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Abstract: The study of ecological connectivity is a global priority due to the important role it plays in
the conservation of diversity. However, few studies in this context have focused on marine benthic
ecosystems. To address this issue, the present work determines the ecological connectivity between
two sub-Antarctic macrobenthic assemblages through assessment of the α-, β-, and functional
diversity indices. Samples were collected using a van Veen grab at stations located in Bahia Inútil
and Seno Almirantazgo. The ecological analysis was based on a total of 113 invertebrate taxa. The
mean abundance values were lower in Bahia Inútil (888.9 ± 26.8 ind m−2) than in Seno Almirantazgo
(1358.6 ± 43.4 ind m−2). While the mean α-diversity values showed significant differences between
assemblages, β- and functional diversity indices presented no significant differences. These results
indicate that, despite the distance (56 km) separating the two basins from each other, there is a high
degree of connectivity at the functional level between the assemblages due to the high number of
shared species and their functional traits. The species most responsible for this observation were
the polychaetes Capitela capitata and Aricidia (Acmira) finitima, as well as the bivalves Nucula pisum
and Yoldiella sp. 1. In terms of functional biodiversity, species characterized as omnivorous and with
lecithotrophic larval development were mostly responsible for connectivity between assemblages.
These results suggest the importance of including β- and functional diversity indices as criteria in the
future planning of marine protected areas for the maintenance of marine ecosystem integrity.

Keywords: Tierra del Fuego; species richness; species abundance; taxonomic composition;
feeding mode

1. Introduction

Ecological connectivity (EC) is widely recognized by the scientific community and
decision-makers as a global priority for preserving ecosystem diversity and functionality [1,2].
Furthermore, it is a fundamental component for the regulation of ecological processes [3,4],
landscape resilience, and the provision of general ecosystem services [5–7]. However, EC
studies are poorly developed with regard to marine ecosystem investigations [8].

Although EC is a concept widely used in the context of terrestrial ecosystem studies,
no scientific consensus has been reached regarding the understanding of the EC concept
for marine ecosystems. For instance, there are numerous associated definitions, leading
to considerable scientific debate [9]. In fact, the definition of EC may change depending
on whether the study is at the population, community, or ecosystem level, and it can
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also change depending on the geographic area where the research is conducted [10,11].
For example, Endo et al. [12] defined EC as the simple exchange of individuals within
assemblages of coral reef communities. In contrast, Nagelkerken [13] focused the definition
on interactions between ecosystems through the movement of species and the exchange of
both nutrients and organic matter, which are part of the ecological processes occurring in
tropical coral reefs, mangroves, and seagrasses. Thrush et al. [14] defined it as the ability
to transport organic matter and species between communities in Antarctic areas. In a
more global context, Balbar and Metaxas [15] defined EC as a link developed through
the exchange of genes, organisms, and energy between populations, communities, or
ecosystems. The lack of a unified definition of EC makes its determination and study
difficult. In our study, EC is defined as the linkage between assemblages through the
turnover levels of the species (e.g., shared species among assemblages versus exclusive
species of each assemblage) and/or their ecological attributes; depending on these, EC
among assemblages may show a high or low linkage.

Several methods exist for measuring EC in benthic marine ecosystems, which broadly
fall into two categories. The first category of measurements examines EC among ben-
thic assemblages by calculating the β-diversity [14,16], which describes species turnover
among assemblages in terms of species composition [17]. β-diversity is assessed accord-
ing to qualitative indices (presence/absence) [18,19] or quantitative similarity analysis
(abundance) [2,19], which have also been used as measures of EC. Consequently, we use
both approaches as a suitable framework for connectivity assessments among benthic
assemblages. The second category of measurements involves determining the degree of
connectivity through quantifying larval dispersal [20–23]. However, this category is hardly
applied to benthic assemblages because it is difficult to determine the source area of the
larval pool as well as the linkage between a meroplankton larva and the corresponding ben-
thic adult organism [21,24–26]. These factors make the reliable measurement of connectivity
between benthic assemblages complex. However, these limitations can be solved through
the application of functional diversity, which encompasses functional traits of species such
as the type of larval development, trophic mode, and mobility, among others [27]. In recent
decades, studies using functional diversity have undergone significant development in
marine research, from populations to ecosystems [28–31]. Despite these advances, there
remain few empirical studies that have considered functional diversity as a part of EC be-
tween benthic assemblages [32]. Therefore, studies that investigate functional relationships
with EC are highly required, by both the scientific community and relevant authorities, for
the development of marine protected area (MPA) management plans [9,33,34].

