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Abstract: Taxonomy underpins biological research because names are needed for comparative analy-
sis, conservation status, and public communication. Despite this, many species remain undescribed
and are therefore vulnerable and unprotected, particularly in the tropics. Neotropical Staphylinidae
beetles (Coleoptera) are among the insect groups most likely to contain significant unknown and/or
cryptic diversity. Here we used an integrative taxonomic framework to conduct a preliminary review
of one particularly diverse genus of Staphylinidae (Anotylus) in Área de Conservación Guanacaste,
northwestern Costa Rica. We began by DNA barcoding novel collections and using Barcode Index
Numbers (BINs) as an estimate of taxonomic diversity; we found 18 provisional new species. We
augmented this genetic analysis with a morphometric analysis of adult morphological characters
and found that we could differentiate most provisional species by external morphology as well as
by elevation of collection. All the most abundant species could be differentiated from each other
by differences in body size. One BIN included slight (~1%) genetic variation that corresponded
with some morphological differentiation suggesting the existence of two species within a DNA BIN.
Our results support the efficacy of DNA barcoding collections of tropical insects as an effective
biodiversity estimator, one that can be used as a primer for integrative taxonomic studies using BINs
as species hypotheses.

Keywords: biodiversity; cryptic species; conservation; BINs; DNA barcode

1. Introduction

Only a small fraction of global diversity has been described [1]. There are approxi-
mately 2.3 million named species [2] from a total diversity that may be as low as 8 million [3]
or as high as hundreds of millions [4]. Without knowing what species exist and where, we
cannot effectively conserve them [5], manage ecosystem services [6], or monitor biodiversity
loss [7], which, if unchecked, can result in dangerous ecological cascades [8]. While funda-
mental, describing new species is difficult, with many concepts [9], dated revisions [10], and
an unfortunate lack of institutional and governmental support for taxonomists [11]. Quite
simply, there are not enough trained taxonomists to characterize global biodiversity. This
taxonomic impediment is even more alarming, given that we are in the midst of the sixth,
and largely anthropogenic, mass extinction [12]. With many limitations to identifying the
globe’s true biodiversity, and mounting environmental pressures, it is increasingly vital to
describe as many species and their natural histories as possible before their extinction [13].
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While the actual global number of species is unknown, we know that biodiversity is
unequally represented both geographically and taxonomically [14]. Despite containing
the majority of species and numerous different major ecosystems, the tropics are under-
represented both in terms of studies and descriptions [15–17]. This has been attributed to
historical inaccessibility [18], a lack of scientific infrastructure for accurate species identifica-
tion [19], and the sheer volume of species [20]. Furthermore, there are inherent biases across
taxonomic groups, as larger individuals and more well-studied taxa are disproportionately
represented, despite these often being relatively species-poor. For example, despite account-
ing for less than one-fifth of known biodiversity [21], vertebrates contributed to nearly
one-third of species’ descriptions between 2006 and 2013 [22]. It is often the hyper-diverse,
supposedly “uncharismatic” organisms (such as the invertebrates) that are in most need of
taxonomic groundwork [17,23]. These biases place tropical invertebrates among the most
poorly understood multicellular taxa in the world [24,25].

