when assessing the appropriate clothes to wear for a walk in the forest, people
will gather up information about the likely weather patterns, the seasonal influences, the past
experiences (being too hot or cold), and the available selection of clothes. The walker has a
priori knowledge that the weather is uncertain and that events have a range of probabilities
depending on the season and daily factors. The estimation of these probabilities in our minds
is a regular occurrence but few people would use a mathematical approach to carefully
define the likelihoods. The Bayes theorem permits the calculation of these probabilities so
that we are not solely reliant on expert opinion and vulnerable to surprises [23].

In this manuscript, we utilize the weed surveys conducted over multiple years in a
remote section of the Australian coastline. The East Gippsland series of coastal national
parks extend along an uninhabited and pristine coastline [24–26] for 176 km (Figure 1). The
surveys encountered 84 weed species [9] although many are not considered a threat to the
ecosystems present. However, if the key weed species are permitted to flourish then endan-
gered ecosystems such as wetlands and coastal dunes are likely to be diminished [24,26].
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Here, we present the results of the two BN models that incorporate a range of influ-
ential data sets to generate predictive maps of weed distributions. Complimentary BN
models at two alternative spatial scales are presented as a mechanism to assist with the
adaptive management of an expansive conservation area. The two models presented are,
in themselves, interesting reflections of the influences that determine the weed dynamics.
The questions we address have a different focus. What ecosystems are vulnerable to weed
infestations across the entire East Gippsland national park (in Victoria, Australia)? What
contributing factors can be managed at the site level to control weed infestations?

2. Materials and Methods

In brief, the methods consisted of four parts: the collection of weed observations and
in situ environmental data across the study area, the compilation of geospatial data for
use in a regional-scale model, and the development of a casual network to inform the
Bayesian Network.

2.1. The East Gippsland Study Area

The spectacular and unspoilt coastline of the East Gippsland study area includes
UNESCO World Biosphere Reserves amongst a diverse suite of inlets, rocky headlands,
and isolated beaches (Figure 1). The enormous diversity of ecosystems from heathlands,
dunes, rainforests, to majestic forests attracts visitors both nationally and internationally.
The study area includes Croajingolong NP, Cape Conran NP, and Peach Tree Creek Reserve.
The study area is 100,094 Hectares with a 176 km length of coastline with no significant
human habitation in the region.

2.2. The Weeds Survey

Within the study area, the following landforms and features were surveyed for weeds:

1. Beach Strand: The area of beach between the high tide line and dunes.
2. Dune Complex: Primary (first) dune and swale beyond above beach strand.
3. Rocky Headlands: Elevated cape or point of land reaching out into the water, devoid

of beach strand or dune characteristics.
4. Estuarine Shores: Areas of land abutting estuarine waters at the time of survey to a

maximum of 250 m inland.
5. Human Access Nodes: Areas readily and frequently accessed by recreational users

comprising the last 100 m of vehicular tracks servicing carparks and lookouts, and
20 m buffer around lookouts, carparks, and campgrounds.

Three key survey methods were applied across the study area:

1. Random stratified sampling (unbiased) of transects: The generation of 90 random
point locations (using ET Geowizard within ARCGIS 10) within the ecological vegeta-
tion class (EVC) layer based on each area of an ecological vegetation class.

2. Random sampling (biassed) of past infestations: Biassed random transects across
110 locations within areas where weed species have previously been recorded.

3. Opportunistic searching: Data on weed species were recorded throughout the entire
study area through meander searching. This involved crews of two people walking
the entire stretch of the coastline within the study area between Point Ricardo and the
NSW border.

For the surveys along the dune complex, the 3-way transect method was used. This
required the surveyors to start at the beach then head inland up to 100 m inland (perpendic-
ular to the water’s edge) over the fore dune and into the swale (where practical). Then, the
surveyors follow for 100 m along the swale or dune. Finally, the surveyors turn back out
to the beach, recording along all three sections. The weed cover and extent were recorded
by the two surveyors who walked either side of the centre of the transect line (covering
an estimated survey width of 20 m along each transect). A GPS was used to record the
start and end points of each transect line (including change in direction) and location of
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weed species and related attributes (Table 1). Additional site-based observations were also
collected (Table 2).