The Patagonian marine ecosystem constitutes the most important area of fjords and
channels in the southern hemisphere and is one of the most extensive on the planet, together
with similar ecosystems in Scandinavia, Iceland, Norway, Greenland, and Alaska [35,36].
Regarding this ecosystem, the presence of hundreds of channels and fjords builds up an enor-
mous oceanographic web, where the channels play a role as natural corridors, interconnecting
marine communities that inhabit this ecosystem. Additionally, the Patagonian region is one
of the most pristine areas worldwide [37]. Consequently, there are eleven marine protection
areas comprising 41% of the total region [38]. In this ecosystem, there have been numerous
investigations focused on determining the traditional α-diversity for sublittoral soft-bottom
benthic assemblages [39–46]. However, studies using the β-diversity index are scarce. In
fact, Villalobos et al. [47] determined the β-diversity for benthic communities, and their re-
sults highlighted an important percentage of species (48%) turnover in an environmental
gradient along the Comau fjord (Norther Patagonian). In contrast, research conducted on
the benthic community of central Patagonia has described a β-diversity along a bathymetric
gradient. However, the existing literature lacks analyses of β-diversity as a component of
connectivity. Nevertheless, knowledge of the EC among benthic communities of MPA and
their surrounding areas is essential. In the Patagonia ecosystem, this knowledge is missing.

From a theoretical point of view, β-diversity has a converse relationship with EC [48].
In this context, our working hypothesis is that there will be low β-diversity values be-
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tween two comparable benthic assemblages; consequently, they will have a high EC. This
emergent characteristic will be a consequence of the high shared species numbers with
omnivorous and lecithotrophic larval development. Therefore, the objective of this work
was to determine the ecological connectivity between two benthic assemblages, one located
in Bahía Inútil and the other in Seno Almirantazgo (Isla Grande de Tierra del Fuego), con-
sidering the evaluation of the α-, β-, and functional diversity indices as factors reflecting
the connectivity between the assemblages of the two marine basins.

2. Materials and Methods
2.1. Study Area

The study area is located in two basins on the northwestern coast of the Isla Grande de
Tierra del Fuego—Bahía Inútil (BI; 53◦30′ S–69◦30′ W) and Seno Almirantazgo (SA; 54◦21′

S–69◦21′ W)—which are linked only by Canal Whiteside (56 km long, 16 km wide, and
500 m in depth; Figure 1). The area of BI (4776 km2) is larger than that of SA (1150 km2).
The maximum depths of BI and SA are 200 and 300 m, respectively [49] (Figure 1). At
present, BI is a free-harvesting area, while SA was declared an MPA in 2018, allowing
sustainable anthropogenic activities in the area.
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Figure 1. Study area, Magallanes region. Square 1 indicates the location of the Bahía Inútil sampling
area and Square 2 indicates the location of the Seno Almirantazgo sampling area. The sampled
stations (1A–1C and 2A–2C) indicated with yellow dots. The color shades indicate the bathymetry of
the area [49].
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The oceanographic characteristics indicate the influence of glaciers coming from the
Cordillera Darwin Icefield, which affected both the formation of estuarine water masses and
the development of marked oceanographic gradients [50]. Aracena et al. [51] included BI
within the central microbasin, which is part of the central area of the Estrecho de Magallanes
and Canal Whiteside. This microbasin is characterized by a less-stratified water column
than that of SA, with intermediate temperature and salinity values compared with the
previous layers (7 and 8 ◦C; 30 and 31 psu, respectively). Meanwhile, SA is included in
the southeastern microbasin, which is characterized by estuarine conditions with a cold
surface layer (<7 ◦C) and low salinity (<28 psu). This is due to the fact that the southeastern
part of SA is located between important glaciers that are part of the Cordillera Darwin
Icefield [50,51]. Concerning the soft sediment at the bottom, the BI area is characterized as
having sand on both the north and east coasts. Meanwhile, on the south coast, the presence
of sand and mud at a depth between 32 and 135 m has been reported. At the bottom of the
SA, mud is the dominant-type sediment at a depth between 135 and 290 m [52,53].

2.2. Sample Design
2.2.1. Field Work

The sediment samples were collected during the Rio Seco Natural History Museum
scientific expedition in November 2018 [54]. Six stations were selected: three stations in BI
and three in SA, respectively. At each station, one sample with two replicates (N = 18) was
collected by means of a van Veen grab (0.15 m2). In order to achieve the aim of the study,
our design allowed the comparison of two benthic assemblages in the most similar field
conditions. Therefore, we collected the samples in a narrow range between 30 and 48 m
depth (X 36.2 ± 7.6; Table 1). Consequently, the depth was relatively constant and should
not have affected further comparative analysis. All the sediment samples were washed on
a board using 0.5 mm mesh-size sieves. Subsequently, all the sediment retained in the sieve
was preserved in a solution of formalin with seawater (10%) and buffered with borax for
further analysis in the laboratory.

Table 1. Geographic location and characteristics of stations sampled during the first Rio Seco
Natural History Museum scientific expedition in 2018. Sampling stations at Bahía Inútil and Seno
Almirantazgo (in bold) in Isla Grande de Tierra del Fuego.