Quantifying tropical invertebrate biodiversity is difficult for groups that lack taxo-
nomic infrastructure such as revisions and representative specimens; one such group is
the hyperdiverse family of litter-inhabiting small beetles, the Staphylinidae. Due to its
species richness, many species with rather high morphological similarity, and relatively
unresolved phylogeny, taxonomic revisions are rare and often confined to a single genus
or species complex/group [26–28]. At a deeper phylogenetic level, some subfamilies are
understood better than others (e.g., the recent movement of the burying and carrion beetles
to be a subfamily of Staphylinidae rather than a family (the Silphidae) of its own [29], and
several species groups and genera have well resolved phylogenies [30,31]). In addition,
there is a large gap between described species and the collection of publicly available
standardised DNA barcodes (an average of 0.062 barcodes per described species within
the family [32]). Consider the inherent hidden taxonomic scope for tropical staphylinids
by comparison to the Canadian fauna (a much more thoroughly studied and less diverse
system) where the number of staphylinid species has increased by over 90% within the
last 40 years [33] (and achievements made through investment in taxonomic expertise
and the advent and integration of molecular techniques with morphology and ecology).
Taxonomic revisions are more complicated in the tropics where comprehensive cataloguing
of biodiversity is faced with the most species and the fewest research resources. Recent
increases in tropical descriptions can be sometimes linked to the development of barcoding
initiatives within these regions [34]. With numerous ecosystems and microclimates within
a comparatively small area to other biomes, the tropics have developed sharp ecological
boundaries associated with (comparatively) stable abiotic regimes of temperature and
precipitation. Consequently, these boundaries in the tropics can create a tighter relationship
between elevation and diversity than seen in temperate systems. The rapidly changing
community assemblages across tropical mountain elevation gradients are known to be
some of the most biodiverse systems on the globe [35].

The Staphylindae are amongst the most diverse animal family, with nearly 67,000 species
currently described across 32 extant subfamilies [36,37], and a global distribution including
arctic [38], tropical [39], taiga [40], and intertidal marine habitats [41]. Notwithstanding
that the cryptic diversity of other insect families will eventually make them more diverse
(see the hymenopteran parasitoid families of Ichneumonidae and Braconidae [42,43] as well
as the small dipteran Cecidomyiidae [44,45]), the staphylinids already have more named
taxa than do vertebrates, and, as they also contain much historically cryptic diversity, will
likely remain one of the most diverse animal families [46]. Improving the representation,
visibility, and understanding of Staphylinidae will only further our understanding of an
ecosystem’s biodiversity and functioning. Some have argued that they are a good indicator
taxon for various ecological processes [47–49] due to the multiple roles that staphylinids play
in key ecological processes such as nutrient cycling [50], predation [51,52], and ecological
succession [53].

Within the staphylinids, the Oxytelinae is the eighth largest subfamily, with 47 genera
containing approximately 2000 species [54]. They are primarily found within leaf litter,
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with a diet predominantly composed of animal dung and decaying organic matter [55].
One morphologically challenging genus of Oxytelinae, Anotylus Thomson, 1859, has been
called a taxonomic “left over” since there is no singular morphological character unique
to the group [56]. However, Hammond [57] suggested that the genus can be identified
by the crest-shaped structure on the scutellum. Whether this applies to all taxa assigned
to Anotylus to date is unclear. While many beetle taxa may not possess a unique morpho-
logical characteristic, not all contain as much undescribed diversity as does Anotylus [57].
The 90 currently named species of Anotylus have a cosmopolitan distribution, but the
greatest concentration of diversity occurs in the Neotropics [58,59]. The last catalogue
of staphylinid biodiversity reported two species of Anotylus in Costa Rica [58], Anotylus
insignitus Gravenhorst, 1806 which is an invasive species, and Anotylus nitescens Bernhauer,
1942 a species apparently endemic to Costa Rica (Vera Blanca [60]. The former possesses a
large distribution throughout the Americas and several Atlantic and Pacific islands [57];
however, like many older species’ descriptions, this taxon may be made up of several dis-
creet species with smaller distributions [61]. A. nitescens has not appeared in the literature
since its original species description [62]. Anotylus individuals can range in length from 1 to
6 mm [56], with some species known to be conspicuously sexually dimorphic [63]. Dolson
et al. (2021) [64] reported that Anotylus made up most of the Oxytelinae recovered from
leaf litter sifting across a 1500 m elevational gradient in Costa Rica, being most abundant in
cloud forest, with one species apparently restricted to the low-elevation dry forest and one
species more widespread across elevation.