Table 1. Weed Field Data Attributes Collected.

Category Attribute

Date Recorded x/x/xx

Weed Common Name Weed common name

Weed Scientific Name Weed scientific name

Cover or Density of Weed Trace, light, medium, dense

Pattern of Infestation Scattered, clumped, linear, individuals, continuous

Life Stage Seedling, juvenile, adult

Number of Plants Optional

Area of Infestation Optional

Weed Behaviour Innocuous, background, emerging, transforming

Landform
Fore dune, swale, primary dune, secondary dune, flat, mid
slope, lower slope, upper slope, headland, cliff, drainage line,
tidal flat, estuary

Vegetation Type
Wetland, rainforest, grassland, forest, eucalypt woodland, dune
scrub grassland mosaic, dune scrub, closed tall dune scrub,
banksia woodland, heathland

GPS Location Generated by GPS

High Threat Yes/no

Comments

Table 2. Additional Weed Field Data Attributes Collected.

Category Attribute

Soil Type Sand, loam, clay, sandy loam, clay loam, silty loam, silty clay

Soil Drainage Poorly drained, moderately drained, good drainage, rapidly
drained

Soil Disturbance
Animal digging, campsite, flood, foot traffic, recreational use,
roadside
Verge, storm, wind, other

Aspect N, S, E, W

Vegetation Disturbance Ground layer, mid layer, canopy or upper layer or none

Event Storm, fire, flood, logging, disease/insect, none

Fire Frequency Less than 5 years ago, greater than 5 years ago, none evident

Fire Comment Provide comment on intensity of fire if recent

Bare Ground Rock, soil/sand, leaf litter, lichen/moss, track or verge, campsite,
recreation area, other

Other Comments

For the estuary or campground and activity nodes, the transect location involved the
completion of a 2-way transect. The transect was commenced at the estuary or campground
activity-node edge, heading directly away from the approximate centre of the node for
20 m.

The weed surveys conducted in November 2015 and 2016 noted 6 key species that
were significant invasive pests in the region [9]. A total of 2522 survey sites (1486 in 2015
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and 1036 in 2016) were recorded along the coastline and the presence and absence of key
weed species were noted as well as a range of environmental conditions. A linear distance
of approximately 176 km of coast was surveyed in 2015 and repeated in 2016. During
the 2016 survey, 173 transects were completed and 27 transects were abandoned and not
completed due to steep inaccessible terrain, very close proximity of a transect to another
transect, or lack of time on the day of surveying to complete the transect. The combined
linear distance of transects is 2.3 km. A total of 84 different weed species (of which 8 were
on adjoining private land) and 1538 weed records were captured during the survey. The
10 most frequent weed species recorded during the survey were Milk Thistle (Sonchus
sp. 33), Flatweed (Hypochaeris sp. 35), Blackberry (Rubus fruticosus aggregate 38), Panic
Veldgrass (Ehrharta erecta 47), Dolichos Pea (Dipogon lignosus 50), Sea Rocket (Cakile sp.
76), Coast Gladiolus (Gladiolus gueinzii 87), Marram Grass (Ammophila arenaria 175), Coast
Capeweed (Arctotheca populifolia 209), and Sea Spurge (Euphorbia paralias 521). Sea Rocket
and Marram Grass are actually the most common and so the number of observations
represents the intersects within the transects.

2.3. Model Development

The primary motive for this project was to develop a regional model of the vulnerabil-
ity of key weed species for the entire study area. However, given the imperative to address
adaptive management processes, a local-site-scale model was also developed directly from
the environmental and weed observation data. While the regional-scale model utilized
covariate data that were recorded or modelled across the region to develop a spatially
explicit set of predictions, the local site model was not spatially explicit and captured
fine-scale observations that were pertinent to field-based operatives.