Station N◦

(N◦ Samples)
Date

(November 2018)
Depth

(X)
Lat
(◦S)

Long
(◦W)

1A (3) 20 30 53◦39′00′′ 69◦56.3′

1B (3) 20 30 53◦35′00′′ 69◦36.1′

1C (3) 20 30 53◦28′00′′ 70◦07.0′

2A (3) 21 36 54◦33′00′′ 69◦10.7′

2B (3) 23 45 54◦23′33′′ 69◦37.7′

2C (3) 24 48 54◦23′00′′ 70◦12.9′

2.2.2. Laboratory Work

All the benthic organisms were sorted from the sediment using a stereomicroscope.
Subsequently, specimens were identified to the lowest taxonomic level possible. The
following literature was used for taxonomic identification: for the taxon Polychaeta, Bögge-
mann [55], Hartman [56,57], Hartmann-Schröder [58,59], Kornicker [60], Orensanz [61],
Schüller [62] and Rozbaczylo [63]; for Mollusca, Linse [64,65], Reid and Osorio [66], and
Zelaya [67]; and for Arthropoda, Menzies [68] and Retamal [69]. Other invertebrates were
determined according to Häussermann and Försterra [70] and Zagal and Hermosilla [71].
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2.3. Statistical Analysis
2.3.1. General Characteristics of Benthic Assemblages

Abundance was calculated by standardizing the number of individuals to one square
meter (Ind m−2). These values were represented geographically using a graduated colors
map based on BI and SA data concentrations. The map was constructed using the ArcGIS
Pro version 2.7.7 software. In addition, the taxonomic composition was described based
on the abundance data of the assemblages, presented as a box plot using the BoxPlotR
program [72].

2.3.2. Analysis of α-Diversity

Rarefaction–extrapolation curves were calculated relative to the number of individuals
collected in each area, with a 95% confidence interval equal to 2500 individuals [73]. The
first and second orders of diversity, corresponding to Shannon–Wiener (H’: q = 1) and
Simpson’s diversity (λ: q = 2), were calculated. This analysis was performed with the iNEXT
package (online program) [74] following the parameters established by Chao et al. [73]. For
comparative purposes with previous work in the study area, Shannon–Wiener (H’) and
Simpson (λ) indices were calculated. To determine the presence of significant differences
between these indices, the diversity permutation test described by Hammer et al. [75]
was used.

2.3.3. Ecological Connectivity between BI and SA Assemblages

In order to determine connectivity between BI and SA assemblages, the β-, and
functional diversity indices were calculated as measures of connectivity.

(a) β-Diversity Analysis

(i) Quantitative Data

β-diversity was calculated from the quantitative data (abundance; ind m−2) using the
Bray and Curtis index (βBC), as indicated by Baselga [76]. Previously, the abundance values
were transformed to the fourth root. To determine significant differences between the
sampling areas, a one-way permutational multivariate analysis of variance (PERMANOVA)
was performed [77].

(ii) Qualitative Data

To obtain the β-diversity based on the qualitative data, the abundance values were
transformed into presence/absence and the Whittaker index (βw = S/α − 1), where S is
the number of species recorded in a set of samples and α is the mean number of species
in the samples was calculated. We followed the recommendation of Magurran [78], who
indicated the Whittaker index over other indices and described that the minimum value
for the βw-diversity is 0, while 1 is the maximum value.

(iii) Functional Diversity Analysis

Functional diversity was calculated using three approaches. In the first approach, each
species was categorized according to the nomenclature described by Koleff et al. [18], which
describes the relationship between components A, B, and C, expressed as proportions (A +
B + C = 100%) where A is the number of species present exclusively in BI, B is the number of
species present exclusively in SA, and C is the number of species shared or present in both
BI and SA [79]. This relationship is presented by means of a ternary plot using abundance
and species richness data.

The second approach used to calculate functional diversity among the benthic assem-
blages of the considered basins was through classifying species according to their diet,
according to Macdonald et al. [80]. Species were categorized into carnivores, herbivores,
and omnivores. This relationship is presented by means of ternary diagrams and princi-
pal component analysis (PCA). Subsequently, the H’ diversity was calculated using the
diversity permutation test to evaluate differences between the assembles.
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Finally, the third approach was the classification of species according to their larval de-
velopment. According to the database (https://niwa.co.nz/coasts-and-estuaries/research-
projects/NZTD, accessed on 22 January 2024), each species was categorized into larvae
classified as planktotrophic, lecithotrophic, or other types of larvae (benthic and direct
development). This relationship is presented by means of ternary diagrams and their
PCA. Subsequently, the H’ diversity was calculated using the diversity permutation test to
evaluate differences between the assembles.

The PERMANOVA and permutation test hypotheses were as follows: the presence
of significant differences means that there is no EC, while the absence of significant dif-
ferences indicates that there exists connectivity between BI and SA. Additionally, for both
quantitative and qualitative β-diversity analyses, it was interpreted that β-diversity and
dissimilarity present a converse relationship with connectivity. This means that higher
β-diversity indicates lower connectivity or higher dissimilarity. Reciprocally, the lower the
β-diversity, the higher the connectivity and the lower the dissimilarity.