In this study, our aim was to integrate morphometrics into the spatial and genetic
dataset analysed by Dolson et al. and to provide a preliminary review of Costa Rican
Anotylus diversity using an integrative approach that combines molecular and external
morphological characters to identify provisional species, specifically focusing on characters
which can be scored on high-resolution photos of external adult morphology. We did
this by first using Barcode Index Numbers (BINs—[65]) to sort samples into provisional
species, and then by identifying taxa supported by (i) both molecular and morphological
differences, (ii) only molecular variation, and (iii) where morphological variation suggested
a valid taxonomic division missed by the BIN algorithm. We found that many, but not
all, of the provisional species suggested by DNA barcoding could be differentiated by
morphometrics, suggesting that our initial molecular estimate of Anotylus diversity is
warranted. Rapid identifications (and descriptions), especially in historically overlooked
taxa like the Staphylinidae, will better inform conservation management strategies in
protected areas as well as our understanding of ecological and evolutionary processes.
Rapid descriptions and profound understanding are needed across the tropics, particularly
for taxa such as these Anotylus, where most of the diversity resides in forests whose future
in the climate crisis is in stark jeopardy.

2. Materials and Methods

The integrative taxonomic approach adopted here builds on more than a decade
of ongoing (2008–2017) leaf-litter arthropod collections made across a 1500 m elevational
gradient in Área de Conservación Guanacaste (ACG) in northwestern Costa Rica [64,66–69].

ACG is a UNESCO World Heritage Site that covers 1470 km2 of northwestern Costa
Rica and three inactive volcanoes, reaching a peak elevation of 1900 m. The collections
used here were made principally on the slopes of Volcan Cacao. Across this elevational
transect (0–1500 m), there are three distinct forest types (cloud, dry, and rain), and as many
as eight Holdrige Life Zones [70]. Dry forests dominate the lower elevations (10–600 m)
with warm and dry environments, rain forests reside in mid-elevations (700–1200 m) with
predominately warm and wet climates, and, lastly, at the highest elevations (1300–1500 m)
are cloud forests that are relatively cool and wet [71,72]. In small isolated tropical mountain
systems like Volcan Cacao, relatively stable climatic conditions are common; therefore, the
quantitatively small changes in temperature and precipitation across elevations create sharp
ecological boundaries across which species are unlikely to pass, offering higher biodiversity
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among them than in extratropical systems [35]. High-resolution, 360◦ panoramic images of
the forests sampled are available at http://www.gigapan.com/galleries/10092/gigapans
(accessed on 23 July 2024).

Staphylinidae were collected using various standardised trapping techniques (see
Dolson et al., [64]; Smith et al., for details [66]) across an elevational transect from sea
level to the summit of Volcan Cacao (1500 m). Sampling was standardised for site size,
time, and intensity, collecting invertebrates using a combination of active searching bait,
Davis-sifting (see an example of this search method capturing an Anotylus here: https:
//youtu.be/BKr05x0_d0s?si=ByekGavLQ666LOYy (accessed on 23 July 2024)), pitfalls
traps, and mini-Winkler litter extractors. Specimens were preserved in 95% ethanol in
the field and later stored at −20 ◦C. DNA was extracted from one leg per specimen using
standardised methods [73], and mitochondrial DNA 5′ COI amplified with primer cocktails
outlined in Smith and Fisher [74]. Staphylinidae were identified to subfamily and genera
using keys from North America [75] and Mexico [76]. All sequence and collection metadata
have been deposited in BOLD (https://doi.org/10.5883/DS-ASANOT (accessed on 23 July
2024)), and physical specimens are stored within the Research Collection of M. Alex Smith
at the University of Guelph.

For every Anotylus individual (n = 210), their COI DNA sequence and any available
images from the Barcode of Life Data System (BOLD [77]) were extracted from the public
dataset https://doi.org/10.5883/DS-ASSTAPHY (accessed on 23 July 2024). BINs are
automatically assigned in BOLD using a five-step process by clustering sequences using
their uncorrected pairwise distances in a refined single linkage algorithm (RESL) [65]. A
standardised threshold of nucleotide diversity is used to partition sequences and is altered
at a later stage to optimise effectiveness. We used BINs as our initial species’ hypotheses,
utilising the BIN as an epistemological, or operational, criterion of a species. We compared
one other method of species delimitation via genetic distance (e.g., Assemble Species by
Automatic Partitioning (ASAP) [78]) with the BIN-derived species hypotheses.