2.4. Regional-Scale Weed Vulnerability BN

The critical first step to the regional model development is the construction of a
causal diagram [20] for the immergence of weeds across the region. This required many
iterations based on expert opinion to successfully capture the environmental influences and
their association to weed colonization. Many region-scale environmental variables could
have been included but were excluded simply due to the constraint of keeping a model
sufficiently simple and manageable. Complementing this process was the availability
of data that were sufficiently high-resolution and temporally relevant and had regional
coverage. Spatial information on the activities of feral animals, for example, was not
available with sufficient accuracy to include. Finally, the network diagram showing the
various parameters and the cross linkages was agreed on by the authors. The site-scale
model, in contrast, used a machine learning tree-augmented naïve (TAN) algorithm based
on the survey data alone to generate a BN model [27].

The data collection of environmental variables at the scales of the model output was
gathered or created using GIS modelling techniques. The various data sources and compli-
mentary metadata are listed in Table 3. The GIS analysis was conducted in QGis Version
2.18.2 (QGIS Development Team, 2009). The resolution of the output was determined at 30
m by 30 m in order to capture some fine-scale features (precision) but remain sufficiently
robust (accuracy) for the regional approach.

For every weed species, the spatial points showing the observed occurrence and
the observations without any weeds were placed in separate shapefiles. The values for
the raster environmental and GIS model data were extracted to every survey point. The
attributes were exported, examined, and consolidated in R (Version 3.3.2) (R Core Team
2017). The scripts in R created a text file (referred to here as a ‘case’ file) where every spatial
point was a data frame row with column information pertaining to the various lists of
model parameters. Three case files were created for each weed. The first was the full survey
case file with the associated environmental data. The second and third case files were the
same file but randomly sampled for 20% and a complimentary 80% of the data.
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Table 3. GIS layers used to inform the model were sourced from Victorian Department of Environ-
ment, Land, Water and Planning (DELWP) and Bureau of Meteorology (BOM) unless otherwise stated.

BN Node Spatial Data Description Bin Classes

Distance from campground DELWP campgrounds and
picnic areas’ layer

Distance in metres from the
campground centre points 0, 800, 1400, 3000 m

Road cost distance DELWP roads’ layer Euclidean distance from
public roads 0, 60, 300, 2000 m

Beach length distance Coastline layer split up for
each continuous beach section

The length of uninterrupted
beach for areas 500 m from
the beach

1, 22,000, 40,000 m

hydroCD DELWP hydrological layer Distance from rivers, creeks,
and inlets 0, 90, 250 m

Geology
Seamless Geology
Victoria—2014 EDITION,
Geoscience Victoria

Geology layer reclassified into
6 broadscale classes Grouped classes

Ecological vegetation
communities

DELWP EVC layer updated to
include recent dune layer

The ecological vegetation
communities’ layer classified
into 8 classes

Grouped classes

Slope DELWP Victorian DEM
modelled to derive slope

Slope modelled from the
Victorian DEM 0, 1.7, 3.2, 40 degrees

Hill shade DELWP Victorian DEM
modelled to derive hill shade

Hill aspect modelled from the
Victorian DEM 0, 141, 156, 167, 254 degrees

Hot/cool days
BOM average annual heating
and cooling degree days
Pixel size: 10,728.4, 10,728.4 m

The number of degree days
under 12 degrees in a year 190, 230, 450 days

Rain days BOM average annual rainfall
Pixel size: 10,728.4, 10,728.4 m

The average number of days
exceeding 3 mm of
precipitation in a year

43, 45, 48 days

Cost distance to existing
population

Field survey point data, 2015
and 2016

Distance from the
observations of weed
occurrence for 2015 and 2016
in 30 × 30 m pixel units

1, 3, 230 (30, 42, and 933 m)

Species occurrence
Ethos NRM survey 2016,
Ecosystems Management Pty
Ltd. 2015 survey

Observations of a specific
weed and where absent

Variable depending on the
weed

The causal network formed the basis of a naive Bayesian Network (BN) within the
Netica V6.04 software environment (Norsys Software Corp 2016). The conditional prob-
ability tables (CPTs) were updated by importing the 80% survey case file for the single
weed using an expectation maximization procedure. This algorithm is particularly suited
to data that contain significant levels of missing data [23]. The BN model was compiled and
contained the marginal probabilities for each parameter. Essentially, this was a reflection
of the observed likelihood of any parameter occurring in the survey data set, similar to a
histogram but with bins’ sizes reflecting the frequency of data.