All analyses, including ternary plots, were performed using the Paleontological Statis-
tic (PAST) software version 4.16 [75].

3. Results
3.1. General Structure of the BI and SA Assemblages
3.1.1. Abundance

From the total of 3076 individuals collected, 113 taxa and 8 phyla were determined
(Supplementary Table S1). A total of 55% of the taxa were determined at the species
level, 20.4% at the genus level, and 23% at the family level, with the remaining 1.6%
corresponding to taxa at the phylum level.

In terms of abundance, the BI assemblage obtained a lower abundance than the SA
assemblage (Figure 2). In BI, the mean abundance value was 888.9 (±S.D. 26.8), whereas
the mean abundance value of SA was 1358.6 (±43.4).

3.1.2. Taxonomic Composition

Figure 3 shows the three most abundant phyla and their respective class-level details
for the BI and SA areas. In addition, this figure includes other groups whose taxa have
lower abundances.

The abundance of the phylum Annelida was higher in SA, with a mean of 655.1 ± 266.7,
than in BI, with a mean of 446.7 ± 83.77 (see Figure 3A). The mean abundance values
of Polychaeta were XBI = 440.0 ± 89.0 and XSA = 652.1 ± 270.8, and the most abundant
species were Capitella capitata and Aricidia (Acmira) finitima, with 574 and 373 ind m−2,
respectively. Meanwhile, for Sipunculidae, the abundance was relatively higher in BI than
in SA (XBI = 6.7 ± 9.7 and XSA = 3.0 ± 5.2) (see Figure 3B).

The second most important phylum was Arthropoda, whose abundance values were
higher in SA (mean of 96.9 ± 65.7) than in BI (mean of 93.8 ± 75.4) (see Figure 3C). On one
hand, the taxa following the previously described pattern were Cumacea (XBI = 6.7 ± 5.9
and XSA = 46.2 ± 31.4), Balanomorpha, Pycnogonida, and Tanaideacea (XBI = 3.0 ± 5.2
and XSA = 17.9 ± 11.6). On the other hand, for Amphipoda (XBI = 56.6 ± 54.8 and
XSA = 30.5 ± 25.9) and Isopoda (XBI = 10.4 ± 8.5 and XSA = 2.2 ± 2.2), the abundance in
SA was lower than that in BI (Figure 3D). Meanwhile, Decapoda was present in BI only
(XBI = 18.6± 11.2). In terms of species, the most abundant taxa were Amphipoda spp.,
Pagurus villosus, and Sphaeromatidae spp., with 203.2, 24.6 and 17.9 ind m−2, respectively.

https://niwa.co.nz/coasts-and-estuaries/research-projects/NZTD
https://niwa.co.nz/coasts-and-estuaries/research-projects/NZTD
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Figure 2. Graduated colors map of the abundance distribution pattern (Ind m−2) of the Bahía
Inútil (BI) and Seno Almirantazgo (SA) assemblages, including the mean (X) and their standard
deviation (±S.D.).

The third most abundant phylum was Mollusca, with abundance values higher
in SA (mean of XSA = 468.3 ± 463.9) than in BI (mean of XBI = 243.4 ± 304.7) (see
Figure 3E). The only taxon that followed the pattern was Bivalvia (XBI = 225.6 ± 292.5 and
XSA = 466.0 ± 461.9). For Gastropoda (XBI = 14.1 ± 15.2 and XSA 2.2 ± 2.2), the abundance
in SA was lower than that in BI, whereas Polyplacophora (XBI = 3.7 ± 4.6, see Figure 3F)
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was present in BI only. In terms of species, the most abundant species were Nucula pisum
and Yoldiella sp. 1, with 846.4 and 507.0 ind m−2, respectively.
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Figure 3. Box plot showing the abundance values (Ind m−2) between Bahía Inútil (BI; in grey) and
Seno Almirantazgo (SA; in white), including mean values ((X) ± S.D.) in bold, located at the top of
each box plot. (A) = phylum Annelida; (B) = class Polychaeta and family Sipunculidae; (C) = phylum
Arthropoda; (D) = class Cumacea, order Balanomorpha (B), class Pycnogonida (P), orders Tanaideacea
(T), Amphipoda, Isopoda, and Decapoda; (E) = phylum Mollusca; (F) = classes Bivalvia, Gastropoda,
and Polyplacophora; (G) = others group, (H) = consisting of phylum Brachiopoda (Br), Echinodermata
(Eq) and Cnidaria (Cn), and Nematoda and Nemertina. Center lines show medians; box boundaries
indicate the 25th and 75th percentiles, as determined using BoxPlotR program [72] whiskers extend
1.5 times the interquartile range from the 25th and 75th percentiles; outliers are represented by dots;
NP: Not present.
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Finally, the group “others” had higher abundance in SA (mean of XSA = 103.5 ± 15.8) than
in BI (mean of XBI = 138.5 ± 165.8; Figure 3G) and included Brachiopoda (Magellania venosa,
with 509 ind m−2), Echinodermata, Cnidaria (XBI = 18.6 ± 15.8 and XSA = 60.3 ± 53.6),
and Nematoda (XBI = 44.7 ± 49.0 and XSA = 77.4 ± 118.8). By contrast, the Nemertina
abundance values were higher in BI than in SA (XBI = 40.2 ± 38.7 and XSA = 0.7 ± 1.3;
Figure 3H).