From these samples, we selected only those individuals with barcode sequences
greater than 300 bp (201) and included one sympatric Oxytelus specimen as an outgroup
for analysis. Sequences were aligned in MEGA11 [79], using MUSCLE [80]. To identify
the best evolutionary substitution model we used MEGA11, which suggested the general
time reversible (GTR) model [81], with a gamma frequency distribution and invariant sites
(G+I). We produced a Bayesian tree in Geneious 11.0.3+7 [82], with the MrBayes Plugin
version 3.2.6 [83]. The tree was then estimated using the Markov Chain Monte Carlo
(MCMC) algorithm with a chain length of 12,000,000 and a 1,500,000 burn in and four
heated chains at a 0.2 chain temperature, with trees subsampled every 10,000 simulations.
A maximum likelihood tree was also generated using the GTR+G+I substitution model
with 1000 bootstraps. Trees were rooted on the Oxytelus and then visualised using FigTree
version 1.4.4 [84].

To estimate the genetic variation and depth of divergence within the sampled staphylin-
ids, we first created a Bayesian inference tree to identify the depth of divergence between
individuals and species and then created a pairwise matrix of p-distances between species
to estimate nucleotide variation.

To quantify the morphospace for each species, we measured each individual from
focus-stacked photographs for 16 different characters (Figure 1): Largest antennal segment
length (1), total antennal length (2), body length (3), compound eye area (4), compound
eye maximum diameter (5), compound eye maximum width (6), head width (7), temple
length (8), pronotum maximum width (9), pronotum maximum length (10), pronotal area
(11), elytral maximum width (12), elytral maximum length (13), elytral area (14), pronotal
pigmentation (15), and elytral pigmentation (16). While total body length can by affected by
the degree retraction of the abdominal segments, we found that it was as useful a measure
of an individual’s size as adding the lengths of the forebody (i.e., 10 + 13). Measurements
1, 2, 4, 5, and 12–14 have been used previously to delimit species within the subfamily
Oxytelinae [85]. The remaining measurements: 3, 6–10, and 15, have also been used as

http://www.gigapan.com/galleries/10092/gigapans
https://youtu.be/BKr05x0_d0s?si=ByekGavLQ666LOYy
https://youtu.be/BKr05x0_d0s?si=ByekGavLQ666LOYy
https://doi.org/10.5883/DS-ASANOT
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descriptive characters in Anotylus [86], since pronotal width, length, and pigmentation
have been used previously.
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Figure 1. Key morphological measurements are labelled on a sample specimen. Red lines indicate
how the measurement was taken. Measurements of areas (4, 11, and 14) were recorded using the
area visible in images. Pigmentation (15 and 16) was measured by taking the average of three
cross-sections of the character.

Measurements were taken from focus-stacked dorsal and lateral photos using Im-
ageJ [87]. To calculate the area of the elytra and the compound eye, we traced the outline of
the structure and used the Measure tool in ImageJ. The measurement is a two-dimensional
simplification, as each structure has an irregular, nonflat surface. Elytral and pronotal
pigmentation were collected from three dorsal cross-sections of each feature using the
“color histogram” plugin for ImageJ 1.54g [88], and later converted from RGB values into
HSV using the rgb2hsv function in R [89], with an average of the three values being taken
as a representative sample of the character. The species identity for each sample was added
to the morphometric data frame post-measurement, to reduce potential confirmation bias.
All images are available on BOLD as part of the sample metadata.