The BN was then tested for predictive accuracy for each weed species using the associ-
ated 20% reduced data set. The testing compared the observations of species occurrence
with the BN predictions given the environmental data. This generated a number of indices
(correlation matrix error, Gini coefficient, and Area under ROC) that provide a measure of
accuracy of the model structure and parameterization [28]. The full survey case file was
then used to totally update the CPT probabilities.

The study region case file was compiled from the centroids of all 30 m × 30 m raster
cells in the study polygon and attributed with the regional data sets listed in Table 3. This
was used to predict the likelihood of a selected weed occurring within the entire study
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area. A new file that recorded the probability of a particular weed occurring, given the
conditional probability of the environmental and social parameters, was generated. This
file was subsequently joined to the spatial points’ file and used to map the distributions in
the GIS.

The process of CPT updating is repeated for every key weed species so that the
BN model structure (based on the causal diagram) remains consistent but the marginal
probabilities are adjusted accordingly.

2.5. Local-Site-Scale BN

A second model was also developed from the information contained in the survey
data alone. This model was not spatially explicit due to the fine-scale nature of the field-
based observations and was used to describe the mechanisms that determine the local-scale
processes promoting the occurrence and spread of the weeds. The selection of parameters
to collect was based on the expert opinion of field staff with particular focus on Victorian
national park operational management. Expert opinion generated the structure of the field
survey data associations to develop the BN with the ‘common weed names’ as the target
variable. The survey parameters observed during the field trip are detailed in Tables 1 and 2.
This model, due to the key factors observable only at a site level (i.e., soil disturbance and
drainage), cannot be extrapolated to a regional scale but still serves to provide insights into
the influences affecting weed spread. Critically, this model can inform park managers about
the actions required to control weed infestations at a site level. This approach of generating
two models at different scales supports the adaptive management framework by providing
synthesized information about weed behaviour. Following systematic repeated surveys,
the data can also reveal the effectiveness of control measures, vulnerability of habit types,
and influential socioecological factors in weed colonization.

3. Results

Utilizing the survey data combined with the geospatial data, two BN models were
developed. The site observations were used to construct a BN that provided management-
orientated outputs useful for on-ground operations. The regional vulnerability BN model
was able to predict the occurrence of several different weeds along the East Gippsland
coastal national parks with mixed accuracy to facilitate weed control priorities.

3.1. Local Site BN

The model configuration is shown in Figure 2 and describes the observations in a
30 m radius. The error rate of this model was 27.74% based on a confusion matrix with a
20% random subset of the survey data (Table 4). Essentially, this compared the number of
cases allocated by predictions against the observed. For example, in Table 4, 143 cases are
accurately predicted to be Sea Spurge while in the cell below, 22 cases were predicted to be
Sea Spurge but were actually Coast Capeweed. The marginal probabilities in the local BN
model (Figure 2) show that surveys along the coast were conducted in mostly well-drained
sandy soils with grassland cover or a dune/scrub/grassland mosaic (vegetation-type node
in Figure 2). The observed weeds were predominantly noted as emerging and scattered,
often covering a 10 m square area.

The model can be used to predict the likelihood of weed occurrence if those identified
parameters can be estimated. The model calculates the influences present in the model
(calculated as variance reduction) as shown in Table 5. Vegetation type (grasslands, etc.),
behaviour (emerging, etc.), and soil disturbance (wind, etc.) are the most influential
nodes. The node ‘Common Name’ shows the occurrence of the observations for the field
survey. Sea Spurge was rated as the most common with 50.3% of observations while Purple
Groundsel was only 0.29%. The absence of weeds was noted in 15.0% of observations and
this was used to highlight the more resilient vegetation types.
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Vegetation type
grassland
eucalyptwoodland
closedtallscrub
dunescrub
dunescrubgrasslandmosiac
banksiawoodland
heathland
rainforest
wetland
coastaldunescrub
forest

34.0
0.85
4.64
9.73
41.7
5.07
1.48
0.26
0.44
1.51
0.29

Common Name
SeaSpurge
CoastCapeweed
CoastGladiolus
DolichosPea
TreeLupin
PurpleGroundsel
absent