3.1.3. Pattern of α-Diversity

The rarefaction curves indicated that the species diversity for BI was higher than that
for SA (Figure 4A,B). The difference between these two values was supported through the
evaluation of the 95% confidence intervals, indicating statistically significant differences
between the two assembles. The extrapolated data in both assemblages indicated an asymp-
totic trend (Figure 4). In terms of the observed species richness between the assemblages,
BI was slightly higher than SA. BI recorded a total of 82 species with a mean of 46 (±1.7),
while SA recorded a total of 72 species with a mean of 47 (±5.3). The diversity indices
H’ and λ followed the pattern of species richness and the rarefaction curves, where BI
(H’ = 3.402 and λ = 0.946) was higher than SA (H’ = 3.215 and λ = 0.937). When comparing
the two indices (H’ and λ) through the diversity permutation test, both indices showed
significant differences (p < 0.05).
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3.2. Ecological Connectivity between BI and SA Assemblages

(a) Pattern of β-Diversity

The EC calculated based on the βBC index between the BI and SA assemblages was
36.4%. Among the areas studied, no significant differences were found according to the
PERMANOVA results (F = 1.519; p > 0.05). Indeed, analysis of the β-diversity using the
qualitative data indicated that the βw index value was 0.51 between the areas.

(b) Functional Diversity Pattern

A total of 41 shared species were identified between the assemblages of both basins,
corresponding to 36.28% of the total species identified. Annelida represented 60.97%
(25 spp.), followed by Mollusca with 17.07% (7 spp.), while Arthropoda and Echinodermata
reached 12.36% (5 spp.) and 4.87% (2 spp.), respectively, and Nematoda and Nemertina
reached only 4.87% (2 spp.) each.

Table 2 shows the shared species that contributed most to connectivity between
the assemblages. The phylum Annelida is represented by the species Capitella capitata,
Aricidia (Acmira) finitima, Aphelochaeta sp. 1, Lumbrineris sp., Notomastus latericeus, and
Spiophanes sp. These species contributed the most to connectivity, with abundance values
varying between 446.65 and 104.97 ind m−2. These were followed by the species Cirriformia
nasuta, Prionospio patagonica, Monticenlina sp., Hemipodia sp., and Caulleriella sp., with values
ranging from 96.03 to 46.90 ind m−2. Finally, the species Sipunculida indet., Cistenides ehlersi,
Melinna cristata, Eteone aurantiaca, Eulalia subulifera, Brania sp., Nicon maculata, Magelona sp.,
Harmothoe ciliata, Augeneria tentaculata, Trichobranchus glacialis, Harmothoe spp., Hauchiella
sp., and Paraninoe sp. Had values ranging from 20.10 to 4.47 ind m−2.

Table 2. PERMANOVA values.

Permutation N 9999
Total sum of squares: 1.321
Within-group sum of squares: 0.9573
F: 1.519
p (same): 0.1976

For the phylum Mollusca, the species that contributed most to connectivity were
Nucula pisum and Yoldiella sp. 1, with 491.33 and 504.73 ind m−2, respectively. These were
followed by Bivalvia indet. 1, Neilonella sulculata, Xymenopsis muriciformis, Tawera elliptica,
and Pareuthria atrata, ranging between 158.57 and 4.47 ind m−2 (Table 3).

In relation to the phylum Arthropoda, the taxa that contributed most to connectivity
were Cumacea spp. and Amphipoda spp., with 138.53 and 129.53 ind m−2, respectively,
followed by Tanaidacea spp., Epimeriidae spp., and Isopoda spp., with values varying
between 51.37 and 4.47 ind m−2. Contributing to a lesser extent, the phylum Echinodermata,
Ophiuroidea indet., and Holothuroidea indet. had values between 15.63 and 4.47 ind m−2.
Finally, Nemertina indet. and Nematoda indet. had values of 232.27 and 120.60 ind m−2,
respectively (Table 3).

In terms of abundance per station, shared species reached 81.15%, while the species
present exclusively in BI and SA were 6.23 and 12.62%, respectively. The abundance values
of shared species by station ranged from 1233 to 5132 ind m−2. The abundance values of
exclusive species in BI by station ranged between 201.50 and 569.50 ind m−2, while those
for SA ranged between 428.80 and 1273 ind m−2 (Figure 5A).
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Table 3. Mean abundance values of species shared between Bahía Inútil (BI) and Seno Almirantazgo
(SA). An = Annelida, Mo = Mollusca, Ar = Arthropoda, Ec = Echinodermata, Ne = Nematoda,
Na = Nemertina.