We performed a principal component analysis (PCA) in R using the “FactoMineR”
package [90]. To maximise the number of specimens in the analysis, we used individuals
that possessed measurements for at least 75% of the characters. This consequently increased
the number of individuals in the analysis from 127 to 177. Values were generated for absent
data using the imputePCA function within the R package “missMDA” [91], by using an
iterative PCA algorithm [92], which imputes values based on the similarity of relationships
between individuals, and the relationships between variables. The algorithm continues to
rerun until the artificial data point converges with the line of best fit for the original data.
To avoid overexaggerating relationships, we used a regularised iterative PCA algorithm
(rPCA) [93], which assumes consistent and mostly complete datasets. Therefore, before
analysis, we calculated the percentage of the complete dataset (96.71%). Furthermore, we
used the K-fold cross validation method with 5000 simulations as it identifies the lowest
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mean square error of prediction in large datasets, when the known percentage of data is
missing. PCA plots were visualised using the “ggplot2” package in R [94]. Confidence
ellipses around each species were plotted using the geom_mark_ellipse function in R.

To examine variation in the traits determined to be the most important in the PCA across
the genus-level phylogeny, we created a boxplot of the variable that contributed the most to
PC1 beside the phylogeny and included a specimen photo for each provisional species.

To statistically evaluate interspecific pairwise morphometric differences, we compared
values of the dominant PCA axis using an ANOVA with post hoc Tukey tests, and we
also completed a phylogenetic PCA using the “phytools” package in R [95]. To compare
how genetic and morphometric variation changed amongst these species, we compared
pairwise distances of the dominant PCA axis with pairwise p-dist calculations of the DNA
barcode region using a Mantel test in the package ncf in R [96].

3. Results

We found 18 putative species of Anotylus (BINs) across our elevational gradient in
northwestern Costa Rica. While some of these species occurred widely across elevations,
others appeared restricted to either dry, rain, or cloud forest (Table 1), and many occurred
sympatrically. Diversity in the group increased with elevation, as was shown for Staphylin-
idae in general by Dolson et al. (2021) [64] and Smith et al. [67]. Provenance metadata for
each sample (including collection details, sample images, trace files, and sequences) can
be examined at https://doi.org/10.5883/DS-ASANOT (accessed on 23 July 2024) and in
Table S1.

Table 1. The number of individuals and the elevational ranges (metres) for each ACG Anotylus species
in BOLD as of June 2024.

BIN Count Mean Elevation (m) Median Elevation (m) Maximum Elevation (m) Minimum Elevation (m)

BOLD:ACZ5516 116 1220.96 1180 1480 304
BOLD:ACZ5742 11 1177.55 1304 1458 304
BOLD:ACZ5987 1 1046.00 1046 1046 1046
BOLD:ACZ6447 10 1009.70 1128 1128 323
BOLD:ADF3772 47 1017.94 1184 1314 700
BOLD:ADF4138 131 850.00 831 1280 820
BOLD:ADF4200 4 1254.25 1262 1304 1189
BOLD:ADF8741 10 1232.20 1247 1313 1050
BOLD:ADG0617 1 1314.00 1314 1314 1314
BOLD:ADG1201 15 1329.20 1310 1482 1000
BOLD:ADH8436 2 1343.50 1343.5 1485 1202
BOLD:ADH9095 2 1187.50 1187.5 1189 1186
BOLD:ADH9620 1 1300.00 1300 1300 1300
BOLD:ADH9622 7 889.29 1011 1011 420
BOLD:ADI3175 4 1216.00 1190 1304 1180
BOLD:ADL5474 2 1232.50 1232.5 1460 1005
BOLD:ADR2790 4 823.75 1047 1190 11

3.1. Genetic Analysis of Anotylus

Average pairwise genetic distances between provisional species was large, ranging
from 5.03% (between BOLD:ADG1201 and BOLD:ADG0617) to 27.9% (BOLD:ADH9622 and
BOLD:ADR2790), with a median of 19.26%. The best ASAP estimate of species via sequence
divergence (asap-score of 2.5) estimated 14 species within the 18 BINs by lumping together
the four species pairs with less than 5% interspecific sequence divergence. As these four
species pairs are characterised by sympatric elevational distributions (Table 1) and marked
(if not always significant) PC1 scores of morphometric differentiation (Table S3), we follow
the BIN divisions as the first step in this integrative taxonomy. An ASAP partition that
agreed with BIN divisions was one of the ten best partitions (asap-score 7.5). Intraspecific
variation was low (median variation 0.38% (excluding doubletons and singletons)). The
most abundant species (BOLD:ACZ5516) had the greatest intraspecific variation (0.7%).

https://doi.org/10.5883/DS-ASANOT
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Bayesian and maximum likelihood phylogenetic examinations of Anotylus provisional
species produced nearly identical topologies (Figure 2).
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support values indicated. Different species indicated in different colours.