47.5
16.0
7.02
3.22
1.30
0.25
24.7

Aspect
E
SE
N
NE
S
W
SW
NW

7.42
15.8
17.2
1.30
52.6
1.88
3.07
0.77

Soil Drainage
welldrained
moderatelydrained
rapidlydrained
good
poorlydrained

76.9
12.7
2.60
4.73
3.09

Soil Type
sand
sandyloam
cosandyloam
loam
clayloam
sandyclay

92.6
3.98
2.68
0.28
0.14
0.28

Soil Disturbance
other
wind
animaldigging
camping
foottraffic
storm
vehicle
recreationuse

4.83
50.1
7.79
5.80
4.16
22.6
2.14
2.50

Land form
cliff
beach
foredune
swale
headland
drainageline
estuary
lowerslope
secondarydune
flat
midslope
tidalflat

0.30
10.9
49.6
24.1
1.57
1.20
2.21
2.41
2.39
3.16
1.75
0.34

Bare Ground
soil-sand
other

79.9
20.1

Life stage 1
juvenile
adult
seedling

10.4
85.5
4.13

Area Infested
0-1m2
1-5m2
5-10m2
10m2plus
10m2

17.5
17.0
19.2
46.3
0.12

Number of individuals
1
1 to 3
3 to 5
5 to 10
10 to 100

15.5
9.03
8.69
20.1
46.7

27.9 ± 31

Behaviour
emerging
transforming
innocuous
background

88.0
3.44
3.60
4.99

Cover
trace
light
medium
dense

37.1
43.5
15.6
3.79

Life Stage 2
seedling
juvenile
adult

11.2
81.1
7.74

Pattern
individuals
scattered
continuous
clumped
linear
trace

27.4
40.3
12.0
19.4
0.53
0.39

Figure 2. The local BN from the survey data. Each box or node represents a variable noted in the field
(Tables 1 and 2). The classes (continuous data) or states (for discrete data) for that variable appear
within the box and show the occurrence in a percentage. The lines connecting the boxes show the
correlations observed in the data and indicate that one variable has an effect on another.

Table 4. Confusion Matrix showing the cases where the predicted (columns) occurrences are shown
against the observed field data (rows) for the local BN. The diagonal column is the optimal location
of the predictions that match those observed.

Predicted

Sea Spurge Coast Cape Weed Coast
Gladiolus Dolichos Pea Tree Lupin Purple

Ground Sel Absent Actual

143 11 11 0 1 0 1 Sea Spurge

22 44 7 0 0 0 0 Coast
Capeweed

21 7 20 0 0 0 0 Coast
Gladiolus

0 0 0 12 0 0 1 Dolichos Pea
3 0 0 0 2 0 0 Tree Lupin

0 0 0 0 0 0 0 Purple
Groundsel

16 2 0 2 0 0 23 Absent

Table 5. Sensitivity of the weed list node ‘Common Name’ to a finding at another node for the local
BN using variance reduction algorithm for the top 7 influences. The higher the variance percentage
implies a higher influence on the Weed species occurrence prediction.

Node Percent Reduction in Variance

Vegetation Type 21.2

Soil Disturbance 12.3

Behavior 11.8

Land Form 8.53

Soil Drainage 5.74

Pattern 5.58

Cover 2.58
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From a management perspective, the capacity of the model to highlight the most likely
site-specific factors that influence the presence of a specific weed is critical. By selecting
the common weed name, the model, within Netica software, will automatically adjust the
marginal probabilities and present a series of primary factors to observe or control. Given
the large area of the landscape to manage, this capacity to focus on the most likely areas of
emerging weeds is highly effective.

3.2. Regional Vulnerability BN Model

The regional vulnerability BN model was built from several iterations of a causal
diagram containing nine environmental factors and two social factors (Table 3).