No Share Species Phylum Spp. BI Spp. SA

1 Capitella capitata An 127.30 446.65

2 Aricidia (Acmira)
finitima An 67.00 305.97

3 Aphelochaeta sp. 1 An 238.97 67.00
4 Lumbrineris sp. An 127.30 178.67
5 Notomastus latericeus An 122.83 2.23
6 Spiophanes sp. An 11.17 104.97
7 Cirriformia nasuta An 60.30 96.03
8 Prionospio patagonica An 6.70 87.10
9 Monticellina sp. An 80.40 75.93

10 Hemipodia sp. An 67.00 6.70
11 Caulleriella sp. An 46.90 2.23
12 Sipunculida indet. An 20.10 8.93
13 Cistenides ehlersi An 20.10 2.23
14 Melinna cristata An 2.23 20.10
15 Eteone aurantiaca An 6.70 15.63
16 Eulalia subulifera An 6.70 15.63
17 Brania sp. An 2.23 11.17
18 Nicon maculata An 2.23 8.93
19 Magelona sp. An 8.93 2.23
20 Harmothoe ciliata An 2.23 8.93
21 Augeneria tentaculata An 4.47 6.70
22 Trichobranchus glacialis An 6.70 2.23
23 Harmothoe spp. An 4.47 6.70
24 Hauchiella sp. An 6.70 2.23
25 Paraninoe sp. An 4.47 4.47
26 Nucula pisum Mo 335.10 491.33
27 Yoldiella sp. 1 Mo 2.23 504.73
28 Bivalvia indet. 1 Mo 158.57 20.10
29 Neilonella sulculata Mo 53.60 93.80

30 Xymenopsis
muriciformis Mo 24.57 2.23

31 Tawera elliptica Mo 8.93 2.23
32 Pareuthria atrata Mo 4.47 4.47
33 Cumacea spp. Ar 17.87 138.47
34 Amphipoda spp. Ar 129.53 73.70
35 Tanaidacea spp. Ar 4.47 51.37
36 Epimeriidae spp. Ar 20.10 17.87
37 Isopoda spp. Ar 4.47 6.70
38 Ophiuroidea indet. Ec 15.63 4.47
39 Holothuroidea indet. Ec 13.40 4.47
40 Nemertina indet. Na 134.00 232.27
41 Nematoda indet. Ne 120.60 2.23

In relation to species richness by station, shared species reached 63.0%, while the
species present exclusively in BI and SA were 19.05 and 17.95%, respectively. The shared
species richness values by station ranged from 16 to 20 species. The species richness values
for species shared exclusively in BI by station ranged from 14 to 21 species, while those for
SA ranged from 24 to 34 species (Figure 5B).
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Figure 5. Ternary diagram of the assemblages of Bahía Inútil (BI and sampling stations 1A–1C),
Seno Almirantazgo (SA sampling stations 2A–2C), and the degree of species connectivity between
the two areas (Shared Species). (A) = abundance (Ind m−2) and (B) = species richness. Grey circles
indicate BI stations and white squares indicate SA stations. Grey lines represent 20% increments of
the components.

The results for functional diversity based on the diet of organisms in both areas
indicated that 65.49% of the species were categorized as omnivorous, 26.55% as carnivorous,
and only 7.96% as herbivorous.
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The distribution of the sampling stations in Figure 6A was shown to be grouped,
indicating a high connectivity between the assemblages of both areas. Regarding abun-
dance values, the BI group of stations had values between 352.9 and 1056.4 ind m−2 for
omnivores, 180.9 and 192.1 ind m−2 for carnivores, and 4.5 and 26.8 ind m−2 for herbi-
vores; meanwhile, in the SA group of stations, the abundance values ranged from 739.2 to
1929.6 ind m−2 for omnivores, 116.1 to 201.0 ind m−2 for carnivores, and 4.5 to 13.4 ind m−2

for herbivores (Figure 6A). The PCA explained 96.9% of the variance, with PC1 explaining
63.5% and PC2 explaining 33.4%. For PC1, the omnivorous diet species group was the most
correlated factor (eigenvector = 0.7), while for PC2, it was the carnivorous species group
(eigenvector = 0.8) (see Figure 6B).
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Figure 6. Ternary diagram (A) and principal component analysis (PCA); the ellipse represents the
95% confidence (B) of the species shared among the assemblages. He = Herbivores, Om = Omnivores,
Ca = Carnivores. Grey circles indicate stations in Bahía Inútil (BI) and white squares indicate stations
in Seno Almirantazgo (SA). Grey lines represent 20% increments in the components. Grey circle
indicates the sampling stations in BI (1A–1C) and white square indicates the sampling stations in SA
(2A–2C).

With respect to the results of diet diversity, the H’ diversity index indicated no sig-
nificant differences (p > 0.05) in any of the pairwise tests between Herbivores BI (1.718)
and SA (1.248), Omnivores BI (3.147) and SA (2.954), and Carnivores BI (2.083) and SA
(2.248) (Table 4), thus confirming the high functional connectivity. With respect to the
analysis of functional diversity based on the larval development of organisms by station,
it was found that 40.7% of the species recorded in this study were categorized as species
with lecithotrophic larval development and 39.8% as species with planktotrophic larval
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development, while other types of larvae (benthic and direct development) had a value
of 19.0%.