3.2. Morphometric Analysis of Anotylus

The cumulative variation exhibited across the first two principal components (PCs)
was 78.97%, with PC1 accounting for 68.73% of total variation, which best represented the
first 14 morphological characters, all morphometric. Elytral area was the most variable
character in PC1. The remaining two characters, pigmentation of elytra and pronotal
length, were represented by PC2, capturing 10.24% of total variation. PC1 had the greatest
discriminatory power amongst species, while PC2 primarily accounted for variation within
species (Figure 3A). While many of the putative Anotylus species exhibited overlapping
morphometric variation (Figure 3A), the five most abundant species were all significantly
different from each other along PC1 (Figure 3B, Table S3). Specific measurements are
available in Table S2, and pairwise interspecific distance across PC1 (and associated Tukey
post hoc test values) in Table S3.
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3.3. Comparing Morphometric and Molecular Differences

We identified one putative species with slight (~1%) intraspecific genetic variation
whose range extends across nearly the entire elevational gradient (BOLD:ACZ5516). When
we explored this genetic variation on the morphometric PCA, we found correspondingly
large morphometric variation associated with the genetic differences (Figure 3C). The two
intra-BIN genotypes have a nested elevational distribution, with one found between 1000
and 1500 m (with a peak in abundance at 1200), while the more abundant genotype can be
found from 300 to 1500 m with a peak in abundance at 1300 m.

Pairwise morphometric variation correlated with genetic variation in the barcode
region (Mantel r = 0.387, p = 0.004) (Figure 3D), and a phylogenetic PCA produced similar
separation of taxa (Figure S1). While the relationship between genetic and morphometric
variation was significant, there were numerous cases where a large genetic difference was
associated with only very subtle morphometric differences (Figure 4). Mean interspecific
differences in pdist are shown in Table S4.
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4. Discussion

Our results demonstrate that the true diversity of Anotylus in Costa Rica is currently
severely underestimated. A single elevational transect, on a single volcano, revealed nine
times the number of taxa currently listed for the whole country. We believe that none of
these new taxa are either of the Anotylus known from Costa Rica. While external adult
morphometrics did not allow the unambiguous differentiation of all putative taxa identified
by barcodes, we did find statistical support for the separation of most of the well-sampled
putative species and a significant positive relationship between molecular and morphomet-
ric variation within BINs. Due to the, often decoupled, nature of mitochondrial and nuclear
molecular evolution [97,98], we would not necessarily expect that morphometric variation
would accumulate at the same rate as mitochondrial variation. Finding that, generally,
the most divergent putative species suggested by DNA barcoding are diagnosable using
external morphometrics supports the use of DNA barcodes as a first-pass assessment of
underdescribed diversity in poorly known taxa such as Neotropical Anotylus, as has been
performed and assumed for other tropical species-rich groups [99–103].

Our study explicitly focused on whether easily quantifiable characters, visible on high-
resolution photos of adults, could be used to discriminate putative taxa identified by BINs.
This approach was reasonably successful, without the examination of male genitalia, which
clearly provide an additional, rapidly evolving character set for the discrimination of closely
related taxa [104]. Future work on Costa Rican Anotylus will clearly require the integration
of morphology and genetics, examination of previously described Neotropical species, and
detailed study of genital characters, but our barcode database provides a critical first step.
While the informative variation present in male genitalia may help eventually describe
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some taxa elucidated here, this would not remove the subsequent bias inserted by using a
morphological character present in only ~50% of the adults collected to differentiate taxa
(i.e., identifying females and immature individuals will not be possible based on characters
on the male genitalia). In this case, a method that includes measures across intraspecific
variation inherent to sex and age (such as DNA) will perform best across all individuals.