This BN model is shown in Figure 3. There are three main components: dispersal
influences, habitat vulnerability, and climate. Each of the nodes (shown as boxes linked in
a network) are described in Table 1. Spatial data, where available, were used to populate
the model except in three variables called latent nodes (green boxes in Figure 3). These
nodes do not have a spatial data set and are used to assist with the flow of conditional
probability logic through the model and include the climate, dispersal influences, and
habitat vulnerability nodes. Climate is defined as a mix of geomorphology such as aspect
and regional changes in temperature and rainfall. Dispersal influence captures the assisted
transport of seeds and plants through vectors such as water and human disturbance.
Habitat vulnerability is the combination of geology and existing vegetation types that
might hinder or assist the establishment of these weeds [29]. For example, weeds are
more likely to exist when habitat vulnerability is high and this may be coastal dunes or
coastal scrub EVC. The expectation maximization algorithm is used to ‘shape’ these latent
node probabilities beyond simple expert opinion. The probabilities shown in the model
in Figure 3 describe the 2522 survey observations and associated environmental data that
were used to inform the CPTs customized for each weed species (noting that Figure 3 was
the Coastal Capeweed BN). The dominance of coastal scrub along the coastal dunes is
evident (ecological vegetation communities’ node values in Figure 3) and the wilderness
of the region is captured by the majority of survey points being away from roads (road
cost distance node; mean = 964 m). The study area is generally dry with 70% of points
being more than 170 m from a creek or water source. The error for the spatially enabled
regional BNs for the mix of weeds was estimated at 3.9% to 6.1% based on a confusion
matrix in Table 4. The model accuracy was not able to be tested with Purple Groundsel and
Tree Lupin due to the small number of observations that denied a sub-setting algorithm.
Coastal Capeweed, Coastal Gladiolus, Dolichos Pea, and Sea Spurge predicted well for the
immediate area around the survey sites and the model can be utilized for these species. The
Gini coefficient and Area Under Curve (AUC) [28] highlight that for the survey locations,
the predictions are considered accurate (values close to 1 in Table 6) in being able to predict
the existence of the weed species.

The sensitivity of the “species occurrence” node to changes in the other nodes was
examined for each weed species and shown in Table 7. This table shows that climate and
dispersal influences (particularly the distance to existing weed populations) are highly
influential. Other factors such as distance from a campground were surprisingly weak
in influencing the presence of weeds at a regional scale. Notably, each weed responds
differently to the environmental and social factors (see Appendix A, Table A1, for examples
of diversity).

Maps predicting the occurrence of these selected weed species were generated by
asking the regional BN model to predict the likelihood of occurrence for every 30 by 30 m
cell in the study area given the environmental data available. Figure 4 shows the predicted
occurrence of one weed, Coastal Capeweed. Other weeds can be similarly mapped. It
should be noted that the models predicted well where the field survey data were located
but in the nearby unsurveyed regions, our confidence in the model was significantly less.
This lack of confidence applies to both the presence and absence of a particular weed
species. Highly vulnerable areas that are potentially remote and expensive to monitor
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can be targeted for the emergence of specific weeds. Similarly, the factors that continually
enhance weed distribution can be controlled.
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Figure 3. The regional BN parameterized for Coastal Capeweed showing marginal probabilities for
factors outlined in Table 3. The latent variables are in green boxes while the nodes in the beige colour
are based on data from surveys, remote sensing, and GIS.

Table 6. Accuracy for each weed variation of the regional vulnerability BN model based on the
confusion matrix. Accuracy testing using a 20% sample was not possible for weeds with low numbers
and is indicated by Not Available (NA). The error rate is based on the ratio of correctly predicted
cases verses the observed cases. The Gini coefficient varies in the range 0 to 1 where a value of 0
represents complete uncertainty and 1 represents complete certainty. AUC values’ range is [0, 1],
where 1 denotes no error, 0.5 denotes totally random models, and <0.5 denotes models that more
often provide wrong predictions [28].

Weed Species Number of Observations Error Rate Gini Coeff AUC

Coastal Capeweed 262 8.33% 0.92 0.96

Coastal Gladiolus 87 8.16% 0.77 0.88

Dolichos Pea 98 3.92% 0.99 0.99

Purple Groundsel 3 NA NA NA

Tree Lupin 10 NA NA NA

Sea Spurge 1906 8.25% 0.71 0.89

Table 7. The Sensitivity of ‘Species Occurrence’ to a finding at another node in the regional vulnera-
bility BN measured as percentage variance reduction.