The distribution of the sampling stations was clustered, indicating a high connectivity
of species with lecithotrophic and planktotrophic larval development between the BI and
SA assemblages. Regarding abundance values, the BI group of stations had between values
of 332.7 and 911.2 ind m−2 for species with lecithotrophic larval development and 134.0
and 685.6 ind m−2 for species with planktotrophic larval development, with other types
of development reaching values between 31.2 and 82.6 ind m−2. Meanwhile, in the SA
group of stations, the abundance values ranged from 442.2 to 1252.9 ind m−2 for species
with lecithotrophic larval development and 442.2 to 1252.9 ind m−2 for species with plank-
totrophic larval development, with other types of development reaching values between
6.7 and 67.0 ind m−2 (Figure 7A). The PCA explained 97% of the variance, where PC1
explained 71.7% and PC2 explained 25.5%. For PC1, the lecithotrophic larval species group
was the best-correlated factor (eigenvector = 0.7), while for PC2, it was the planktotrophic
larval species group (eigenvector = 0.8) (see Figure 7B).
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Figure 7. Ternary diagram (A) and principal component analysis (PCA); the ellipse represents
the 95% confidence (B) of the species shared among the assemblages. PL = planktotrophic larvae,
LL = lecithotrophic larvae, O = other types of larvae (benthic and direct development). Grey circles
indicate stations in Bahía Inútil (BI) and white squares indicate stations in Seno Almirantazgo (SA).
Grey lines represent 20% increments in the components. Grey circle indicates the sampling stations
in BI (1A–1C) and white square indicates the sampling stations in SA (2A–2C).
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Table 4. Simpson diversity index between Bahía Inútil (BI) and Seno Almirantazgo (SA).
Ca = Carnivores; Om = Omnivores, He = Herbivores; LL = lecithotrophic larvae; PL = planktotrophic
larvae; O = other types of larvae (benthic and direct development) (in bold—significant difference
(p ≤ 0.001)).

BI SA

Diet type

H’ He 1.718 1.248
H’ Om 3.147 2.954
H’ Ca 2.083 2.248

Larval development

H’ PL 2.322 2.304
H’ LL 2.585 2.508
H’ O 2.231 1.745

Regarding the functional diversity results, the H’ diversity index indicated no signif-
icant difference (p > 0.001) between pairwise Planktotrophic larvae of BI (2.322) and SA
(2.304), lecithotrophic larvae of BI (2.585) and SA (2.508), whereas the pairwise between
BI (2.231) and SA (1.745) based on the group “other types of larvae” showed significant
differences only (Table 4).

4. Discussion

The present work determined the EC between two sublittoral benthic assemblages
based on an assessment of the β- and functional diversity indices. The Patagonian fjords
and channels are a high-latitude and geomorphologic heterogeneous ecosystem, where
research on the soft-bottom benthic ecosystem has mainly focused on local and exploration
studies. Therefore, our study is the first to address the issue of connectivity as a key
component for understanding this complex benthic southern sub-Antarctic ecosystem. In
particular, our results are key to understanding the functioning between marine protected
areas and their adjacent areas with open access for fisheries harvesting.

It is worth noting the scarcity of information on biodiversity for soft-bottom com-
munities in both areas, which, including the present work, has only two investigations.
Nevertheless, with our research, the taxonomic inventory increased by 17.1% for BI and 18%
for SA. Thus, the taxonomic inventory for soft-bottom assemblages has reached 48 species
for BI and 43 species for SA.

4.1. Abundance, Species Richness, and α-Diversity Patterns

Concerning the patterns of abundance and species richness, our results clearly showed
that the mean abundance increased from BI to SA. Meanwhile, the species richness showed
a decrease from BI to SA. Similar results have been described by Thatje and Brown [44],
but with lower abundance and species richness values. In fact, Thatje and Brown [44]
determined, for BI and SA, mean abundance values of 67 and 114.0 ind m−2, respectively—
an order of magnitude lower than the values obtained in the present study. Likewise, the
mean richness was also higher, which reached 41 species in BI and 39 species in SA [41].
These patterns may be explained by differences in the sampling equipment used. A van
Veen grab was used in the present study, whereas in the study of Thatje and Brown [44], the
samples were collected using a Reineck box corer. Additionally, the studies had different
sampling designs; in our study, the samples were collected until a 40 m depth, while in
Thatje and Brown [44], the sampling depth range was below 100 m.