4.1. Anotylus—Diverse and Variable across Elevation

In many ways, the putative Anotylus species recognised here are exemplars of under-
studied Neotropical diversity—and the broader taxonomic group to which they belong is
characterised by insufficient taxonomic resources (or at least resources that are incommen-
surate with its enormous diversity). The genus has also been an acknowledged taxonomic
“receptacle” [57] for species that lack the discriminating features of other groups, meaning
that it is likely to be paraphyletic. In the Neotropics, Anotylus is diverse [56,59]; they can be
locally abundant and their abundance and diversity change rapidly across abiotic gradients
associated with elevation [64]. Individual taxa are, therefore, prone to being overlooked
and may be particularly vulnerable to isotherms shifting upslope in the current climate
crisis [67]. We note a high degree of sympatry amongst these provisional species. Of our
five most frequently collected species, four can be observed at the lower-elevation cloud
forest site at 1300 m on Volcan Cacao, while the remaining common species is known
only from a different volcano across (approximately) the same elevational range. These
observations speak to known elements of Anotylus ecology—namely, that species have
small geographic distributions [57] and are often found in sympatry [57]. In other tropical
montane systems, Hammond [57] observed that there was a reduction in elytral size that
was associated with a reduced capacity for flight with increased elevation. We found that
elytral area was one of our most variable morphometric measurements and speculate that
while all these species are not likely to move far or frequently, the species with the smallest
elytra will be the taxa most restricted to their current elevational band of abiotic conditions,
and, therefore, the first that we would lose to approaching high temperatures.

4.2. Cryptic Diversity within Cryptic Diversity

Two distinct morphological groups within a single DNA BIN may point to the ex-
istence of recently diverged taxa which are cryptic in a molecular sense. No other BINs
demonstrated an intra-BIN division in their morphospace or phylogeny. Such a mor-
phological split might be intraspecific and caused by sexual dimorphism (as has been
observed in other Anotylus [59,105]), but this would not explain the corresponding genetic
differences. Intraspecific genetic and morphological differences might be explained by
separation along a strong elevational gradient, but while the groups exhibit a somewhat
nested distribution, each group can be found at largely the same elevations (particularly
in the upper elevations; thus, geography is unlikely to be the factor driving divergence.
Thus, we feel that this is likely a case where a BIN contains more than one species, as has
been observed in other insect groups [106,107]. The discovery of more than one species
in one BIN, as demonstrated by their elevation and natural history, is no surprise. For
example, in the Astraptes fulgurator, where 10 species were found in one name [108], six
of these ten exist in a single BIN, where each can be distinguished by larval color, microe-
cosystem, and barcode cluster within a BIN. Confirming the split we have documented
here (and supporting the other provisional species we have erected) would ideally be
followed by additional study (e.g., male genitalia and additional molecular markers, as
in [61,102,109,110]). While description of these species was beyond the scope of this work,
we do note that, from a morphotaxonomic perspective, these external measurements are
often included in descriptions but frequently are not definitive. Despite this historic trend,
our work highlights the utility that the combination of natural history (often elevation)
with a DNA barcode and (comparatively) easy to acquire external morphometrics can offer
diagnostic taxonomy [111].
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4.3. Rarity