Node Coastal
Gladiolus

Coastal
Capeweed Dolichos Pea Purple

Groundsel Tree Lupin Sea Spurge

Climate 29.4 15.9 13.5 4.6 13.0 10.2

Habitat vulnerability 8.5 7.2 5.7 1.2 7.7 9.3

Hot days 2.6 1.9 0 0 0.2 0

Rain days 2.6 1.8 0 0 0.2 0

Cost distance to existing population 13.5 7.6 17.9 0.9 4.9 0.1

Dispersal influence 13.4 21.9 49.8 17.8 21.2 5.6



Diversity 2024, 16, 382 12 of 16

Table 7. Cont.

Node Coastal
Gladiolus

Coastal
Capeweed Dolichos Pea Purple

Groundsel Tree Lupin Sea Spurge

EVC group 4.7 5.4 0.5 0.3 0 1.0

Beach length distance 1.0 1.4 5.4 0.3 0 0.6

Geology 4.2 2.9 0.6 0.2 1.7 0

Camp distance 1.7 0.7 0.3 0.2 0.7 0.9

Hydro distance 4.5 5.6 2.8 0 5.2 0

Slope 0.1 0.1 0.1 0 0.1 0

Hill shade 0.3 0.6 0.1 0.1 0.1 0

Road cost distance 0.2 1.0 0 4.3 1.3 0.1
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Figure 4. The predicted likelihood of the Coastal Capeweed occurrence across the study region. Areas
away from the survey locations have a low level of confidence. Inset map: Zoomed in the section of
the predicted model for Coastal Capeweed. The red regions indicate the high likelihood of observing
the weed. Hence, the weed is biologically suited to the niche created in the red zones and is more
likely to occur in this location than in other locations indicated in different colours.

4. Discussion
4.1. National Park Management

The development of predictive regional- and local-scale models from the field survey
data has enabled the extrapolation of the survey observations to a wide area of interest
for national parks in East Gippsland. The models are particularly tuned to the list of six
notable weed species but could be applied to many others. The regional BN model is
spatially enabled and is able to construct a cell-by-cell map of the study area showing
the likelihood of the weed occurrence. The dominant prediction of the model is that the
fragile coastal dunes with their associated vegetation groups are particularly vulnerable
and disturbance by wind and storms is likely to extend the spread. In contrast, the local BN
model focuses the on-ground operations to areas of disturbance and past weed infestations
for maximum impact.

While the model performed satisfactorily along the coastline and for the widely
distributed or commonly recorded weeds, the newly emerging weeds such as Purple
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Groundsel and Tree Lupin were not predicted with confidence. This is due to three
reasons. Firstly, the scale of the model and the associated data may not capture the key
ecological aspects of the weed. Secondly, the survey in this large region did not cover
sufficient ecological systems to note the full range of these less common weeds. Lastly,
the weed is sufficiently rare such that correlations with a diverse suite of environmental
factors were limited. In essence, more field data are required to gain confidence for these
species. Field crews undertaking weed eradication programmes and park maintenance can
also be collecting data on the weed locations and conditions. Another potential solution
here is a citizen science approach that encourages people to use their phones to note the
observation of a small set of weeds in the park with GPS coordinates (see the iNaturalist
app, https://www.inaturalist.org/, accessed on 1 May 2024, for example).

The models highlight the impact of letting existing populations flourish. The data
from previous field work undertaken one year previously were included and clearly show
that weed occurrence is most likely where past populations succeeded. Early intervention
with control of small patches, especially before seeding takes place, is supported by the
model especially in the distribution of individuals, size of clumps, and life stages.

4.2. Model Limitations and Future Directions

This type of model is able to be adjusted and developed as new information becomes
available. Of particular note is climate data. Fine-scale humidity and temperature data
would increase the precision of the predictions for the regional BN model significantly. The
model structure can be used to help develop strategic plans despite some clear areas of
error and uncertainty and this has the benefit of highlighting the predicted results but also
emphasizes the need to sample in more regions. Regular systematic surveys will develop
a database that can be directly used to evaluate the effectiveness of the management
interventions and enable financial estimations of weed control. Models that are empirically
based are able to adapt and ensure a non-stationary approach to decision making [4,10].