The α-diversity pattern of macrobenthic assemblages described in the present study is
high compared to those in other studies conducted in adjacent areas [42,43]. The rarefaction
curves reach the asymptotic level, indicating that both areas have been well sampled.
α-Diversity analyses (H′ and rarefaction curves) showed high differences between the two
assemblages. These patterns may be a consequence of the environmental conditions at the
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sampling locations. Meanwhile, the samples obtained in SA were located on the southeast
coast of the basin, which is under strong influence from the numerous calving glaciers
from the Cordillera Darwin Icefield, while the BI is a wide bay without glacier influence.
Therefore, glacial influence is described as the most important drive for the distribution
pattern of benthic assemblages in the Magellan region because of the runoff of freshwater
and sediment discharge from the glaciers [81,82]. In fact, the presence of glaciers on the
coast of the Cordillera Darwin Icefield produces a different type of sediment. Sand with
mud dominated seafloor sediments on the south coast of SA, whereas sand-type sediments
dominated on the north and east coasts of BI [52].

4.2. Ecological Connectivity among Macrobenthic Assemblages

EC has a converse relationship with β-diversity, and the analysis considered these
important ecological relationships between the assemblages. In the present study, the
β-diversity values indicate an intermediate connectivity between BI and SA assemblages,
according to the scale presented by Magurran [78]. These results indicate that the composi-
tions of macrobenthic communities among the different basins are relatively similar. This
emerging pattern of β-diversity agrees with the existence of an environmental gradient. In
fact, the study area is within an oceanographic gradient, where the estuarine circulation
allows the outflow of fresh and cold water and the inflow of seawater and relatively warmer
water [50,51]. A similar situation was observed in the research conducted by Thurst [83],
where the factors of distance, habitat heterogeneity, and productivity influenced species
composition. However, it also depends on the dispersal ability of individuals. Some larvae
may be retained very close to their source area [84] or travel long distances [85].

Concerning the pattern of functional diversity, our results revealed a high functional
connectivity between the two assemblages. In fact, the percentage of shared species reached
36.3%, and, in terms of abundance, they concentrated at 81% of the total mean abundance.
When contrasting the diversity of diets and the reproductive development of the species
of both assemblages, no significant differences were obtained (except for the group of
other larvae types). Similar results have been described for polychaete assemblages in
the Magallanes region, where omnivorous predators and species with pelagic larvae were
dominant [81]. According to Villéger et al. [86], two communities can be very different in
terms of species composition but very similar in biological and trophic traits. The presence
of an environmental gradient may cause a response in the diet of organisms that affects
the trophic structure of benthic communities [87]. Likewise, 80% of the species (mainly
polychaete species) have a planktonic larval stage in their life cycle, providing the main
way of population dispersal [21,88,89]. In a study of the meroplankton community in a
sub-Antarctic proglacial area, polychaete larvae dominated in number but showed low
abundances [26], which confirms our finding using functional traits of benthic species.

The analysis of α-diversity is insufficient to describe connectivity between the mac-
robenthic assemblages of BI and SA, while the analysis of β- and functional diversities
contrarily revealed connectivity between the studied assemblages. This paradox was
previously described by Villéger et al. [86], who described that taxonomy is insufficient
to understand the structure of species assemblages, as species’ diversity indices treat all
species identically, whereas functional diversity indices do not. Therefore, it is reasonable
to expect that functional diversity is more ecologically relevant as species differ from each
other in functionally important aspects [27]. The functional diversity of a community
has emerged as a facet of biodiversity, which quantifies the value and variety of traits of
organisms that influence their performance and, thus, the functioning of the ecosystem [90].

In summary, most studies using only α- diversity analysis focused on describing
the differences between assemblages, which neglects the description of the degree of
ecological connectivity, which the comparable assemblages undoubtedly have. Therefore,
the presence of differences as well as connectivity among the studied assemblages are not
contradictory; rather, α-, β-, and functional diversity analyses are complementary and not
mutually exclusive.
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4.3. Ecological Connectivity and the Marine Protected Areas

Balbar and Metaxas [15] analyzed 746 MPAs, of which only 11% considered connec-
tivity as an ecological criterion for the design and location of the protected areas. Our
analysis shows EC between marine protected areas and the adjacent bay. Therefore, our de-
termination of EC may be very useful for conservation and management planning. Shanks
et al. [91] suggest an optimal size for MPAs (4–6 km) and spacing (20 km apart) to ensure
connectivity between MPAs and adjacent areas. Indeed, integrating EC is an important
element for establishing MPAs and for the design of MPA networks, being a fundamental
aspect during strategic decision-making or for the design of a network of MPAs. The
present study lays the foundation for future research that seeks to preserve the ecological
integrity of Patagonian fjords and channels, recognizing the importance of maintaining
and protecting the connectivity between their different benthic assemblages.

5. Conclusions

The results of this research represent a first approach in evidencing ecological connec-
tivity between two soft-bottom assemblages. In particular, the benthic assemblages of BI
and SA are functionally linked by Canal Whiteside, serving as a natural corridor for the
exchange of taxa via larvae.

Based on the assessment of the three approaches used to determine the EC between the
BI and SA assemblages, functional diversity was found to be the most informative index,
where the diet of the taxa and their reproductive development were the characteristics that
best represented EC.
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