While our collections span a significant elevational transect and time period, half the
provisional species identified here (9/18) are represented by fewer than four samples. In
tropical ecosystems, it is not uncommon for species to be sampled, and often subsequently
described from single specimens (e.g., [112–115]), and in a recent review, Deng et al. [116]
found that more than 20% of the insect species described in a decade were singletons. Such
a preponderance of singletons is likely due to a combination of natural rarity and small
population sizes and geographic ranges. Singletons can also be a signature of incomplete
sampling, and it is therefore possible that some of the 18 provisional species may reflect a
limit of sampling and currently unknown estimates of intraspecific variation. However,
in cases such as this, where we know where a species lives along a significant abiotic
gradient (such as temperature) and we know that they differ markedly in their genetics, it
is prudent to adjust our default statistical null expectation from one where we treat samples
as being from the same species, until shown otherwise, to where we treat samples that
differ in ecology, genetics, and morphology as separate until we collect some new evidence
that unifies them. i.e., we accept a larger statistical Type I error (failing to reject a null
hypothesis when it is true) by “splitting”, because “lumping” will minimise the Type II error
of accepting a null hypothesis when it is, in fact, false. This leads to an underestimation of
diversity; furthermore, it fosters an underappreciation for the magnitude of importance for
the Type II error (of accepting the same when they are separate) [117]. Doing so improves
the visibility of rare species that would historically be overlooked and can help mitigate
the bias of underestimating the true species richness within tropical regions.

4.4. Cryptic Species and Protected Areas

In a recent review, Li and Wiens [4] reported that incorporating morphologically cryptic
insect species (delimited using molecular methodology) would realistically increase estimated
global biodiversity by at least two orders of magnitude—and perhaps more. Our study deals
with one genus of small rove beetles on one Costa Rican volcano but shows that even in
relatively well-studied tropical areas such as ACG, (semi-)cryptic staphylinid diversity is
extensive. What these putative beetle species should be called, how widespread they are in
the Neotropics, and how they are differentiated ecologically are all critical questions which
remain unresolved—as they are for much of tropical invertebrate biodiversity. Thus, while
formal description is beyond the scope of this work, but we anticipate will follow it, we have
helped to demonstrate that surveys and subsequent protected area management decisions
that utilise DNA-barcode-catalysed inventories of provisional species (such as BINs) are using
biologically meaningful (and transparent) units of diversity that, in many cases, will eventually
correspond with formally described species.

4.5. Elevational Patterns and Vulnerability in the Climate Crisis

Along tropical montane slopes, there exist a myriad of stable microclimates (until
climate change happens)—and species that live here are often not adapted to moving
among these microclimates or between adjacent peaks by passing through the other micro-
habitats separating them [35]. The result is often that the biodiversity of each mountain is
unique, and many tropical mountain peaks house endemic species. This is certainly the
case of Volcan Cacao, where the higher-elevation sites are characterised by (comparatively)
stable cool and wet weather while the sites at lower elevations experience higher variation
associated with long hot periods without rain and then relatively wet and warm rainy
seasons [67,70,72,118]. At least, this is how temperature variation has divided itself histori-
cally across elevation [118]. In the current climate crisis, hot temperatures are occurring
more frequently at higher elevations, and precipitation patterns are less dependable, as
historic norms show [72]. The provisional species we identified here exist along this finely
divided volcanic slope—and their future is likely in unavoidable jeopardy with ongoing
climate change in Costa Rica. The diversity of these Anotylus increases into the cloud
forest. These historically cold and damp locales likely foster many microhabitats and
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many opportunities for niche division amongst detritivores and dung eaters like these
Anotylus. What can we expect with increased heat and decreased dependence on historical
precipitation regimes but reduced opportunities for species that are likely decomposers of
decaying plant material and dung? We fear that our elucidation of this diversity may have
an elegiac element where future work will struggle to find some of these species again.
ACG has experienced declines in insect diversity and abundance over the past two decades,
occurring in varied taxa and habitats, and there is no other overarching causative agent that
can be implicated beyond the myriad effects of climate change [118]. While these Anotylus
are likely to experience such declines, we hope they will be among the survivors within
the protected forests of ACG, where contiguous forests may provide sufficient movement
opportunity for those species that can move.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d16080441/s1, Table S1: Sample information and metadata for
the specimens analysed here; Table S2: Morphological measurements; Table S3: Pairwise matrix of
interspecific distances of PC1 (beneath diagonal) and Tukey post hoc test values (above diagonal);
Table S4: Pairwise matrix of estimated interspecific distances between BINS (pdist). Figure S1:
Phylogenetic PCA of BINs.
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