Several limitations and constraints have been identified primarily with the execution
of the survey effort. Due to the large study area, it was not practical to survey every square
metre of the study area for weed presence and only a small percentage was surveyed on
foot. Several sections of steep headland coast were not surveyed due to their inaccessibility.
Practical transects were completed by walking in a straight line between points; however,
this was not always possible due to the very thick coastal scrub. Several flora taxa were
only identified to the genus level due to the lack of flowering material. Certain flora species
are only readily identifiable onsite during periods of particular environmental and climatic
conditions. Surveying of the site was undertaken during four consecutive weeks in Spring
and there is potential that plants that flower outside of the survey period may not have
been detected.

The models highlight that Sea Spurge and Coastal Capeweed are indeed very serious
threats to the delicate coastal environments. They have the capacity to dominate the space
made available and can exclude other native species. In regions where the ecosystems are
undisturbed, these weeds will be restricted to a narrow coastal strip unless they are able to
opportunistically expand into the heathlands following a disturbance event. The Coastal
Capeweed has so far concentrated to the northeastern sector but the capacity to move south
is noted. Sea Spurge dominates some beach areas that face southeast and this may be a
function of storm and wave disturbance.

Of more concern is that the climate gradient is noted as a driver of the weed pres-
ence. Given that climate models indicate a warmer change especially along the eastern
seaboard [30], the capacity of weeds to dominate where natives are struggling is consid-
erable. Early intervention to remove the established colonies will be essential to ensure
future resilience of these fragile habitats.

https://www.inaturalist.org/
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5. Conclusions

The optimization of on-ground surveys for weed management is described in this
research. Critically, the contributing factors that are associated with the presence or absence
of a set of key weed species can be modelled both at a regional level for strategic planning
purposes or modelled at a local scale for optimized detection and the potential amelio-
ration of contributing processes. Here, we found that the type of ecological vegetation
community combined with disturbance history are important elements in the success of
weeds to colonize natural areas. In the pristine East Gippsland region where anthropogenic
disturbances are absent or minimal, utilizing the past weed monitoring to target control
practises is highly effective. Our findings indicate that coastal habitats, with their vulner-
able environments and prevalence of open dune systems, are particularly susceptible to
weed infestations. This use of Bayesian Networks can enable updates and predictions based
on changes in environmental conditions and new weed observations. Land management
tools that leverage on-ground information are fundamental to modern national parks.
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Appendix A

Table A1. High-Threat Weeds Recorded.

Common Name Scientific Name Locations

Agapanthus Agapanthus praecox subsp. orientalis Tamboon Inlet—(private
property) near houses

Sea Spurge Euphorbia paralias Scattered along entire stretch
of coastline

Coast Capeweed Arctotheca populifolia
East of Mallacoota, 10 km
west of Wingan Inlet,2 km east
of Red River

Coast Gladiolus Gladiolus gueinzii East of Mallacoota, 10 km
west of Wingan Inlet

Dolichos Pea Dipogon lignosus
Wingan Inlet, east of
Mallacoota, Cape Conran,
andSalmon Rocks

Blackberry Rubus fruticosus aggregate Pearl Point, Cape Conran, and
Pt Hicks Campsites
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Table A1. Cont.

Common Name Scientific Name Locations

Arum Lily Zantedeschia aethiopica Point Hicks

Blackberry Nightshade Solanum nigrum Scattered within study area

Tree Lupin Lupinus arboreus Tamboon Inlet—dunes

Purple Groundsel Senecio elegans Point Ricardo

Montbretia Crocosmia X Crocosmiiflora Point Hicks

Mirror Bush Coprosma repens Cape Conran Campground

Hemlock Conium maculatum Cape Conran Campground

English Ivy Hedera helix Tamboon Inlet—(private
property) near houses

Bluebell Creeper Billardiera heterophylla Tamboon Inlet—near jetty
(private property)
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